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Application of distribution 
functions in accurate determination 
of interdiffusion coefficients
Ming Wei & Lijun Zhang

Diffusion couple technique in combination with the Boltzmann-Matano method is the widely used 
approach to evaluate the interdiffusion coefficients in the target systems. However, the quality of the 
evaluated interdiffusion coefficients due to the Boltzmann-Matano method strongly depends on the 
fitting degree of the utilized continuous function to the discrete experimental composition profiles. 
In this paper, the application of different types of distribution functions is proposed to solve this 
problem. For the simple D-c relations, the normal, pseudo-normal, skew normal, pseudo-skew normal 
distributions can be employed, while for the complex D-c relations, the superposed distributions should 
be used. Even for the cases with uphill diffusion, the combined superposition of distributions may be 
chosen. Through validation in several benchmarks and real alloy systems, accurate diffusion coefficients 
are proved to be successfully obtained by using the distribution functions. It is anticipated that the 
Boltzmann-Matano method together with the distribution functions may serve as the general solution 
for determining the accurate interdiffusion coefficients in different materials.

Diffusion plays an important role in a variety of disciplines1–4. Accurate diffusion coefficient, as one of the basic 
physical properties, is the prerequisite for quantitative description and comprehensive understanding of various 
phase transformation processes5–7. Thus, interdiffusion coefficient deserves numerous theoretical and experimen-
tal investigations8–10.

The experimental measurements5,10 are always the major choices for obtaining the interdiffusion coefficients 
nowadays though there are significant progress in the atomistic simulations of interdiffusion coefficients, includ-
ing first-principles calculations11,12 and molecular dynamics simulations13,14. The mostly used experimental 
technique for interdiffusivity measurement is the semi-infinite single-phase diffusion couple together with some 
calculation approaches, like the traditional famous Boltzmann-Matano (B-M) method and its variants15–19. The 
composition profiles of the single-phase diffusion couples along the diffusion direction can be measured by i.e., 
electronic probe micro-analyzer (EPMA) technique, but the experimental data are always discrete. In order to 
utilize the Boltzmann-Matano method for calculation of the interdiffusion coefficients, the discrete experimental 
composition-distance (c-x) data should be always fitted by a continuous curve firstly19, from which the inter-
diffusion flux and slope of composition curve can be then easily evaluated. Thus, the accuracy of the calculated 
interdiffusion coefficients using the B-M method depends largely on the fitting degree to the experimental com-
position data.

Currently, the commonly used fitting functions available in the literature include error function20,21, 
Boltzmann function (logistic function)22,23, nested-exponential function24, pseudo-Fermi function25, and so on. 
Six types of ideal D-c relations (see equations (1–6)) were pre-set in Methods section to test the calculation results 
of these common functions. Although each fitting function can match a majority of the experimental data in 
different degrees, the calculated interdiffusion coefficients due to different fitting functions may lead to certain 
differences, as demonstrated in Figs 1 and 2. The left plots in Fig. 1 are the standard c-x profiles (i.e., ideal profiles 
of c2 and c3) computed using the ideal monotonic D2 (i.e., equation (2)) and D3 (i.e., equation (3)) relations in 
comparison with the fitted c-x profiles (i.e., fitting curves of c2 and c3) using different types of functions. Similarly, 
the left plots in Fig. 2 are the standard c-x profiles (i.e., ideal profiles of c4 and c5) computed using the ideal 
parabolic D4 (i.e., equation (4)) and D5 (i.e., equation (5)) relations, compared with the fitted c-x profiles (i.e., 
fitting curves of c4 and c5) using different types of functions. While the right plots in Figs 1 and 2 are the ideal 
D-c relations (i.e., ideal D2~D5 based on equations (2)~(5)) in comparison with the evaluated D-c relations (i.e., 
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calculated D2~D5) using different fitted functions. As can be seen, the apparent differences between the pre-set 
D-c relations and the calculated ones can be observed.

Consequently, in order to evaluate the accurate interdiffusion coefficients via the Boltzmann-Matano method 
based on the discrete experimental data, the best fitting function should be chosen. In order to achieve this goal, 
the distribution functions are proposed to fit the discrete experimental composition data in this paper. Though 
the distribution functions have been widely investigated by many mathematical researchers26–31, they focused 

Figure 1.  Fitting c-x profiles (left plots) and evaluated Ds (right plots) using different traditional functions, 
compared with the pre-set concentration profiles of c2 and c3 and monotonic D2 (equation (2)) and D3 
(equation (3)): (a) Nested-exponential function, (b) Pseudo-Fermi function, (c) superposed-Boltzmann 
function, (d) Superposed-normal distribution function.
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on the profiles of the probability distribution functions (PDFs). While in this paper, we would rather concern 
the profiles of the cumulative distribution functions (CDFs). It is well-known that CDFs are non-decreasing, 
right-continuous and bounded, while the typical plot of CDF behaviors S-shape. Thus we assume that for the 
normal semi-infinite diffusion couple, its c-x profile can be described using a CDF. Moreover, because a vari-
ety of CDFs, including the classic normal distribution, skew normal distribution, and more complex ones, like 
pseudo-normal distribution and pseudo-skew normal distribution, are available for choices, the much more 

Figure 2.  Fitting c-x profiles (left plots) and evaluated Ds (right plots) using different traditional functions, 
compared with the pre-set concentration profiles of c4 and c4 and monotonic D4 (equation (4)) and D5 
(equation (5)): (a) Nested-exponential function, (b) Pseudo-Fermi function, (c) superposed-Boltzmann 
function, (d) Superposed-normal distribution function.
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complex c-x profile, i.e., with uphill diffusion phenomenon, can be also fitted by the combined distribution func-
tions. In this paper, we will demonstrate the successful application of different distribution functions in accu-
rate determination of composition-dependent interdiffusion coefficients by using benchmarks and real alloys. 
Moreover, these distribution functions are also proved to be quite qualified for ternary and even multi-component 
alloys, like high-entropy alloys. It is anticipated that the distribution functions together with the B-M method may 
serve as a standard solution for evaluation of accurate interdiffusion coefficients.

Methods
Pre-set ideal D-c relations.  In order to test the calculation result of these traditional functions directly, 
following the idea from Kailasam32, 6 types of ideal D-c relations are pre-set in this work as benchmarks. D1 is a 
constant, D2 has a linear relation with c, D3 has a logarithm relationship with c, D4 and D5 have parabolic rela-
tions with c, while D6 has normal distribution relations with c.

= .D1 0 02; (1)
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The unit of D is um /s2 , c denotes concentration of solutes in atom percent, the diffusion time is 10000 seconds, 
the length of x is 1000 um. Initially, c equals to 0 where x 500≤  and equals to 1 where x 500> . The steps of time 
and distance in the diffusion simulation are 1 second and 1 um, respectively. Insulation boundary condition and 
finite difference method are applied in the iteration. The solid lines in Fig. 3a show the profiles of the pre-set D-c 
relations and Fig. 3b shows the simulated c-x profiles.

Traditional fitting functions.  For traditional fitting functions, error function and Boltzmann function are 
often used to describe the symmetric experimental composition profiles. Meanwhile, the nested-exponential 
function, pseudo-Fermi function, superposed-logistic function and superposed-error function are also used to fit 
the unsymmetrical experimental data. These traditional functions, except for the superposed form, are presented 
as follows,
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Figure 3.  Simulated/calculated different diffusion properties for the case with ideal Ds. (a) Solid lines, 6 types 
of ideal D-c relations; dashed lines, the calculated D-c function obtained by applying the B-M analysis to the 
corresponding CDF in (b). (b) c-x profiles of the ideal Ds, corresponding to the profiles of the cumulative 
distribution functions. (c) dc/dx profiles of the ideal D corresponding to the profiles of the probability 
distribution functions.



www.nature.com/scientificreports/

5Scientific Reports |  (2018) 8:5071  | DOI:10.1038/s41598-018-22992-5

‐ = × − − ⋅ +c x xNested exponential function: ( ) p1 exp( exp(p2 p3 )) p4; (9)N

=
− ⋅

+ −
+

−
‐

( )
c x p p x pPseudo Fermi function: ( ) 1 2

1 exp
5;

(10)
F x p

p
3

4

Afterwards, nested-exponential function, pseudo-Fermi function, 3 order superposed-Boltzmann function 
and 3 order superposed-error function are applied to repeat the curves of ideal D2, D3, D4 and D5 by fitting cor-
responding c-x profiles. The calculation results have been already shown in Figs 1 and 2. As can be seen, although 
each fitting function can match a majority of the experimental data in different degrees, the calculated interdiffu-
sion coefficients due to different fitting functions may lead to certain differences.

Therefore, a series of distribution functions are proposed to accurately determine the interdiffusion coeffi-
cients. No matter how complex the D-c relation is, the experimental c-x profile can be treated as a cumulative 
distribution function and its slope dc/dx-x profile can be treated as a probability distribution function. Moreover, 
the normal distribution is the numerical solution of the c-x profile with constant interdiffusion coefficient, and the 
term x x Dt( )/ 20λ = −  corresponds to the variable σ−x u( )/ 2  in the normal CDF. Therefore, normal distri-
bution and its derivatives are chosen as the description functions, as demonstrated in the following. It should be 
noted that in this paper the fitting curves of common functions are denoted as c(x) distinguished using different 
subscripts, while the fitting curves of distribution functions are denoted as F(x) or G(x). F(x) represents normal 
CDF and pseudo-normal CDF, while G(x) represents skew normal CDF and other complex CDF.

Normal distribution and simple symmetrical D-c relations.  The general expression for normal dis-
tribution is,
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It is the numerical solution for constant interdiffusion coefficient. n in f (x)n  means the number of normal 
distribution functions. For simple symmetrical D-c relations, normal distribution could be modified as
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A parameter p5 is used to adjust x axis. For simple symmetrical convex D-c relations, p5 1> , while for simple 
symmetrical concave parabolic D-c relations, <p5 1. When =p5 1, f x( )p5  evolves to f x( )1 . f x( )p5 and f (x)1  are 
both treated as the fundamental distribution functions in this work. If equation (11) does not work well, the fol-
lowing equation is recommended,

∫= ×F x f x f x dx( ) [ ( ) ( )] (12)x p5

Here, f x( )x  is used to modify the kurtosis, and its form may be a exponential term (like normal PDF), quad-
ratic function, etc. Equations (11–2) and (12) is named as the pseudo-normal distribution in this work. Taking 
symmetrical parabolic D4 for instance, equation (13) can give the good fitting result. Its specific expression reads 
as

F x p p p x p p x p dx( ) 1 2 [exp( 3 ( 4) ) exp( 6 ( 7) ))] (13)
p2 2 5∫= + × − × − × − × − ×

The number of constant D is used to judge the complexity of the distribution functions. One f (x) term (expo-
nential term) corresponds to a constant D. Thus, one constant D is used in equation (11) and two constant Ds are 
used in equation (12).

As Fig. 1b shows, the concave D-c relations could be reproduced with the Boltzmann function, therefore, for 
concave cases, the Boltzmann function might be also a good choice.

Skew normal distribution and monotonic D-c relations.  The skew normal distribution is used to fit 
the c-x profiles with monotonic D-c relations. The expression of skew distribution function27,28 G x( ) is shown in 
equation (14), f x( )1  denotes the normal PDF and controls the kurtosis of the distribution, ∫=F x f x dx( ) ( )2 2  
denotes the normal CDF and controls the skewness of the distribution29. Two constant Ds are used in equation 
(14).
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Pseudo-skew normal distribution and simple unsymmetrical D-c relations.  Based on the work of 
skew normal distribution, it is easy to tackle unsymmetrical parabolic D-c relations by just adding a G x( ) term to 
equation f (x)p . Therefore, the pseudo-skew normal distribution function is proposed here. Taking equation (12) 
as example, the modified expression reads as follows,
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∫= × ×G x f x F x f x dx( ) [ ( ) ( ) ( )] (15)p1 2 5

Accordingly, three constant Ds are used in equation (15). Similarly, for concave cases, Boltzmann equation 
could be used.

Superposed distribution and complex D-c relations.  Superposed distributions are recommended to 
tackle complex D-c relations especially for the cases in which there are more than one peak on the dc/dx-x pro-
files, like dc6/dx in Fig. 3c. Theoretically, all the above distributions might be used for superposition. But in fact, 
the normal distribution and skew-normal distribution are proposed here, and their superposed expressions are 
given as,

= + + + …G x F x F x F x( ) ( ) ( ) ( ) (16)2 4 6

∫= × + × + …G x f x F x f x F x dx( ) [ ( ) ( ) ( ) ( ) ] (17)1 2 3 4

However, if the number of constant D used in equation (17) is more than four, the superposed-normal dis-
tribution function should be the first choice. Superposed distributions are successfully applied in Ni-Pd system. 
Strictly, the superposed-normal PDF is the same as Gaussian distribution, while the superposed-normal CDF is 
the same as the superposed-error function.

Uphill diffusion.  Unfortunately, all the above functions above cannot tackle the uphill diffusion phenomenon 
due to the “swell” in the composition profiles. Equation (18) has been used to describe the c-x profile of uphill 
diffusion24, but obviously the values at the terminals of c x( )U  cannot be kept constant for the semi-infinite diffu-
sion couples. Therefore, based on skew/normal PDF and CDF, a method which superposes the combined distri-
bution functions (CDF + PDF) is accordingly proposed to solve this problem. The simplest form refers to 
equation (19),
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Actually, the idea of the superposing method is to add a normal PDF f x( )2  which allows the introduction of a 
swell to a normal CDF F x( )1 . If there are two swells on the composition profile, equation (20) can be used. 
Furthermore, for some much more complex cases, the normal CDF and PDF can be replaced by skew normal 
CDF and PDF, respectively. The most complex form for equation (20) is,

= + +G x G x g x g x( ) ( ) ( ) ( ) (21)1 2 3

Here, G1 x( ) is skew normal CDF. In general, one should start from the simplest equation (19) for fitting the 
experimental data and it will be applied in the ternary Cu-Ag-Sn system.

Results
Benchmark tests.  Different distribution functions shown in equations (11–1), (14), (14), (13), (15) and (16), 
are applied for ideal D1 to D6 profiles respectively. The solid lines in Fig. 3a show the profiles of the pre-set D-c 
relations. Figure 3b shows the c-x profiles of the pre-set D-c relations, and they correspond to CDFs. Figure 3c  
shows the dc/dx-x profiles of the ideal D-c relations and they correspond to PDFs. The calculated D-c relations 
due to the chosen distribution functions together with the B-M method are denoted as dashed lines in Fig. 3a. As 
can be seen, the ideal D-c relations can be exactly reproduced by distribution functions in combination with the 
B-M method.

Application in real cases.  Case 1: Constant D.  Parabolic D-c relation in fcc Ni-W system at 1573 K has 
been obtained in the previous work of Chen et al.22 from our research group. However, the corresponding c-x 
profile has no characteristic of parabolic D-c relations, as shown in Fig. 4a. Therefore, the c-x profile is re-fitted 
with normal distribution function in this work and a constant interdiffusion coefficient is obtained. The results 
are shown in Fig. 4b. A constant value could reconcile the most results from different researchers22,33–35.

Case 2: Monotonic D-c relations.  The D-c relations in most experiments available in the literature are monotonic 
because of the narrow composition range. Here, the fcc Cu-Sn and Ni-Co systems are taken as the examples of 
monotonic D-c relations.

For fcc Cu-Sn system, only the previous work by Xu et al.36 from our research group contains the calculated 
interdiffusion coefficients and the corresponding c-x profile at the same annealing time among all the published 
papers on fcc Cu-Sn system36–39. The smooth interpolation was used in the work of Xu et al. while the skew 
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normal distribution function, i.e., equation (14), is applied in this work. The fitting result and the calculated D 
with skew normal distribution function are shown in Fig. 5. As can be seen, the value and the trends of calculated 
D are similar, but larger difference is shown as the content of Sn increases. Moreover, the calculated D by Xu et al. 
due to the assessed atomic mobilities in combination with the thermodynamic descriptions is also superimposed 
in Fig. 5b. As can be seen, the calculated results due to the assessed atomic mobilities approach closely to the 
present results.

For Ni-Co system, the delicate experimental results of Zhang and Zhao40 are re-analyzed. Zhang and Zhao 
proposed a forward-simulation method40 to make up the deviation of smooth interpolation. The result of the 
forward-simulation method on Ni-Co system is shown in Fig. 6b. However, this type of c-x profile could be 
tackled simply with skew normal distribution in this work. Figure 6a shows the fitting result of skew normal dis-
tribution while Fig. 6b shows the calculated interdiffusion coefficient by different researchers. As can be seen, the 
results originated from the skew normal distribution and those from the forward-simulation method agree well 
with each other, but show certain differences from the others41,42.

Case 3: Parabolic D-c relations.  The characteristics of symmetrical and unsymmetrical parabolic D-c relations 
are shown in Fig. 3b. It is difficult to find a real alloy system with strict parabolic D-c relation because the convex 
or concave profile may be complex polynomial. But the pseudo-skew distribution, i.e., equation (15), can be used 
for approximate parabolic profiles coupling with sectional treatment, taking the c-x profile in Nb-W system as 
an example.

The experimental data also comes from Zhang and Zhao40, who also used the forward method. However, in 
this work, the pseudo-skew distribution function, i.e., equation (15), is directly applied but with sectional treat-
ments. Afterwards two parts of calculated Ds can be combined and fitted, based on which the composition-profile 

Figure 4.  Re-calculated interdiffusion coefficients in Ni-W system22 at 1573 K. (a) Fitting result of normal 
distribution function. R2 = 0.9992 with R2 as the goodness of fit. (b) Re-calculated D compared with other 
researchers’ work22,33–35.
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Figure 5.  Re-calculated interdiffusion coefficients in Cu-Sn system36 at 873 K. (a) Fitting c-x profile of skew 
normal distribution function. R2 = 0.9986. (b) Re-calculated D compared with literature data36.
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can be predicted. The two sets of interdiffusion coefficients due to the forward method40 and the present 
pseudo-skew distribution function show slight differences, but both can well repeat the c-x profile, as shown 
in Fig. 7c. Moreover, the extrapolated impurity diffusion coeffecient in the work is more closer to the result of 
Neumann and Tuijn43.

Case 4: Complex D-c relations.  Generally, the systems which contain complex D-c relations typically have a 
wide solubility range like Ni-Pt44,45, Co-Pt44,46 and Ni-Pd47 systems. The Ni-Pd system47 is chosen as an example 
of complex D-c relations in this work.

The experimental data are re-fitted by using the superposed-normal distribution function, equation (16), 
and the superposed-skew normal distribution function, equation (17), respectively, to reveal the advantage of 
superposed distribution functions in dealing with the concentration profiles of complex D-c relations. The fitting 
results are presented in Fig. 8a. Afterwards the calculated D from the distribution functions together with the 
calculated D by Van Dal et al.47 are fitted by skew normal PDF, then the diffusion-induced composition profiles 
is simulated by the fitted D.

As can be seen in Fig. 8c, the simulated c-x profile in this work shows a very good agreement with the experi-
mental data. In other words, the calculated D in this work are more accurate than the literature report. Moreover, 
the maximum of the interdiffusion coefficient is located at Ni-40Pd at.%, rather than Ni-50 at.% Pd reported by 
Van Dal et al.47.

Case 5: c-x profiles in ternary system and uphill diffusion.  The superposed distribution functions can also be 
applied in ternary and even multi-component systems. The Cu-Ag-Sn system48 which contains common c-x 
profile and uphill diffusion profile is taken as an example for ternary systems. The c-x profiles of Sn and Cu are 
described by skew-normal distribution function, equation (14), and the combined superposition method, equa-
tion (20), respectively, as shown in Fig. 9. The uphill c-x profile of Cu is superposed by one normal CDF and two 
normal PDFs. The excellent matching results can be seen in Fig. 9.

Discussion
Although the B-M method has been proposed for decades of years for interdiffusion coefficient calculation, accu-
rate description of the discrete experimental data, as an important step, has not been solved and normalized so 
far. Disparity between the fitting curve and the experimental data can be easily found in literature reports. It is 
difficult to evaluate accurate D-c relations by using the traditional fitting functions except for some simple cases. 
Therefore, to explore a standard method which could accurately reveal the real D-c relations is imminent. Based 
on the presently demonstrated successful examples, the distribution functions together with the B-M method is 
anticipated to serve as a standard solution for accurate interdiffusion coefficient calculation. In the following, we 
are going to point out some hints on evaluation of accurate interdiffusion coefficients during usage of the pro-
posed distribution functions together with the B-M method.

(i) Besides the distribution functions demonstrated in Section Methods, there are still some more distribution 
functions, which can be applied to tackle various different D-c relations. Taking the skew normal distribution for 
instance, the CDF (F x( )2  in equation (14)) could come from normal, Student’s t, Cauchy, Laplace, logistic or the 
uniform distribution27. Of course, the idea of pseudo-normal skew distribution and superposed functions is also 
applicable in these distribution functions.

(ii) It is very important to choose an appropriate distribution function. Although different types of c-x profiles 
correspond to different distribution functions, there is a common way to choose an appropriate distribution func-
tion. Essentially, the complexity of a distribution function is based on the complexity of a D-c relation. Therefore, 
it is suggested to calculate the general trend of the D-c relation using the simple superposed normal distribution 
function (superposed-error function) first, from which the proper distribution function can be then chosen.
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Theoretically, the superposed normal distribution function can match any types of c-x profiles by adjusting the 
number of normal CDFs. However, it is not recommended to use the superposed-normal distribution function 
arbitrarily. As shown in Fig. 1(d), the three-order superposed-normal distribution has a good agreement with the 
c-x profile, but the correspondingly calculated interdiffusion coefficient still has certain deviation from the ideal 
D-c relation. Thus, the superposed normal distribution is only recommended for complex D-c relations, such as 
in the above-demonstrated Ni-Pt system.
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(iii) Very recently, Kavakbasi et al.49 proposed a method to calculate the interdiffusion coefficient based on 
the error function. The idea of their work is to adjust the error function by changing the denominator term while 
the idea of this work is to adjust the normal CDFs by multiplying terms. The calculated results of the linear D-c 
relation by using the two methods are compared as a benchmark test. As can be seen in Fig. 10, the fitting results 
from the two methods are both good. The correlation coefficients are both extremely close to one. However, the 
calculated D using the present method has achieved a slightly better result, as shown in Fig. 10b.

(iv) When one end-member of the diffusion couple is pure substance, the calculated interdiffusion coefficient 
at this end should approach to the impurity diffusion coefficient. As displayed in Fig. 5b, the results due to the 
skew normal distribution at the end of pure element are closer to the impurity diffusion coefficient43. One thing to 
be mentioned here is that the calculated diffusion coefficients at the very close to the edge of the diffusion couple 
with distribution functions might not tend to a constant sometimes. In this case, one can directly extrapolate from 
the reliable diffusion coefficients close to the middle part.

(v) To determine whether sluggish diffusion exists in high-entropy alloys represents one research hot-
spot currently. For instance, Tsai et al.23 designed a quasi-binary diffusion couple to study the diffusion in fcc 
Co-Cr-Fe-Mn-Ni system. In their work, the B-M method together with the Boltzmann function are applied, 
and their results do not support any sluggish diffusion phenomenon. After that, Paul50 also questioned the dif-
fusion data reported by Tsai et al.23. In this work, the original experimental data of Cr and Mn from ref.23 are 
re-calculated with the B-M method combined with the skew normal distribution function. Figure 11a shows 
the fitting results of the experimental data, while Fig. 11b presents the re-calculated interdiffusion coefficients. 
Different from the two similar D-c profiles in ref.23, the trends of the concentration dependence of diagonal inter-
diffusion coefficients of Cr and Mn show monotonic increase and monotonic decrease, respectively. In general, 
most fitting functions could work well for the c-x profile in the middle part over the diffusion zone. That is why 
the interdiffusion coefficients evaluated using the present distribution functions and those using the tradition 
functions are in the same order. As for the c-x profile at the edges of the diffusion zone, the fitting results of dis-
tribution functions can gain better agreement with the experimental data than the traditional fitting functions, as 
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Figure 11.  Re-calculated interdiffusion coefficient in fcc quasi-binary CoCrFeMnNi diffusion couple23 
at 1273 K. (a) Fitting c-x profiles using Boltzmann function and skew normal distribution function. (b) 
Recalculated D in comparison with those by Tsai et al.23. (c) Comparison of interdiffusion coefficients in high 
entropy alloy and conventional alloys23.
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shown in Fig. 9(a). Such differences may lead to the difference in the evaluated interdiffusion coefficients (even 
the variation trend), as demonstrated in Fig. 9(b). Moreover, in this quasi-binary diffusion couple, the diagonal 
interdiffusion coefficients of Mn at low concentrations are even smaller than those in conventional alloys. While 
the diagonal interdiffusion coefficients of Cr over the entire concentration range in the experiments are smaller 
than those in conventional alloys. A conclusion could be drawn here that the sluggish diffusion exists in the fcc 
Co-Cr-Fe-Mn-Ni high entropy alloys for some elements at specific concentrations.

Conclusions
In a conclusion, the accurate calculation of interdiffusion coefficients can be achieved by the application of distri-
bution functions together with the B-M method. The normal, pseudo-normal, skew normal, pseudo-skew normal 
distributions are applicable for simple D-c relations, while the superposed distributions are applicable for complex 
D-c relations. Moreover, the combined superposition of distributions is proposed for uphill diffusion curve. The 
application of distribution functions in benchmark and real alloy systems demonstrates that accurate diffusion 
coefficients can be successfully evaluated. Therefore, the Boltzmann-Matano method in combination with the 
distribution functions is proved to be the general solution for accurate determination of diffusion coefficients.
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