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Mesoproterozoic juvenile crust 
in microcontinents of the Central 
Asian Orogenic Belt: evidence from 
oxygen and hafnium isotopes in 
zircon
Zhen-Yu He  1,2, Reiner Klemd2, Li-Li Yan1,2, Tian-Yu Lu1 & Ze-Ming Zhang1

We report in situ O and Hf isotope data of zircon grains from coeval Mesoproterozoic (ca. 1.4 Ga) igneous 
metamafic (amphibolite) and granitic rocks of the Chinese Central Tianshan microcontinent (CTM) in 
the southern Central Asian Orogenic Belt (CAOB). Zircon grains from amphibolite have mantle-like 
δ18OVSMOW values of 4.7–5.6‰ and juvenile Hf isotopic compositions (εHf(t) = 8.4–15.3; TDMC = 1.57–1.22 
Ga), whereas those from granitic rocks have δ18OVSMOW values of 5.6–7.0‰ and evolved Hf isotopic 
compositions (εHf(t) = −1.0–8.2; TDMC = 2.09–1.62 Ga). Zircon O–Hf isotopic compositions of the 
metamafic and granitic rocks provide evidence for Mesoproterozoic (ca. 1.4 Ga) crustal growth and a 
substantial Palaeoproterozoic supracrustal component in the CTM. These findings and previous studies, 
reporting ca. 1.4 Ga magmatic rocks from other microcontinents of the CAOB, suggest that a large belt 
of Mesoproterozoic (ca. 1.4 Ga) juvenile continental crust formed in a continental terrane, fragments of 
which now occur over a distance of more than a thousand kilometres in the southern CAOB.

The Central Asian Orogenic Belt (CAOB), one of the largest Neoproterozoic to Palaeozoic accretionary oro-
gens on Earth, has been extensively studied in order to constrain juvenile continental crustal growth during the 
Phanerozoic1–4. Microcontinents with Precambrian crystalline basement are essential components of the CAOB 
by constituting approximately 50% of its crust5. However, their geological evolution is only poorly constrained 
due to restricted exposure of the Precambrian rocks, which were extensively overprinted by Palaeozoic tectonic, 
metamorphic and magmatic events and were largely incorporated into Palaeozoic magmatic arcs6–9. Therefore, 
deciphering the crustal components of these microcontinents is critical to constrain juvenile continental growth 
in the CAOB. Recently, in situ zircon geochronology confirmed Mesoproterozoic (ca. 1.4 Ga) magmatic activity in 
the CAOB, which undoubtedly testifies to the occurrence of continental crust generated before amalgamation of 
the CAOB (Table 1)7,10–16. The Mesoproterozoic Era, dominated by the break-up of the Columbia supercontinent 
and the formation of the Rodinia supercontinent, was an important crust-forming period in many continents 
across the world17–19. But the best-preserved remnants of ca. 1.4 Ga juvenile crust occur in eastern Laurentia, SW 
Baltica and SW Amazonia20–23. In this context, Mesoproterozoic (ca. 1.4 Ga) magmatism is critical to clarify the 
crustal evolution of the host microcontinents in the CAOB (cf. ref.8).

However, whether ca. 1.4 Ga magmatism in the microcontinents of the CAOB was actually accompanied by 
significant crustal growth has largely remained speculative up to now, since the zircon Hf isotope signatures and 
bulk compositions of the magmatic rocks preclude derivation directly from the mantle7,10–13,16. However, zircon 
oxygen isotopic compositions are particularly useful for determining the origin of magmatic rocks since zircon in 
equilibrium with mantle-derived melts has a narrow δ18OVSMOW range [5.3 ± 0.6‰ (2 SD)], which is thought to be 
insensitive to magmatic differentiation24–26. In contrast, zircon crystallized in magma from a supracrustal source 
has elevated δ18O values. Zircon oxygen isotopic compositions can also be used to track the isotopic evolution of a 
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magmatic system through inter- or intragrain variations due to the long residence time of zircon in magma cham-
bers25–27. In this study, we present in situ O and Hf isotope compositions of zircon grains from Mesoproterozoic 
magmatic metamafic and granitic rocks from the Alatage area in the Chinese Central Tianshan microcontinent 
(CTM) of the southern CAOB to gain insight into crustal evolution of the CTM (Fig. 1). The new data allow us to 
propose Mesoproterozoic (ca. 1.4 Ga) juvenile magmatism in the microcontinents of the southern CAOB.

Results
Field occurrence and petrography. The Chinese Tianshan is commonly subdivided into the North 
Tianshan, the Yili block, the CTM and the South Tianshan Accretionary Complex, and occupies major parts of 
the southwestern CAOB28–30. A Palaeozoic continental arc with Precambrian basement characterizes the CTM. 
The basement rocks are mainly exposed in the Xingxingxia, Weiya, Alatage and Baluntai areas and include Meso- 
to Neoproterozoic igneous and supracrustal rocks that were ascribed to the Xingxingxia Group6,7,31,32.

The Alatage metamafic rocks occur as boudins and lenses ranging from metres to tens of metres in length in 
Palaeozoic mylonitic granitoids and are commonly aligned with the foliation (Fig. 1b). The investigated amphi-
bolite sample X15–54 is predominantly composed of hornblende (~60 vol.%) and plagioclase (~30 vol.%), with 
minor biotite, magnetite and quartz. The rock has a protolith age of 1384 ± 35 Ma (Table S1; Figs S1 and S2). The 
Mesoproterozoic granitic rocks in the Alatage area intruded into marble and schist of the Xingxingxia Group and 
were in turn intruded by Palaeozoic granitoids, occurring as sporadic outcrops (Fig. 1b). The gneissic granitoids 
are mylonitized to a varying extent and classify as granite, granodiorite, tonalite and quartz diorite (see details in 
ref.7). The granitic rocks were emplaced almost synchronously with the protolith of the amphibolites and have 
zircon crystallization ages of ca. 1438–1436 Ma7.

Zircon O isotopes. Fifteen analyses on fifteen magmatic zircon grains from amphibolite sample X15–54 
show limited intragrain O isotope variability. The δ18OVSMOW values cluster between 4.7 and 5.6‰, with an aver-
age of 5.2 ± 0.5‰ (2 SD; Fig. 2). In addition, fifteen analyses on 15 magmatic zircon grains from gneissic gran-
odiorite sample X12–38 revealed δ18OVSMOW values of 5.6 to 7.0‰, with an average of 6.5 ± 0.9‰ (2 SD; Fig. 2). 
This intragrain δ18O range distinctly exceeds that of the homogeneous zircon standard Penglai (0.5‰; Table S2).

Zircon Hf isotopic compositions. Eight Lu–Hf analyses were performed on 8 magmatic zircon grains 
from amphibolite sample X15–54. These analyses commonly show uniform initial 176Hf/177Hf ratios of 0.282142 
to 0.282337 (Fig. 3), that correspond to εHf(t) values between 8.4 and 15.3 and crustal model ages (TDMC) of 1.57 
to 1.22 Ga (Table S3). The zircon Hf data for the Alatage granitic rocks, which include gneissic granodiorite sam-
ple X12-38, were described in detail in ref.7. A total of 120 Hf isotopic spot analyses on zircon grains from seven 
samples yielded varying initial 176Hf/177Hf ratios from 0.281844 to 0.282103 and εHf(t) values from −1.0 to 8.2, 
corresponding to crustal model ages (TDMC) of 2.09 Ga to 1.62 Ga (Fig. 3).

Tectonic unit locality Lithology Age (Ma) εHf(t) TDMC (Ga) Data source

Chinese Central 
Tianshan

Alatage amphibolite 1384 ± 35 8.4–15.3 1.57–1.22 This study

Alatage gneissic granodiorite 1437 ± 4 2.2–6.5 1.93–1.71 ref.7

Alatage gneissic granodiorite 1438 ± 5 1.5–6.2 1.97–1.73 ref.7

Alatage gneissic monzogranite 1436 ± 4 4.2–8.2 1.83–1.62 ref.7

Alatage gneissic monzogranite 1436 ± 5 0.4–5.3 2.02–1.77 ref.7

Alatage gneissic tonalites 1436 ± 5 3.1–7.7 1.88–1.65 ref.7

Alatage gneissic tonalites 1436 ± 5 −1.0–6.8 2.09–1.70 ref.7

Alatage gneissic tonalites 1436 ± 5 2.0–7.6 1.94–1.65 ref.7

Weiya granitic gneiss 1433 ± 27 0.3–7.0 2.02–1.68 ref.7

Xingxingxia granitic gneiss 1409 ± 33 −0.2–8.6 2.03–1.58 ref.7

Beishan Jiujing granitic gneiss 1408 ± 4 2.7–12.4 2.00–1.38 ref.10

Xilinhot block

Sonid Zuoqi granitic gneiss 1390 ± 17 0.4–12.0 1.98–1.39 ref.11

Sonid Zuoqi granitic gneiss 1397 ± 11 ref.12

Sonid Zuoqi granitic gneiss 1371 ± 9 ref.12

Sonid Zuoqi granitic gneiss 1369 ± 11 ref.12

Sonid Zuoqi granitic gneiss 1360 ± 12 ref.12

Alxa block Zongnaishan granitic gneiss 1433 ± 17 0.1–11.9 2.19–1.44 ref.13

Kyrgyz North 
Tianshan

Makbal eclogite 1446 ± 25* ref.14

Makbal eclogite 1447 ± 29* ref.14

Aktyuz rhyolite 1373 ± 5* ref.16

Aktyuz rhyolite 1365 ± 6* ref.16

Table 1. Compilation of sample locations, ages and zircon Hf isotopic compositions of the Mesoproterozoic 
magmatic rocks from microcontinents in the southern CAOB. The star (*) indicates SHRIMP zircon U–Pb 
ages; the others are LA-ICP-MS zircon U–Pb ages.
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Discussion
Mesoproterozoic crustal growth and nature of crustal components in the CTM. The Alatage 
amphibolite shows primitive zircon oxygen isotopic compositions with zircon δ18OVSMOW values identical to those 
of zircon in equilibrium with mantle-derived melts (Fig. 2). The zircon Hf isotopic compositions are radiogenic 
and overlap the depleted mantle line (Fig. 3). The coupling of zircon O and Hf isotope compositions implies 
that the parental magma of the Alatage amphibolite protolith was ultimately derived from the depleted mantle, 
which is also in accordance with its mafic character (SiO2 = 50.8 wt.%). In contrast, the Alatage granitic rocks 
show somewhat evolved Hf isotope signatures with Palaeoproterozoic TDMC crustal model ages (2.09 to 1.62 
Ga) that are commonly older than the crystallization ages (Fig. 3; the difference is approximately 0.20 to 0.70 
Ga), suggesting a mixed juvenile and recycled (metasedimentary) source or an ancient mantle-derived source 
(infracrustal progenitor)24–26. Besides, they exhibit a large range in zircon δ18OVSMOW values from a mantle-like 
value to high δ18OVSMOW values representative of recycling of sedimentary material (Fig. 2). Thus, the magma of 
the Alatage granitic rocks is thought to have been derived from a mixed sedimentary source and mantle melts, 
and thus their Hf model ages (2.09 to 1.62 Ga) may be hybrid, reflecting mixing rather than specific crust-forming 

Figure 1. (a) Simplified geological map of the Central Asian Orogenic Belt. The distributions of the ca. 1.4 Ga 
magmatic rocks are displayed by red stars (Data sources: refs7,10–16). The major microcontinents in the Central 
Asian Orogenic Belt are also indicated, including, from west to east, the Kazakhstan, Yili, Central Tianshan, 
Beishan, Tuva-Mongolia and NE China microcontinental collages. (b) Simplified geological map of the Alatage 
area, showing the distribution and outline of Mesoproterozoic igneous rocks in this area. This figure was 
generated by Z.Y.H. using CorelDRAW 2017 (https://www.coreldraw.com/en/pages/free-download/).

https://www.coreldraw.com/en/pages/free-download/
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events. However, a supracrustal component with an age of at least 1.62 Ga was deduced in the crust of the CTM. 
In summary, zircon O–Hf isotope compositions of the Alatage metamafic and granitic rocks reveal evidence for 
Mesoproterozoic (ca. 1.4 Ga) crustal growth and a possible Palaeoproterozoic supracrustal component in the 
CTM. Moreover, Neoproterozoic granitic rocks with protolith crystallization ages between ca. 1014 and 730 Ma 
are also abundant in the CTM6,7,33–40. Their εHf(t) values are typically located in crustal evolution region of the 
CTM as defined by Mesoproterozoic rocks (Fig. 3). This indicates that the Palaeoproterozoic supracrustal compo-
nent and the Mesoproterozoic juvenile crust of the CTM were reworked in the Neoproterozoic.

Mesoproterozoic (ca. 1.4 Ga) juvenile continental crust and its fragments in the southern 
CAOB. Mesoproterozoic magmatic events were recently identified in several microcontinents of the southern 
CAOB (Table 1). The present findings reveal evidence for Mesoproterozoic (ca. 1.4 Ga) crustal growth in the 
Alatage area of the CTM. Similar Mesoproterozoic magmatic activity at ca. 1.43–1.41 Ga involving juvenile crus-
tal growth also occurred in the Weiya and Xingxingxia areas of the CTM with εHf(t) values from −0.2 to 8.6 and 
TDMC crustal model ages of 2.03 to 1.58 Ga7. In addition, gneissic granitoids with a protolith age of 1408 ± 4 Ma 
were reported from the Beishan microcontinent to the east of the CTM10. Their radiogenic Hf isotopic com-
positions (εHf(t) = 2.7–12.4; TDMC = 2.00–1.38 Ga) indicate the involvement of juvenile crust10. Furthermore, 
Mesoproterozoic (1.39–1.36 Ga) granitic rocks and associated crustal growth events were reported from the 

Figure 2. Histogram showing zircon δ18OVSMOW values for the ca. 1.4 Ga Alatage amphibolite and gneissic 
granodiorite. Yellow bar represents δ18OVSMOW of zircon in equilibrium with mantle-derived melts (5.3 ± 0.6‰, 
2σ); values above 6.5‰ indicate recycling of supracrustal material24–26. Note the amphibolite has broadly 
mantle-like zircon δ18O values, while the zircon δ18OVSMOW values of the gneissic granodiorite are relative high 
and variable.

Figure 3. Zircon Hf isotopic evolution diagram for the ca. 1.4 Ga Alatage amphibolite and granitic rocks. Also 
showing the Neoproterozoic granitic rocks from the CTM (Data sources: refs6,7,33–40). Note that the εHf(t) values 
of the Neoproterozoic granitic rocks are typically located in the crustal basement evolution region of the CTM 
as defined by the Mesoproterozoic rocks. The ‘crust evolution curve’ is based on the 176Lu/177Hf value of 0.0125 
for average upper continental crust49.
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Xilinhot block in the eastern CAOB with εHf(t) values from 0.4 to 12.0 and TDMC model ages of 1.98 to 1.39 Ga11,12. 
Similarly, Mesoproterozoic granitic rocks with an age of 1433 ± 17 Ma also occur in the northern Alxa block 
on the southeastern margin of the CAOB, and their Hf crustal model ages (2.19–1.44 Ga) suggest the involve-
ment of juvenile material in their magma sources13. In particular, magmatic protolith ages of 1446 ± 25 Ma and 
1447 ± 29 Ma were reported for eclogite-facies rocks from the Makbal metamorphic complex in the Kyrgyz North 
Tianshan, western CAOB14,15. Mesoproterozoic (1373–1365 Ma) volcanic rocks also occur in the Aktyuz area of 
the Kyrgyz North Tianshan16. Therefore, it is suggested that Mesoproterozoic (ca. 1.4 Ga) juvenile continental 
crust probably occurred along a large continental belt, now largely tectonically fragmented, ranging from the 
Kyrgyz North and Middle Tianshan through the Yili, Central Tianshan, Beishan and northern Alxa blocks or 
microcontinents in NW China to the Xilinhot block in NE China (Fig. 1a). The microcontinents are believed to 
have formed as part of a continental terrane, fragments of which now occur over a distance of more than a thou-
sand kilometres in the southern CAOB. The previously unknown ca. 1.4 Ga continental crustal growth episode 
is a remarkable feature of the microcontinents in the CAOB and may provide important clues for the origin and 
evolution of the host microcontinents and thus the reconstruction of tectonic environments in the CAOB.

Methods
Zircon O isotopes. Zircon oxygen isotopes were measured using the Cameca 1280 SIMS at Institute of 
Geology and Geophysics, Chinese Academy of Sciences, Beijing. The Cs+ primary ion beam was accelerated at 
10 kV with an intensity of ca. 2 nA. The spot diameters were ca. 10 μm. The instrumental mass fractionation factor 
(IMF) was corrected using the Penglai zircon standard (δ18OVSMOW = 5.3‰)41. The detailed analytical procedures 
have been described in ref.41. The two standard deviation of the reproducibility of the Penglai zircon standard 
during the course of this study was 0.5‰ (2 SD; n = 23; Table S2), which accounts for the analytical precision. 
Eleven analyses of in-house zircon standard Qinghu during the course of this study yield a weighted mean of 
δ18O = 5.4 ± 0.7‰ (2 SD; Table S2), which is consistent within errors with the reported value of 5.4 ± 0.2‰42.

Zircon Hf isotopic compositions. Zircon Hf isotope analyses were carried out in situ using a Coherent 
GeoLas Pro 193-nm laser ablation system combined with a Thermo Scientific Neptune Plus Multi Collector 
ICP-MS at the State Key Laboratory for Mineral Deposits Research, Nanjing University. Analyses were carried 
out with a beam diameter of 44 μm. The detailed procedure and interference correction method of 176Yb on 
176Hf are described in ref.43. Standard Mud Tank was analysed during the course of this study and yielded a 
mean 176Hf/177Hf value of 0.282493 ± 44 (2 SD; n = 59; Table S3), which is consistent within error with the rec-
ommended values44. The measured 176Lu/177Hf ratios and the 176Lu decay constant of 1.867 × 10−11 yr−1 were 
used to calculate initial 176Hf/177Hf ratios45. The chondritic values of ref.46 were used for the calculation of the εHf 
values. The depleted mantle Hf model age (TDM) was calculated using the analysed 176Lu/177Hf value of zircon and 
depleted mantle values of ref.47. The crustal model age (TDMC) was calculated using a 176Lu/177Hf value of 0.022 for 
mafic rocks and 0.009 for felsic rocks48.
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