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Multi-Target Tracking of Human 
Spermatozoa in Phase-Contrast 
Microscopy Image Sequences 
using a Hybrid Dynamic Bayesian 
Network
Abdollah Arasteh  1, Bijan Vosoughi Vahdat1 & Reza Salman Yazdi2

Male infertility is mostly related to semen and spermatozoa, and any diagnosis or treatment requires 
the investigation of the motility patterns of spermatozoa. The movements of spermatozoa are 
fast and involve collision and occlusion with each other. In order to extract the motility patterns of 
spermatozoa, multi-target tracking (MTT) of spermatozoa is necessary. One of the most important 
steps of MTT is data association, in which the newly arrived observations are used to update the 
previous tracks. Dynamic Bayesian network (DBN) is a powerful tool for modeling and solving various 
types of problems such as tracking and classification. There can also be a hybrid-DBN (HDBN), in which 
both continuous and discrete nodes are present. HDBN has a suitable structure for modeling problems 
that have both discrete and continuous parameters like MTT. In this research, the data association for 
MTT of human spermatozoa has been studied. The proposed algorithm was tested over hundreds of 
manually extracted spermatozoa tracks and evaluated using several standard measures. The superior 
results of the proposed algorithm in comparison to the other well-known algorithms, show that it 
could be considered as an improved alternative to traditional computer assisted sperm analysis (CASA) 
algorithms.

Statistics show that infertility is a problem for many couples. In every four couples, on average, one couple is 
affected by infertility in developing countries1,2. In the majority of cases, the infertility of men has a relationship 
with spermatozoa and semen, and can be measured by semen and spermatozoa analysis for more advanced diag-
nosis and treatments3–6. Nowadays, many of these analyzes are performed using computer-based systems called 
computer assisted sperm analysis (CASA). The CASA is a device that consists of software and hardware parts 
which monitor and measure many kinematic parameters of spermatozoa such as speed, average path, curvature 
of the path, total movement, etc. All the aforementioned parameters are extracted with the aid of a post process 
on spermatozoa tracks. The accuracy of the measured parameters is directly affected by the accuracy of each 
spermatozoon track extraction. Hence, the main problem here involves multiple-target tracking (MTT) to extract 
the tracks of the spermatozoa. Most of the current CASA algorithms are based on simple methods that were first 
developed in the past decades and may fail in complex situations like high density samples7. There are many MTT 
algorithms developed and applied to solve many problems such as human tracking8, visual object tracking9, stem 
cell tracking10, spermatozoa tracking11, etc., but spermatozoa tracking is a special problem that should be solved 
in its appropriate way. Fast nonlinear movements, high density of occlusions, and brightness changes in the image 
sequences are some of the circumstances that exist in the MTT of the spermatozoa.

There are many studies focusing on the estimation of spermatozoa movement parameters from a few decades 
ago12–14. Some studies focus on single cell tracking14–16 and the others concentrate on multiple cell tracking11,17,18. 
It is obvious that tracking multiple cells at once is harder than tracking just a single cell. Thus, the MTT approach 
is much more useful because extracting many population properties, such as average speed, requires the tracking 
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of many cells at once, and then, a computation of the mean speed, and its reporting for the physician’s diagnosis. 
In Sørensen et al. paper11, the core part of the algorithm is the Particle Filter combined with Kalman Filter. The 
segmentation algorithm is a scale-space blob detector and the final detection rate is not reported. There are no 
well-known metrics such as F1 measure reported and the reported results are marked “approximately” without 
any more details on the precision of that approximation in Table 1, and there is no comparison with the other 
methods. Finally, the studied number of video sequences and tracks are very few (3 video sequences and “approx-
imately” 97 sperm tracks) in comparison to the current study (36 video sequences and 1659 sperm tracks).

MTT of spermatozoa is performed in CASA systems and many parameters are extracted from detected tracks, 
e.g., curvilinear velocity, straight line velocity, and mean angular displacement, etc.19. Spermatozoa motions can 
be categorized in three motility classes according to the World Health Organization (WHO); these are: progres-
sively moving, non-progressively moving, and immotile19. The population of each class in the final reports of a 
CASA system is very important for later diagnosis and treatments; thus, the important point in the overall process 
is to accurately track the spermatozoa in image sequences.

MTT has numerous applications and many algorithms have been developed for performing this task10,15,20–22. 
Developing a solution for MTT depends on the details of the problem that have to be solved23, but in the most 
general case, a varying number of targets move on a background, and there are observations which give a noisy 
data from the targets positions24. The noisy observation of the target position means that the detection probability 
does not equal to one, and that there is always an error in detecting targets. There is also another kind of error in 
the observations: detecting non-targets as real targets, which are called False Alarms or Clutters24.

MTT has to accomplish three main tasks; these are: (1) observation (2) data association, and (3) state esti-
mation. The most important step in MTT is the second step, i.e., the data association24,25. The current study did 
not focus on the first step. The third step is also straightforward after performing the second step and can be 
performed based on the chosen dynamics and observation models26. The main focus of the current study is the 
second step.

Data association refers assigning the next step’s observations to the current step’s tracks; thus, every observa-
tion in the next frame will be assigned to at most one track in the current step and no more than one track will be 
allowed to be assigned to every observation in the current step. The final output of the data association is the set 
of all the observations labeled as separate tracks and clutters.

If the targets do not have a distinguishable feature (as in the spermatozoa-tracking) like color, size, shape, etc., 
the tracking task will be the hardest step as between the current frame and the next, there will be O(n!) possible 
data associations (permutations), in which n is the number of detections in the current frame. If the sampling fre-
quency of a video sequence is enough, then the number of detections will be close together in consequent frames. 
It means that if we have netections in frame t and m detections in frame t + 1, then m would be in the order of n 
(not necessarily equal to n, so the time complexity would be O(n!). Initially, the data association is an NP-Hard 
task27. Many developed algorithms try to solve the problem faster by making an extra hypothesis, or removing 
some low-probable hypothesis or gating21; some algorithms choose other heuristic approaches to overcome this 
problem20.

One well-known algorithm for solving this data association is the multiple hypothesis tracker (MHT), which 
is essentially a maximum a posteriori probability (MAP) estimator23. In this algorithm, certain hypotheses are 
formed in each step and as new observations arrive, new hypotheses are formed based on the previous hypoth-
eses, and the output is a hypothesis with the maximum a posteriori probability. However, the computational 
complexity of MHT algorithm is high23 because of the exponential growth of the number of hypotheses as the 
algorithm progresses in time, but several heuristic methods have been developed for dealing with this problem 
such as gating20 or k-best hypotheses21, yet the result is a suboptimal solution.

Another method that has been applied for solving a variety of MTT problems is the joint probabilistic data 
association filter (JPDAF) which is the generalization of probabilistic data association (PDA). This method 
approximates each target state as an independent random variable with a Gaussian PDF28. This algorithm assumes 
that the number of targets is fixed and cannot start a new track or end a track in a specific step of tracking29. 
JPDAF is a suboptimal solution for the MTT problem because it approximates the conditional PDF of the target’s 
state at every stage28.

Many other algorithms have been developed like the Nearest Neighbor Filter (NNF)30, which is a heuristic 
greedy method and assigns new observations to the closest predicted position of previously detected tracks, or 
the Markov Chain Monte Carlo methods26, which have their own disadvantages such as a high rejection rate31, or 
other sampling based methods like Gibbs sampling or Particle Filtering, which have been developed for general 
purpose tracking.

Bayesian Networks (BN)32 utilize a graphical structure for the representation of direct dependencies between 
variables. Dynamic Bayesian Networks (DBN)33 are like BNs, but the parameter of time is also involved in them 

Dataset property Value

Number of image sequences 36

Minimum spermatozoa cell count 4

Maximum spermatozoa cell count 96

Average cell count (rounded) 46

Total number of spermatozoa tracks 1659

Table 1. Recorded dataset properties.
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so it can model the dynamics of the systems. DBNs support the modeling of discrete systems in a convenient and 
compact way. DBNs also support models that include both discrete and continuous variables called hybrid mod-
els34. Hidden Markov Models (HMM) and Kalman filters are well-known special cases of DBNs35.

DBNs are powerful tools for modeling and solving many types of problems such as vehicle classification36, 
tracking hand for hand gesture recognition37, human body model, and tracking based on a figure and articulated 
model38. There are other applications of DBNs in modeling dynamic systems, especially in object tracking39,40. 
The most important problem of DBNs is to make an inference based on some evidence, which, initially, needs 
exponential time in the number of nodes to be computed41.

The quantitative relationship between one node in the DBN model and its parents consists of conditional 
probability distribution (CPD), which defines a conditional distribution for a node based on its parents’ config-
urations34. CPDs are often defined as a table in fully discrete DBN (DBN that all of its nodes are discrete). There 
can also be hybrid-DBN (HDBN), in which both continuous and discrete nodes are present, e.g., a continuous 
Gaussian node X with discrete parent U can be represented as a conditional Gaussian34. If a continuous node has 
continuous parents, the linear Gaussian model would be formed; on the other hand, if a continuous node has 
both discrete and continuous parents, a model which is called Conditional Linear Gaussian (CLG) would be the 
dependency model34.

The final case is a discrete child with continuous parents. Softmax density42 is a suitable model for this case. 
Softmax CPD43 defines the Regions by a set of R linear functions over continuous variables. Choosing an arbi-
trarily large R for each problem is the key to the power of generalized Softmax CPD, which have been used in this 
study for building a suitable HDBN model to solve the MTT problem, exploiting the manually extracted dataset 
(ground-truth) of recorded image sequences.

The main contribution of the current study is in the usage of the manually extracted dataset under an adapted 
formulation of Softmax CPD in a novel HDBN structure that solves the data association problem, and automati-
cally starts and ends a varying number of tracks. The proposed structure yields better results in comparison to the 
other well-known methods. Achieving better results compared to the other well-known methods is the other con-
tribution; for reaching those results, however, two important contributions in developing the algorithm have been 
made. The first contribution involves the utilization of graphical models and HDBN for solving the data associa-
tion; for this, a new approach was developed for adapting the Softmax CPD to the data association problem in an 
appropriately designed HDBN. Secondly, gating was used to reduce the hypotheses space by removing hypotheses 
with low probabilities for making the inference feasible in the designed HDBN network. With this approach, the 
computational complexity of the algorithm is a function of the size of the reference manually extracted dataset 
and the gated hypotheses set. It is also well worth mentioning that the dataset of this study is quite large and has 
36 image sequences and a variety of cell counts, ranging from 4 to 96, while many other methods use achieved 
good results in less than 10 cells in reported results6 or used very few sample sequences (just two sequences in7). 
The dataset of the current study consists of 1,659 cell tracks.

Methods
Data Acquisition. The current study dataset was recorded in the Royan Institute Research Lab. A recording 
of the image sequences of human spermatozoa was conducted using the CASA software (Sperm Class Analyzer© 
Software Version 5.1; Microptics™). All samples were taken after obtaining informed consent from all subjects, 
or their legal guardians in accordance with relevant guidelines and regulations. The experimental protocol was 
approved by Royan Institute. The recording frequency was 50 consecutive digitized images per second (50 FPS) 
using a 10× negative phase-contrast objective (Ph1 DL). The analysis was performed using a chamber with a 
capacity for 10 µL and previously heated to 37 °C. The chamber was placed under the phase-contrast microscope 
(Nikon™ Eclipse E200) with a green filter and the images were captured using a video camera (Basler Vision 
Tecnologie A312FC). Two non-consecutive, randomly selected microscopic fields per sample were scanned. The 
captured image resolution was 768 by 576 pixels, and the colormap was 8-bit grayscale. The recorded samples 
were varied in terms of spermatozoa cell count, the existence of other cells (e.g., debris or blood cells), and noise 
level. Here, the spermatozoa cell count refers to the number of spermatozoa in the recording viewport or, more 
precisely, the number of tracks that exist during the recording time. Some of the recorded samples are shown in 
Fig. 1. Each pixel in the recorded images is 0.833 μm.

After recording the data, some image sequences have been removed because of the unsettledness of the slide 
and cover-slip, or too much noise; 36 image sequences were selected as the final dataset of the current study. 
These image sequences were different in terms of cell count, brightness, noise condition, and the total motility of 
spermatozoa. There were at least four and at most 96 spermatozoa in the recorded image sequences, and the total 
number of spermatozoa was 1,659 in all the 36 image sequences; thus, the average spermatozoa cell count in an 
image sequence was about 46. This information has been summarized in Table 1. All the image sequences were of 
the same length (25 frames). For evaluating any MTT algorithm, the true track of each spermatozoon is required; 
thus, all of 1,659 spermatozoa tracks were precisely extracted manually by the Manual Tracking plugin of the FIJI 
software44. Track extraction was performed by a single well-trained operator under the supervision of an expert 
in the field. After the extraction, the dataset is ready for evaluating the MTT algorithm. Extracting tracks from 
captured image sequences provides a ground-truth and it could be confirmed that there are nonlinearities in 
spermatozoa movement. Some of the ground-truth tracks are depicted in Fig. 2, which shows this fact.

Flagellar beating is the main physiological cause of spermatozoon movement45,46. Spermatozoon tries to swim 
directly by means of sine-wavelike motions of the flagellum in order to reach the oocyte. However, the movement 
seems to have random fluctuations. There are many studies that investigated the movement of spermatozoon in 
2D and 3D environments, and suggested complex curves and a formulation for its movement46–50. The complexity 
and nonlinearity suggest the usage of manually extracted tracks as a rich information source to model the move-
ment of spermatozoa and the usage of the model to predict new tracks. More precisely, the problem involves 
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calculating the probability τ |p( )new  instead of p(τnew), to achieve better results, where  is the manually extracted 
tracks dataset and τnew is the new track that should be estimated from the observations. This approach is fully 
described in the following subsections.

Observation basic definitions. In the MTT problem, there is a sequence of observations in a specific time 
interval 1, ..., T and the data association for each target should be performed using this sequence. In video and 
image processing cases, we have a set of acquired images; these are: SI = {It|t = 1, ..., T}. The observations are 
extracted from SI. Here, t is a discrete variable that indexes the time steps of sampling.

The observation step as an image-processing task is mainly an image segmentation that discriminates targets 
from the background or other non-target objects present in the current image. The output of a segmentation 
algorithm, performed on a single image, is a set of coordinates that represents the centroid of the detected targets 
that form the observation set for the current image:

= | = ... o x y i n{( , ) 1, , } (1)t t
i

t
i

t

In (1), nt is the number of detected targets in the image It. Let ∪= =O ot
T

t1  be the set of all the observations; 
then, the final output of the data association is the set of tracks and false alarms called ω. More precisely, ω = {τ0, 
τ1, τ2, …, τK} in which τi, i = 1, …, K are tracks with their associated observations, and τ0 is the set of all the unas-
signed observations or false alarms, and K is the number of all the detected targets or the number of tracks in the 
image sequence SI. From the definition of the data association, we have ∪ τ= =O i

K
i1 , which means that the set of 

all observations is equal to the union of all the associated points in the tracks and false alarms. There are also some 
extra conditions for τi, i = 1, …, K to ensure being the correct tracks:
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These conditions guarantee the uniqueness and the independence of all the tracks and also the fact that a 
track at least needs to be present in two frames of the observation sequence and at each frame the tracks should 
be allowed to have at most one observation assigned. A track may start in any frame t and terminate in any frame 
t + 1, ..., T.

Phase-contrast properties for segmentation. Phase-contrast microscopy creates artificial shadows as 
if there is a side illumination51. It helps to make better contrast, and therefore, provides an improved view of the 
detail structures of the transparent specimen. However, the contrast enhancement has side effects such as produc-
ing extra brightness around the objects (Fig. 3). Additional illumination could prevent the correct segmentation 
of objects of interest from the background and other objects present in the image. Figure 4 shows certain ambigu-
ities that makes segmentation and observation difficult.

Evaluation of observation. There are certain definitions and quantities for evaluating the observation algo-
rithm; these include the probability of detecting targets (pd), the probability of missing targets (pm), and the rate 
of detecting non-targets as targets called false alarm rate (FAR). It is obvious that we have

+ =p p 1 (3)d m

These probabilities are the properties of an observation algorithm. Now, we describe the relations for calculat-
ing these quantities in our dataset. After segmentation, we would have a set of coordinates as the results. We should 
evaluate these coordinates by comparing them with the ground-truth coordinates and finally calculating pd, pm, and 
FAR. If we have = | = ... o x y i n{( , ) 1, , }t t

i
t
i

t  as the segmentation output and = | = ...g x y j m{( , ) 1, , }t t
j

t
j

t  as the 
ground-truth, for time step t, we can calculate the detection probability and false alarm rate from these two sets. 

Figure 1. Three samples of recorded spermatozoa images: the brightness and focus of samples are different as 
well as their spermatozoa cell count and the presence of other irrelevant cells (like debris and blood cells), which 
should be considered during MTT. (Images are just a portion of a recorded frame and the full frame images are 
not presented in the figures for page alignment purposes).
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Figure 2. Some of the ground-truth tracks: the starting point is the filled triangle and the ending point 
is the filled star. The tracks are translated to the origin; so, the starting point of all the tracks is (0, 0). It 
should be noted that the velocities are different so the axis numbers might be taken into account for a better 
understanding of movements (the X and Y-axis units are in pixels).

Figure 3. Images of spermatozoa head in phase-contrast microscopy images: there is extra brightness around 
the head in addition to the spermatozoa head itself (marked by red circles). The images are enlarged versions of 
the original recorded images to represent the related subject better.

Figure 4. One sample (portion of a full recorded frame) that shows the extra brightness for the objects present 
in the image (marked with red circle), which makes discrimination and segmentation of spermatozoa (objects 
of interest) a difficult task to perform. The situation becomes more challenging when the spermatozoa are near 
an extra brightness and the white part of the objects partially or totally merge (marked with blue squares).
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The number of truly detected objects from ot that match (within a 5 pixel or 4.17 μm radius) with corresponding 
objects in gt is related to the detection probability. If we assume nt

TP as the number of truly detected objects (True 
Positive) from ot, then, the detection probability in the current time step would be

=p n
m (4)d t
t
TP

t
,

For a complete image sequence SI, we can calculate pd as the mean of pd,t over different values of t (different 
frames) as follows:

=
∑ =p

p

T (5)d
t
T

d t1 ,

For the overall calculation of pd in a series of image sequences (a whole dataset), we can average the overall pd 
as follows:

=
∑ ∈p

p S( )

(6)d
S d II




In (6),   is the cardinal of the dataset, i.e., the number of image sequences (SI) in the , and p S( )d I  is the average 
detection probability of SI. We can now calculate the probability of missing an object as follows: pm = 1 − pd.

Similarly, the FAR in a single frame is −n nt t
TP. The only problem that remains here is the way of matching the 

points in ot with those in gt. The matching problem is a very common problem in MTT, both for the location of 
the objects in a frame and as well as for matching the final tracks with the ground-truth. For solving this matching 
problem (which is originally NP-Hard), many MTT studies like52 have used a standard polynomial method called 
the Hungarian or the Munkres algorithm53. Building the mutual Euclidean distance matrix for the elements of ot 
and gt, and using the Munkres algorithm, we can match the points in two sets. It should be mentioned that dis-
tances more than 5 pixels were defined as unacceptable (infinite distance in the distance matrix entry). That is 
because the head of a normal spermatozoon is an ellipse with average dimensions of 4.3 μm by 2.9 μm54, which 
means 5.2 pixel by 3.5 pixel in our images (0.833 μm/pixel). We take the ellipse major axis length, which is 5 pixels, 
as the maximum acceptable distance for assuming two objects as a matched pair in the two sets. Figure 5 shows 
two sets of ot and gt in a sample frame.

Segmentation algorithm. In this research, the observation step has been implemented in four steps in 
each frame of an image sequence:

 (1) Converting image to binary (black and white) by adaptive image threshold using local first-order 
statistics55

 (2) Applying closing morphological operation56 on the resulted binary image with a circular structuring ele-
ment with radius rSE pixels

 (3) Filling the holes of the segmented objects
 (4) Filtering segmented objects, that is, keeping objects with a blob area between βmin and βmax

Figure 5. Two sets of = | = ... o x y i n{( , ) 1, , }t t
i

t
i

t  as the segmentation output and = | = ...g x y j m{( , ) 1, , }t t
j

t
j

t  
as the ground-truth depicted on a sample frame of an image sequence. Green circles are elements of gt and red 
squares are elements of ot. As observable, there are eight false alarms (red squares without green circles) and 
four missed detections (green circles without red squares).
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Setting a threshold for turning the image into binary is very important because the resultant binary image is 
the basis for the following steps. We have used the adaptive image threshold using local first-order statistics55 for 
each frame’s segmentation. As there might be several particles other than spermatozoa are segmented as fore-
ground, for achieving a better result, certain additional processes on the resulted image are necessary.

Steps 2 and 3 of the segmentation algorithm are conducted for connecting parted big-components that are 
not related to the spermatozoa. If a big component is being parted into a few smaller components, they may be 
classified in Step 4 as a spermatozoon head; thus, connecting the parted components and filling their holes, which 
is necessary to avoid many more false positives. rSE in Step 2 was set to 5 pixels after sweeping that parameter from 
2 to 10 pixels for getting the best performance (high pD and low FAR).

In Step 4, βmin is set to 1 pixel because there are always spermatozoa heads that had as little as 1 pixel area after 
steps 1–3. Increasing βmin to even two pixels and setting it to 3 causes the maximum pD to decrease to about 10%. 
Sweeping βmax from 1 to 25, we achieve a broad range of pD and FAR (Fig. 6). The area of normal spermatozoa is 
in the 8.5.0.12.2 μm2 interval54, which means 12.18 pixels; thus, there is no need for sweeping βmax by more than 
25 pixels for filtering the heads of spermatozoa. Figure 6 shows the resulting pD and FAR after sweeping βmax from 
1 to 25 pixels. Thus, we might have different values of pD by setting βmax to different values.

The final segmentation accuracy could be enhanced by designing more sophisticated segmentation methods, 
which can be the objective of different independent studies like57–59.

Post-segmentation processing. After observation, data association should be performed. All MTT algo-
rithms need observations in each time step (frame) as input. This input is very important for the algorithm 
because if the observation is not so accurate, then, the data association results would also be erroneous. In this 
study, we have prepared multiple observation qualities and then input these qualities into different well-known 
algorithms and as well as our algorithm. After that, we could compare the different algorithms. The algorithms 
shared the same observation but had a different data association algorithm (Fig. 7). The next subsection com-
pletely describes our approach and method for data association.

Hybrid network definition. Probabilistic Graphical Models (PGM) have been developed for mode-
ling the relationship between random variables and for inference based on partial observations. As noted 
in “Introduction” Section, DBNs are used to handle the uncertainty of a system evolution over time. Typical 

Figure 6. pd and FAR plotted vs. βmax (a) Average detection probability (pd) and its standard deviation among 
all the image sequences of the dataset is plotted vs. βmax (b) Average false alarm rate (FAR) and its standard 
deviation among all the image sequences of the dataset is plotted vs. βmax.

Figure 7. Schematic design for comparing the current study results with other well-known algorithms (MHT 
and NNF): the observation part is common across the three methods, but the data association is different in 
each method. In the last part, the performance of each algorithm will be calculated.
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DBNs have discrete random variables, and therefore, their CPD is often represented as tables (sometimes called 
Conditional Probability Table or CPT). The final goal of building a BN or a DBN is to represent the full joint dis-
tribution of all the random variables in the network. Assuming that there are n variables {X1, X2, …, Xn}, the full 
joint distribution can be expressed using the chain rule of the BNs:

∏… = |
=

p X X X p X Pa X( , , , ) ( ( ))
(7)n

i

n

i i1 2
1

In the above equation, Pa(Xi) is the set of nodes which are the parents of Xi and each p(Xi|Pa(Xi)) is a CPD.
BNs and DBNs can also include continuous variables besides discrete variables, which are called hybrid net-

works. In the case of a discrete child with continuous parents, assuming that continuous parents are Z = {Z1, Z2, 
…, ZN} and the discrete child is U which has m possible values {u1, u2, …, um}, the CPD for U is defined as follows 
(as mentioned in34):
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In (8), pj
r are the probability values over u1, u2, …, um for the region r(1 ≤ r ≤ R), which means
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0 1  is a vector of weights for the region r (the space has been partitioned into R regions, in 
which R has been arbitrarily chosen based on the model). We have designed our model based on the Softmax-CPD 
by partitioning the space of all possible tracks into N parts and calculating the probability for each candidate point 
based upon each region. The graphical representation is depicted in Fig. 8. This formulation describes the condi-
tional probability distribution for choosing between the discrete values of ui.

This part has described the HDBN formulation in general; from now on, our method to adapt HDBN for 
solving the MTT problem is described.

Track normalization. One of the goals of the current study for building a graphical model for data associa-
tion involves using the existing data of the manually extracted tracks, i.e., calculating τ |p( )new   instead of just 
p(τnew), where  is manually extracted tracks dataset and τnew is the new track which should be estimated from 
the observations. More precisely, there are a set of manually extracted tracks like the ones in Fig. 2; these tracks 
can be used as a basis for comparison and selecting the best observation for a new track being tracked. There are 
several ways for training a supervised system based on the aforementioned data, but the preparation of the data is 
more important here, i.e., what is the feature vector for the similarity observation between the tracks and how can 
it help to solve the data association section of MTT.

A track is a set of points in two-dimensional space, i.e., τ = … + − + −x y x y{( , ), , ( , )}t t t L t L1 11 1 1 1
, where t1 is the 

start point and L is the length of the track sequence. Now for finding similar patterns of movement in , there 
must be a normalization in the tracks, which removes the initial direction variations, so the tracks could be com-
pared. For normalizing a track, first it must be represented in a polar way: a track can be redefined as 
τ θ θ= … + − + −d d{( , ), , ( , )}t t t L t L1 11 1 1 1

, where di is the displacement from point i to point i + 1, and θi is its relevant 
angle with respect to the X-axis:

Figure 8. Graphical model of continuous parents {Z1, Z2, …, ZN} with a discrete child U.
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Now, if the track is rotated with the angle θ− t1
, it is normalized; so, the first displacement is always exactly in 

the horizontal direction (zero degrees with respect to the X-axis), and it can be compared to the other tracks while 
the initial direction is removed (Fig. 9). After normalization, every track has zero degrees in the first element: 
τ θ= … + − + −d d{( , 0), , ( , )}t t L t L2 21 1 1

. It should be noted that if a cell is immotile, then the related angle of move-
ment in that step was set to zero.

Design HDBN for data association. In the data association for an image sequence SI, the input is 
∪= =O ot

T
t0  and the output is ω = {τ0, τ1, τ2, …, τK}. For using the manually extracted tracks dataset ( which 

consists of all manually extracted tracks for all image sequences) as a source of information for a specific image 
sequence SI, first, all of the manually extracted tracks of SI are removed from  and the rest of manually extracted 
tracks are used; so, for each of the image sequences, its related data is pulled out because of the validity of the final 
results acquired (not using the image sequence manually extracted data which is currently being tracked). This is 
a standard method in cross validation called Leave-One-Out Cross Validation (LOOCV)60. Assuming that there 
are N manually extracted tracks left in  as a reference for comparison (τ τ τ…, , , N1 2

  ), In the following we 
describe how to use these tracks as an information source for the data association of a new track. A new track is 
built step by step by assigning a new observation from the set of all observations. If we call a new track i until time 
t, θ θΓ = …d d{( , ), , ( , )}t

i i i
t
i

t
i

1 1 , which will progress to the next time to build Γ +t
i

1, in the end, it will be the ith track 
τi, i.e. τΓ =T i

i
i( ) , in which T(i) is the length of the track τi. Now, the partial likelihood of Γt

i and a track in  can be 
calculated using the inverse of Zt,j, and the distance between Γt

i and τ t( )j  with the following definitions:
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τ θ θ τ
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In (11), d’s are in units of pixels and θ’s are in units of radians. In each step for building Γ +t
i

1 from Γt
i, there may 

be a missing observation in the track (which is marked by 0t
i). This will occur if there is no proper match for the 

current track i at time t, either because of an error in the observation system or due to the occlusion of the target 
in the current frame. The maximum number of consecutive missing observations of any track must be less than 
or equal to a specific threshold called d  and; if this threshold is passed, the track should be terminated. There will 
be a neighborhood circle for each point in a track based on the maximum directional speed of the targets in all the 
image sequences (v ) such that the candidates of the next point of the track must be inside that circle. These two 
facts are depicted in Fig. 10, in which an end point in Track τi is the center of the figure ( −ot

i
1) and the possible 

candidates for the next Step t are in a circle with the radius equal to the magnitude of v . Note that the observations 
in time t that are farther than v  are marked as impossible (empty circles). In the case of the missing observation in 
time t, the following possible candidates at time t + 1 must be in the v2  radius of the end point and so on for the 
next missing observations till the d  threshold, which is three in Fig. 10. It should be noted that in the calculation 
of Zt,j in (11), if at any t' a track point was missing between 1 to t, a dummy point was considered with an equal 
distance between its previous and following observations. This should be performed so that the distance calcula-
tion becomes feasible.

Figure 9. The original track (dotted) and the normalized track (solid); the normalized track does not have an 
initial angle θ1 like the original track and has a zero angle in its first move.
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Now, based on the above definitions and descriptions, the suggested HDBN model for data association in the 
MTT problem is as depicted in Fig. 11. The continuous nodes in the HDBN model are Zt,j(j = 1 … N) and the 
discrete node is γt

i (next observation of the ith track in time index t) which has =m Nt
i  states; thus, we have

Figure 10. Candidates of the following points of track τi at time t − 1 from the set of related observations in the 
neighborhood circles, up to three consecutive missing observations: ot

j is the jth observation in the time step t. If 
ot

j is within the range of gated observations with respect to the last point ( −ot
i

1), then it is a possible candidate for 
being the next point on the track. If it is out of the range, however, it is an impossible candidate in time step t. 
The filled circles are possible candidates and the empty circles are impossible candidates at each time step.

Figure 11. The HDBN model for data association of the track τi: Zt,j (which is the continuous node in the 
HDBN) is the distance between the ith track (τi) the jth track in the dataset up to time t. γ +t

i
1 is a discrete node; 

it is the next point (observation) which must be assigned to track τi. It has m states (based on the gated 
observations set Nt

i) with a specific probability for each of them. The next point of the track is selected based on 
the probability values γ = |+ Zp u( )t

i
j t1 , in which uj is a point from the candidate points in the gated 

neighborhood set and Zt = {Zt,1, Zt,2, …, Zt,N}. Γt
i is the track τi completed up to time t and will be used for 

calculating Zt,j, and finally, γ +t
i

1.
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In (12), ⊆N ot
i

t and it contains some candidate points for the selection of the next point which is in the neigh-
borhood circle. d((x1, y1), (x2, y2)) denotes the Euclidean distance between two points, tl is the last time index in 
which the track had an assigned observation, and we have

− ≤ ≤ −t d t t 1 (13)l

Different states of γt
i can be obtained from the members of Nt

i in (12) as follows:

γ θ∈ = | ≤ ≤u d j m{ ( , ) 1 } (14)t
i

j t
j

t
j

The states of γt
i are obtained from the possible candidate points in the neighborhood circle (members of Nt

i), 
which are converted to polar representation. Based on the relations of HDBN, the probability of selecting any 
point in the neighborhood circle is as follows:
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Here, the selected coefficient is ζ δ= − −i q( )i
q  and δ is the Kronecker delta function which will result in
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The R regions introduced earlier is just the number of regions and it could be chosen arbitrarily in the model34. 
We designed our model based on the Softmax-CPD by partitioning the space of all possible tracks into N parts 
(R = N) and calculating the probability for each candidate point based upon each region. This will result in higher 
weights as a result of greater similarity between the current track and the tracks in  and lower weights for less 
partial likelihood between the current track and the tracks in . For probability distribution over the possible 
values of γt

i, a Gaussian distribution is defined as follows:

θ Θ θ µ

Θ θ

= | Σ

=
=
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The normal distribution of the angle can be interpreted by generalizing the concept of angle from θ to 2kπ + θ, 
or by mapping  to unit circle which is known as wrapped normal distribution61. The mean of this Gaussian dis-
tribution is the current point of the track in , i.e., µ θ= d[ , ]t

r
t
r

t
r T, and the covariance matrix is a function of the 

current distance, which means the higher the current distance is, the bigger the covariance matrix determinant 
will be (Fig. 12):

λΣ = ×d I (19)t
r

t
r

2 2

λ is a coefficient determining the broadness of the distribution over µt
r.

The goal of this step is to score all of the m points in Nt
i in τj’s point of view for all τ ∈j . This score is then 

multiplied by wt
r  as in (15), the partial likelihood between τi and τj in time step t. The Gaussian distribution is 

Figure 12. Mean and covariance parameters in p t( )j
r .
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used as a natural choice for a symmetric and decreasing-from-the-center function because as the point goes away 
from predefined dataset track point, its probability (likelihood to be in the pattern of the current dataset track) 
should be decreased. It should be mentioned that other 2D symmetric probability distributions could be used 
instead of Gaussian, like a conical shape or other possible distributions that are symmetric and decrease from the 
center point to the sides.

According to Equation (9), we must have a probability distribution, so, the normalization constant is required 
in the Equation (18):
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=

=
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p t
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Here, the Equation (15) definition is complete. Now, the next point in a track must be selected. The next point 
is the point with the maximum probability among all the candidate points:

γ γ= |
γ

+ +
+

 Zparg max ( )
(21)

t
i

t
i

t1 1
t
i

1

In addition, this method gives promising results (close to the optimal solution); it is a suboptimal solution 
because there are multiple tracks at time t that must be assigned a new point (observation); so, this is a multiple 
assignment optimization problem. The multiple assignment problem is originally NP-Hard but it could be solved 
in polynomial time using the Munkres algorithm53 like the matching problem mentioned in “Evaluation of obser-
vation” Section. Using this algorithm, in each step, the best candidates for completing all the tracks up to this stage 
are chosen based on the probability distribution γ |+ Zp( )t

i
t1  for each track τi. It is well worth mentioning that there 

are two different approaches for solving MTT problems: single scan and multi scan26. The approach of the current 
study is single scan which have been implemented and reported. The HDBN MTT algorithm is summarized in 
Table 2.

Results and Discussion
The output of the data association algorithm for solving the MTT problem is a set ω, which contains assigned 
tracks from the observations (τ1, τ2, …, τK) and a false alarms set not assigned to any track (τ0). For simplification 
in notation, we call the set of estimated tracks {τ1, τ2, …, τK} as ω.

As mentioned in many studies like52, one key problem for evaluating any MTT algorithm (independent of the 
algorithm and its properties) is how to optimally pair the set of estimated tracks ω and the set of ground-truth 
tracks . There are two problems: firstly, matching the tracks, and secondly, matching the points within the tracks. 
For solving the first problem, we should first solve the second problem. For the best matching between track pairs, 
we should calculate a distance between each track in ω and . Finding the distance between tracks which needs 
matching the points within the tracks (solving the second problem) is like Equation (11) and as described there, 
some dummy points were added to compensate for the missing points in the tracks in ω. After a distance calcula-
tion, a distance matrix is made. From the distance matrix and using Munkres algorithm52,53, we can optimally 
assign the tracks in ω to the tracks in . There might be some tracks in ω and  without any match, either because 
of being too far from any tracks in the other set or as the number of tracks in ω and  mismatch. If the first and 

Algorithm 1

Initializations:
      ω = ∅
      Remove SI data from  and prepare τ τ τ…, , , N1 2

  

For t = 1 to T
        Segment It to obtain Ot
       For i = 1 to K
         Form Nt

i for τi based on v  and d
         γ | = ∑

Γ τ

Γ τ+ =
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i
t r

N dist t
i

r t

q
N dist t
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End For
Assign γ +

∗
t
i

1 for each track τi by Munkres algorithm
For i = 1 to K
       If γ =+

∗
+0t t

ii
1 1

            +mt
i

1+ +
          If ≥+m dt

i
1

              Terminate τi
              K−−
           End If
       Else
              +mt

i
1=0

          End If
       End For
       Update ω based on τ ≤ ≤i K, 1i
End For

Table 2. Hdbn Mtt Algorithm.
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last point of two tracks are farther than 25-pixels then their matching should be rejected. The maximum total 
number of missing observations is d  which was set to 5, so in the worst case, having initially (or finally) 5 consec-
utive missing observations and assume average spermatozoa movement as 5 pixels (actually it is 4 pixels but we 
add an extra margin about 25%), then the distance between the first and last point should not exceed 25-pixels. 
Hence if the distance between the first and last points of the two tracks exceeds 25 pixels or average distance 
between points of two tracks exceeds 50 pixels, then they could not be labeled as matched. Matching tracks 
together with any “cost” (or distance) is not the goal of the MTT, because if there exist some spurious tracks due 
to false alarms (which is the case when the SNR is low and the false alarm rate is high), matching them to some 
ground truth tracks which did not really tracked, is not a correct approach. We define nC as the number of correct 
associations (matched track between ω and ) made by any algorithm. Figure 13 shows certain tracks that 
matched and certain tracks that did not match.

For representing the performance of the developed algorithm on the dataset, there must be some criteria to 
compare the results with other well-known algorithms in this context. There is a performance measure called F1, 
which has been used for the evaluation of methods like the data association in record matching62. The F1 measure 
is based on two other measures: precision and recall. The definition of these two measures is as follows:

•	 Precision: =
ω

P nC

•	 Recall: 


=R nC

Figure 13. (a) Two tracks that did not match because of too much average distance between points. The blue 
cross markers show the ground-truth and the red diamonds show the estimated track. (b) Actually, there are 
three tracks: two tracks are separate estimated tracks and one is the ground truth. (c) Two matched tracks in 
which the green cross markers show the ground-truth and the black diamonds show the estimated track. There 
are certain missing observations in the track path. (d) Another matched track pair. It should be noted that the 
scales of the figures may vary and for precise investigation, the axes’ numbers must be taken into account.
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Now, based on these two measures, the F1 measure is defined as the harmonic mean between them

ω
=

+
=

+
F RP

R P
n2 2

(22)
C

1

R and P are related to effectiveness of the algorithm and so the higher the F1 measure, the more effective the 
algorithm63.

There is also another standard measure for precision in the track’s path: RMSE; this is a measure of precision 
in correct associated tracks. RMSE is calculated as follows:

τ τ =
∑ − + −=RMSE

x x y y
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In Equation (23), T(i) is the length of the tracks. Finally, for a comparison between different algorithms, the 
mean of all the RMSEs in the whole dataset is calculated as an important measure of the algorithm performance.

Many algorithms have been introduced in “introduction” Section for solving MTT problem, and among all of 
them, two methods were selected for the implementation and comparison of the HDBN on the current dataset. 
First, MHT, as a MAP solution to the MTT problem, was chosen. The MATLAB implementation of MHT was 
used64. The maximum track tree depth was 5 in the k-best hypothesis; k was set to 6, and the maximum number 
of leaves after pruning was set to 5. Another method that was implemented in MATLAB was NNF as a standard 
method in MTT.

PDAF and JPDAF are also well-known algorithms for solving the MTT problem, but its inability to start and 
end a track automatically29 is a great disadvantage in high-density problems like spermatozoa tracking; for this 
shortcoming, these algorithms were not considered for implementation and comparison in the current study.

In “Design HDBN for data association” Subsection, the maximum number of consecutive missing observa-
tions called d  was introduced and it was emphasized that if this threshold was passed, the track should be termi-
nated. For determining this value, we must know the effects of this parameter mathematically and statistically. 
The probability of observing a specific target at least once in exactly d  consecutive frames is a function of d  as 
follows:

= − −p d p( ) 1 (1 ) (24)det d
d

If we want π≥p d( )det , then from (24), we should have π≥ − −d plog(1 )/ log(1 )d . Now, if we set π = 0.99 
and the average over pd, which yields 0.67, then we should have ≥d 5. So, in all the implemented methods, d  was 
set to 5.

All the implemented algorithms were run on the dataset. HDBN was implemented with LOOCV. For a greater 
comparison between different conditions, the βmax parameter was swept; so, different variables for pd and FAR 
were prepared according to curves in Fig. 6. Firstly, Precision and Recall were computed (Fig. 14), and then, the 
F1 measure was calculated based on these two measures (Fig. 15). The superiority of the proposed HDBN method 
could be observed from the plotted curves. The MHT algorithm precision shows a greater increase against detec-
tion probability than its recall. The NNF algorithm has the steepest growth against the increase of detection prob-
ability. Note that in these figures the sweeping pd is alongside FAR, because these two parameters are connected 
together and acquired as a result of the segmentation algorithm.

Another measure worth mentioning here is RMSE, which is a measure of how close the trajectories of the 
tracks have been to the ground-truth. The RMSE curve is plotted in Fig. 16 for each method. Note that RMSE 
of NNF is lower than the proposed method for high values of pd, which may be because of the nature of NNF 

Figure 14. (a) Mean precision over all 36 image sequences and the (b) mean recall over all 36 image sequences 
plotted against pd for the three methods.
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method that selects the nearest observation to the last point of the track. This approach may fail when there is 
too much noise or clutter. All the results are also summarized in Table 3 and the superiority of HDBN can be 
confirmed in a majority of the cases.

Superiority of the HDBN in accuracy arose from predicting the probability for each observation in a correct 
structure as well as by the use of a prior knowledge of spermatozoa movement patterns. The calculation for the 
next point of a track and selection among many observations is the fundamental key toward achieving a good 
result in data association. Based on the reality that there is randomness in spermatozoa movements, there might 
be some patterns; the HDBN tried to discover the most likely patterns related to the current track being tracked 
for current time step. The most likely patterns will suggest some points from the observations set and rank each 
with a probability. Finally, selecting the most probable point among all the points advances the track to next time 
step.

Time complexity of an algorithm is also an important measure. In Fig. 17, the average time needed for pro-
cessing a single frame is plotted for each method. It is obvious that the time complexity grows with pd because as 
the detection probability increases, more targets, and as a result, more tracks are detected and are going to be 
completed. The algorithms were run on a Windows ® based Laptop with Intel ® Core™ i7-3630QM CPU with 
16GB of memory installed on it. All algorithm was implemented in MATLAB ® R2016a. Time complexity of the 
proposed method is high in comparison to the other methods, but it is still acceptable (about a few seconds per 
frame). One reason for this high time complexity is calculation of γ |+ Zp( )t

i
t1 , which directly depends on the size 

of Zt. In the current study, the average size of Zt was about 1,600 samples. Reducing the samples will reduce the 
time complexity, but may alter (and usually, degrade) the performance. The number of samples that can be 

Figure 15. Mean F1 measure over all the 36 image sequences plotted against pd for the three methods.

Figure 16. Mean NRMSE measure over all the 36 image sequences plotted against pd for the three methods.
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pd Measures

Method

NNF MHT HDBN

0.1825

Precision 0.0714 ± 0.0565 0.2680 ± 0.2032 0.3382 ± 0.2004

Recall 0.1563 ± 0.1028 0.3700 ± 0.2293 0.4422 ± 0.1788

F1 measure 0.0980 ± 0.0646 0.3108 ± 0.1555 0.3833 ± 0.1772

RMSE 60.348 ± 59.105 72.099 ± 17.396 78.154 ± 23.973

0.4097

Precision 0.1950 ± 0.1400 0.4706 ± 0.2787 0.5908 ± 0.2281

Recall 0.2358 ± 0.1507 0.3951 ± 0.2007 0.4993 ± 0.1687

F1 measure 0.2135 ± 0.1143 0.4296 ± 0.1814 0.5412 ± 0.1879

RMSE 30.570 ± 29.524 74.076 ± 15.081 66.885 ± 18.418

0.6053

Precision 0.3285 ± 0.1892 0.6000 ± 0.3066 0.7583 ± 0.2059

Recall 0.3008 ± 0.1605 0.4217 ± 0.1694 0.5577 ± 0.1657

F1 measure 0.3140 ± 0.1575 0.4953 ± 0.1868 0.6427 ± 0.1796

RMSE 42.775 ± 68.327 74.264 ± 14.597 62.102 ± 20.563

0.7331

Precision 0.4658 ± 0.2454 0.6737 ± 0.2738 0.8327 ± 0.1746

Recall 0.3827 ± 0.1993 0.4307 ± 0.1522 0.5851 ± 0.1713

F1 measure 0.4202 ± 0.2097 0.5254 ± 0.1657 0.6873 ± 0.1744

RMSE 27.869 ± 37.791 73.564 ± 11.679 45.971 ± 25.523

0.7961

Precision 0.5453 ± 0.2267 0.7006 ± 0.2672 0.8946 ± 0.0879

Recall 0.4342 ± 0.1824 0.4230 ± 0.1573 0.6139 ± 0.1516

F1 measure 0.4835 ± 0.1995 0.5275 ± 0.1676 0.7281 ± 0.1383

RMSE 20.576 ± 25.020 73.901 ± 11.691 39.802 ± 25.157

0.8390

Precision 0.6102 ± 0.1829 0.7254 ± 0.2457 0.9209 ± 0.0676

Recall 0.4704 ± 0.1582 0.4175 ± 0.1541 0.6268 ± 0.1504

F1 measure 0.5312 ± 0.1678 0.5300 ± 0.1587 0.7459 ± 0.1325

RMSE 15.698 ± 14.479 74.446 ± 8.253 32.994 ± 20.522

0.8662

Precision 0.6617 ± 0.1489 0.7426 ± 0.2360 0.9423 ± 0.0522

Recall 0.5020 ± 0.1438 0.4164 ± 0.1563 0.6367 ± 0.1430

F1 measure 0.5709 ± 0.1462 0.5336 ± 0.1573 0.7599 ± 0.1217

RMSE 14.953 ± 12.816 74.335 ± 8.552 28.846 ± 16.237

0.9041

Precision 0.7342 ± 0.1251 0.7733 ± 0.1919 0.9566 ± 0.0482

Recall 0.5420 ± 0.1515 0.4123 ± 0.1517 0.6414 ± 0.1547

F1 measure 0.6236 ± 0.1445 0.5378 ± 0.1698 0.7679 ± 0.1327

RMSE 9.568 ± 7.322 75.481 ± 5.991 21.514 ± 9.869

Table 3. Summary of all the results with their standard deviation (the best results are in bold font).

Figure 17. Average time complexity for processing a single frame (averaged overall in 36 image sequences) 
plotted against pd for three methods. It should be noted that for a better representation, the Y-axis is in the 
logarithmic scale.
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removed from the dataset so as to get approximately the same result (discussed in Conclusion section) can be 
investigated in the future.

Conclusion
In this paper, a method based on HDBN has been presented. A new HDBN model was designed based on Softmax 
CPD for inference and solving the MTT problem. In the presented model, exploiting the manually extracted data-
set as a source of information for track guidance has been introduced. For the best compatibility between tracks, 
track normalization has been introduced in polar representation as a practical tool for the better usage of the 
manually extracted dataset.

For the evaluation of the developed algorithm, a currently up-and-running CASA research system has been 
used for recording many samples, and then, the tracks from the recorded samples have been extracted manually 
for building a ground-truth and a dataset. The dataset of the current study is quite large (there were more than 
1,650 spermatozoa tracks in the dataset); so, the final results were more reliable.

The segmentation was performed with a control parameter (maximum blob area) and by sweeping that, the 
various detection probability and false alarm rates were yielded. Different detection probabilities (as well sd false 
alarm rates) were used each time to run different data association algorithms; so, we can finally compare the per-
formance of each algorithm based on a common observation step. Thus, we have compared the data association 
qualities in each tracking algorithm.

Finally, the developed method was implemented and tested on the dataset and compared to other well-known 
algorithms, such as MHT and NNF, for solving MTT. The results showed the superiority of the developed algo-
rithm in many measures, including precision, recall, F1 measure, and RMSE. The superiority of the HDBN in 
accuracy came from predicting the probability for each observation in a correct structure and also by use of a 
prior knowledge of spermatozoa movement patterns. The calculation of the next point of a track and selection 
among many observations is the fundamental key for achieving a good result in data association. Based on the 
fact that there is also randomness in spermatozoa movements, there might be some patterns; the HDBN tried 
to discover the most likely patterns related to the current track being tracked for the current time step. The most 
likely patterns will suggest certain points from the observations set and rank each with a probability. Finally, 
selecting the most probable point among all the points in related gating selects the points for the track and the 
algorithm proceeds in the next time step. Gating was used for reducing the process time and avoiding the calcu-
lation of probability for unlikely points which were too far to be considered as the following points of the current 
track.

The only issue with the developed algorithm is that the process of calculating the probability distribution over 
all the samples of the dataset is time-consuming. However, because the MTT problem in spermatozoa tracking 
need not to be in real-time in most cases, this issue is not a bottleneck. Processing each frame in a few seconds is 
an acceptable speed for many applications, including fertility research. In other real-time applications, there must 
be some modification to the algorithm, e.g., reducing the size of dataset for calculating the probability or selecting 
some more relevant tracks so that the computation time is reduced.

The current study can be extended in several ways in future work:

•	 The observation studied in this paper was limited (although enough for the investigation of the developed 
algorithm); this step and its effects on the consequent steps can be broadly studied separately, both as some 
new segmentation methods in this field or by the means of simulations and by artificially manipulating pd, pm, 
and FAR on the manually extracted dataset.

•	 Certain heuristic methods have been focused on recently and studied for solving the MTT problem; these 
include Markov Chain Monte Carlo (MCMC) and sampling methods like the Metropolis–Hastings (MH) 
sampling algorithm. Testing these algorithms on the dataset could lead to valuable information and a com-
parison to the other methods in different scenarios.

•	 The time complexity of the algorithm is high and it could be reduced by optimizing the set of dataset used for 
the next observation selection. The current dataset is large and results in a huge amount of computation tasks 
to sweep all the samples. Retaining the same performance, there could be other methods for using the data-
set in a different order and by reducing its size, we can achieve better performance in time complexity. This 
may be done by categorizing the movements and using the most informative samples only, and discarding 
repeated patterns that are similar to each other and do not add much more information to the system.

•	 Testing the developed algorithm on the other recorded datasets as well as on some synthetically generated 
data like65,66 is another benchmark for further testing and confirming the achieved results.
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