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The role of combining 
medroxyprogesterone 17-acetate 
with human menopausal 
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Medroxyprogesterone 17-acetate (MPA) combined with human menopausal gonadotropin (hMG) has 
been effectively used for ovarian stimulation in clinical practice. However, the molecular mechanism 
of MPA + hMG treatment in follicular development is poorly described. Here we performed a study to 
investigate the impact of MPA + hMG on ovarian stimulation utilizing a mouse model in vivo. Forty 
female BALB/C mice were randomly divided into four groups of 10 each and treated during ciestrus 
stage and continued for 5 days: control group, MPA group, hMG group, and MPA + hMG group. 
Morphological and molecular biology methods were used for detecting serum hormones and ovarian 
function. MPA + hMG group exhibited increasing follicle stimulating hormone (FSH), antral follicle, 
FSH receptor (FSHR) and phosphorylated mammal target of rapamycin (p-mTOR), and decreasing 
luteinizing hormone (LH), estradiol (E2), progesterone (P), corpus luteum, phosphoinositide 3-kinase 
(PI3K), Akt and mTOR compared with control group. In contrast, MPA + hMG group showed reduced 
FSH, LH, E2, P, corpus luteum, LH receptor (LHR), and activated PI3K,/Akt/mTOR pathway compared 
with hMG group (P < 0.05). Collectively, these data definitively established that MPA plus hMG may 
modulate the hormone, hormone receptor and PI3K/Akt/mTOR signaling pathway to influence follicular 
development in the mouse ovary. Our study provides overwhelming support for MPA + hMG as an 
effective treatment for infertility in women.

Infertility is one of the most common diseases in the world. Currently, more and more patients have to seek help 
from assisted reproductive therapy (ART) to have their own child1. The administration of gonadotropin-releasing 
hormone (GnRH) analogues, including GnRH agonists and GnRH antagonists, is used for preventing premature 
LH surges in pituitary desensitization among infertile patients in conventional controlled ovarian hyperstimula-
tion2. However, this therapy has proven to have some limits because of the increased incidence of ovarian hyper-
stimulation syndrome (OHSS) by GnRH agonists and the rate of premature LH surges (0.34–38.3%) via GnRH 
antagonists3,4. Owing to the “freeze-all” strategies, a new ovarian stimulation regimen, MPA combined with hMG 
treatment was proposed by Dr. Kuang to inhibit premature LH surges and reduce the incidence of OHSS during 
follicular phase5. Our previous clinical studies have demonstrated that the MPA + hMG treatment is successful 
used in patients with normal ovarian response, advanced maternal age, low ovarian response, or polycystic ovary 
syndrome (PCOS)6, however, the molecular mechanism is not understood.

P is widely used for menstrual disorders, hormone replacement therapy and luteal support for pregnancy7 
Animal research found that P improves follicular viability by increasing the levels of vascular endothelial growth 
factor and granulosa cell proliferation in large follicles and promotes the maturation of fish oocytes by promoting 
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germinal vesicle breakdown8–10. In clinic, MPA is used as an alternative to GnRH analog to suppress a premature 
LH surge and avoid a low response of the hypothalamic-pituitary-ovarian axis (HPOA) during the follicular 
phase11. Unlike dydrogesterone, MPA does not disturb the measurement of serum progesterone. And the the 
administration of P during follicular phase had no negative effect on oocyte retrieval rates of the hMG + MPA 
treatment cycles based on frozen embryo transfer12. This suggests that MPA + hMG treatment is crucial for ovar-
ian stimulation.

In most physiologic contexts, the PI3K/Akt signaling pathway is an important regulatory factor for cell pro-
liferation and the initiation of oocyte growth13. Ovarian follicular growth is dependent on the growth and pro-
liferation of granulosa cells. Indeed, it was found that FSH (the main component of hMG) could promote the 
rapid activation of PI3K pathway in ovarian granulosa cells, and PI3K catalyzes the production of PIP3 in the 
plasma membrane, leading to membrane recruitment, phosphorylation, and activation of downstream branched 
chain kinase Akt14. Meanwhile, it is known that Akt causes mTOR activation through a variety of mechanisms15. 
Activation of mTOR synergistically stimulate the growth of follicles16.

Our previous data indicate that MPA + hMG treatment does not impair the outcome of IVF/ICSI for FET. 
Based on our own and others’ work, we developed a mouse model of MPA + hMG treatment to investigate the 
role of MPA + hMG in follicular development and hypothesized that MPA + hMG may promote follicular devel-
opment by regulating ovarian hormones, hormone receptors and PI3K/Akt/mTOR signaling pathways.

Results
Ovary weight index. After successful establishment of the MPA + hMG mice model, both ovaries of the 
mice were removed and weighed (Fig. 1). The ovarian weight index of each group is presented in Table 1. The 
ovarian wet weights and ovarian weight indexes are not significantly different between all groups (P > 0.05).

Serum hormone levels. To determine the effect of MPA + hMG on serum FSH, LH, E2, and P levels, 
serum was collected on the first day and after 5 days of treatment and these values were analyzed. In the control 
group, there are no significant changes in serum hormones before or after administration of salad oil (p-value is 
0.3224, 0.9543, 0.3389 and 0.4665 in FSH, LH, E2, and P levels, respectively) (Fig. 2A). In the MPA + hMG group, 
there is a significantly increase in FSH level and decreases in LH, E2 and P levels compared to the control group 
(P < 0.05), meanwhile, FSH level is higher in MPA + hMG group than the MPA group. The levels of FSH, LH, E2, 
and P are all decreased in MPA + hMG group compared with the hMG group (P < 0.05) (Fig. 2B).

Effects of MPA + hMG on ovarian follicle development. In the control group (Fig. 3A), visible pri-
mordial follicles, greater volumes of the large follicles, thicker granulosa cells, and the limited amount of follicular 
atresia are observed; however, visible corpus luteum development is more pronounced than in the MPA + hMG 
group. In the MPA group (Fig. 3B), the number and volume of antral follicles are decreased compared to the 
control group; and there not appear newly formed corpus luteum in the MPA group. Greater volumes of the large 

Figure 1. The establishment of MPA + hMG mice model.

Group Number
Ovarian wet 
weight (mg) Ovary index (%) P-value

Control group 10 9.72 ± 0.81 0.049 ± 0.041 0.2439

MPA group 10 10.22 ± 1.17 0.052 ± 0.058 0.3094

hMG group 10 10.74 ± 1.22 0.055 ± 0.061 0.2617

MPA + hMG group 10 11.66 ± 0.67 0.058 ± 0.033 —

Table 1. The ovarian weight index of each group. Plus–minus values represent the mean ± SD. MPA, 
medroxyprogesterone acetate; hMG, human menopausal gonadotropin. Ovarian index (%) = ovarian wet 
weight (mg)/body weight (g) × 100%. P-value represents MPA + hMG group vs Control group, MPA group or 
hMG group.



www.nature.com/scientificreports/

3ScieNtific RepoRTs |  (2018) 8:4439  | DOI:10.1038/s41598-018-22797-6

follicles, thicker granulosa cells and corpus luteum are observed in the hMG group (Fig. 3C). In MPA + hMG 
group (Fig. 3D), the number of antral follicles and follicular volume is increased, granulosa cells are thicker, and 
the number of atresic follicles is decreased compared to the control group (P < 0.05); and there not appear newly 
formed corpus luteum compared with the control group and hMG group. There are not significantly different in 
the percentage of primordial follicles and secondary follicles between all groups (P > 0.05) (Fig. 3E,F). The per-
centage of antral follicles in MPA + hMG group is higher than that in MPA group (Fig. 3G). Meanwhile, corpus 
luteum is lower in MPA + hMG group compared to the control and hMG groups (Fig. 3H).

Figure 2. The changes in serum FSH, LH, E2 and P levels. (A) The level of serum FSH, LH, E2 and P in control 
group before and after 5 days; (B) The levels of serum FSH, LH, E2 and P were detected after 5 days. *Represents 
MPA + hMG group vs control group, MPA group or hMG group. *P < 0.05, **P < 0.01, ***P < 0.001.

Figure 3. Effects of MPA + hMG on ovarian follicle development. Histologic sections were prepared from the 
ovaries of each group 24 hours after MPA or hMG treatment and stained with H&E, a detailed histopathological 
examination was performed under a light microscope noting each of the ovarian components. (A) Normal 
ovary of a control mouse. (B) The ovary with decreasing antral follicle and corpus luteum after MPA treatment. 
(C) The ovary with increasing corpus luteum after hMG treatment. (D) The ovary with increasing antral 
follicle and decreasing corpus luteum after MPA + hMG treatment. (E) The percentage of primordial follicle 
in four groups after 5 days of treatment. (F) The percentage of secondary follicle in four groups after 5 days of 
treatment. (G) The percentage of antral follicle in four groups after 5 days of treatment. (H) The percentage of 
corpus luteum in four groups after 5 days of treatment. Black arrows represent secondary follicle, yellow arrows 
represent antral follicle, green arrows represent corpus luteum. *Represents MPA + hMG group vs control 
group, MPA group or hMG group. *P < 0.05, ***P < 0.001.
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The effects of treatment on ovarian FSHR, LHR, ER, and PR expression level. In the MPA + hMG 
group, there is a significant increase in FSHR expression level compared to the control group and MPA group 
(P < 0.05), and  a decreased FSHR and LHR expression level compared with the hMG group (P < 0.05). Although 
the ER in MPA group is lower compared to MPA + hMG group, it is not significantly different between them 
(p = 0.0623). There is no significant differences of between all groups (P > 0.05) (Fig. 4).

The effects of treatment on the PI3K/Akt/mTOR signaling pathway in ovarian tissue. To inves-
tigate whether the PI3K/Akt/mTOR pathway is activated by MPA + hMG treatment, we have assayed the phos-
phorylation of PI3K, Akt, and mTOR by western blot in ovarian tissues. Interestingly, quantification of protein 
expression shows that MPA + hMG causes a reduction in expression of PI3K, Akt and mTOR compared to the 
control group and MPA group, and the decreased PI3K and Akt in MPA + hMG group compared to the hMG 
group. While increased expression of p-Akt and p-mTOR in MPA + hMG group compared to the MPA group and 
a higher p-mTOR in MPA + hMG group than that in control group (P < 0.05). On the contrary, the expression 
of p-PI3K, p-Akt and p-mTOR is significantly decreased in the MPA + hMG group compared to the hMG group 
(P < 0.05) (Fig. 5).

Discussion
The benefits of MPA + hMG treatment in ART to improve success rates of IVF/ICSI was recently discovered 
and confirmed by Dr. Kuang followed by embryo cryopreservation. However, the mechanism(s) of MPA + hMG 
treatment remained unclear. In this study, we generated a BALB/C mouse model of clinical MPA + hMG treat-
ment to delineate whether this treatment have positive effects on follicular development, through regulation of 
ovarian hormones, their receptors and the involvement of the PI3K/Akt/mTOR pathway on follicular develop-
ment during ovarian hyperstimulation. This investigation demonstrated that the serum FSH level in MPA + hMG 
group was higher than the control group and MPA group, and lower than the hMG group. Meanwhile, reductions 
of serum LH, E2 and P were observed in MPA + hMG group when compared to the control group and hMG 
group. Studies found that the changes of plasma FSH, E2, and P in ovarian tissues were influenced by the effect 
of exogenous P on the pituitary under controlled ovarian hyperstimulation17, and hMG can significantly increase 
plasma FSH and LH levels18. In addition, the rapid increase in E2 produces a GnRH impulse and LH surges via 
positive feedback of the hypothalamus and pituitary in follicular development19, while P has potent anti-GnRH 
activity exerted at the hypothalamic level. Thus, it diminishes the sensitivity of GnRH-stimulated LH release and 
inhibits FSH-stimulated E2 production by controlling FSH induction of the aromatase enzyme20,21. Thus, the 
MPA + hMG group still did not have a higher E2 levels during the activating PI3K/Akt/mTOR pathway. Another 
study found that MPA is mainly as effective as oral contraceptives to inhibit ovulation22, leading to the decreased 
of E2 and P levels in MPA + hMG group compared with the control group and hMG group. According to these 
results, we hypothesize that the elevated FSH and decreased LH, E2 and P were mainly attributed to the effect of 
hMG on FSH as well as anti-GnRH effects of the hypothalamus and pituitary mediated by MPA administration.

In the MPA + hMG group and the MPA group, the treatment of MPA resulted in remarkable ovulation inhi-
bition and no new corpus luteum due to the use of exogenous P as a contraceptive is associated with suppression 
of ovulation for a longer period23. Interestingly, some studies suggested that the MPA treatment suppressed the 
dominant follicle more than the physiological dose during the growing phase24, there are still a number of dom-
inant follicles in the MPA + hMG group, which may be due to the FSH, as the main component of hMG and 

Figure 4. The effects of treatment on ovarian FSHR, LHR, ER, and PR expression level. (A) The FSHR, LHR, 
ER, and PR were detected by immunohistochemistry, red arrows represent the expression of receptors. (B) The 
positive rate of FSHR, LHR, ER, and PR in four groups. *Represents MPA + hMG group vs control group, MPA 
group or hMG group. *P < 0.05.
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maintenance of FSH during follicular development can result in granulosa cell proliferation and oocyte develop-
ment and reduce the negative effects of MPA on dominant follicles25.

Analyses of ovarian hormone receptor demonstrated that a higher FSHR was showed in the MPA + hMG 
group than the control group and MPA group. In the current study, FSH upregulates the expression of FSHR, and 
the alterations in the FSHR may contribute to the variability of ovarian response to FSH26. In addition, high levels 
or activity of FSHR may affect the intensity of FSH, and in turn, the increased feedback regulation of FSHR may be 
stimulated by FSH27,28. Moreover, P increased the response of granulosa cells to FSH via increased cAMP, which 
plays an important role in folliculogenesis and follicle survival29. The fact that we observed increased FSH and 
FSHR in the MPA + hMG group suggested that those results might lead to the improvement of follicular growth 
by hMG and increased sensitivity of granulosa cells to FSH via MPA. Moreover, Karlsson et al. showed that the 
activation of LHR, upon binding LH in ovarian granulosa initiates signaling cascades that regulate transcription 
of genes necessary for ovulation and luteinization30. In our study we showed a lower LHR and non-ovulation in 
MPA + hMG group compared to the hMG group, which due to the P can participate in down-regulation of the 
LHR gene expression31.

Edson MA et al. found that FSH substantially activated the PI3K/Akt pathway in ovarian granulosa cells, 
and this pathway plays critical roles in folliculogenesis, including the activation of follicles and maturation32, 
and reduced fertility were found in an Akt1-knockout females, resulting in reduced numbers of antral follicles33. 
Sun et al. used transient treatment with mTOR and PI3K stimulators in vitro and observed a synergistic effect on 

Figure 5. The effects of treatment on the PI3K/AKT/mTOR signaling pathway in ovarian tissue. Ten samples 
were used for each western blot assay, and each sample was measured in triplicate. (A–C) Western analyses 
of PI3K and p-PI3K, and their statistical analysis in all groups. (D–F) Western analyses of AKT and p-Akt,, 
and their statistical analysis in all groups. (G–I) Western analyses of mTOR and p-mTOR,, and their statistical 
analysis in all groups. *Represents MPA + hMG group vs control group, MPA group or hMG group. *P < 0.05.
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follicular development34. Increasing evidence suggests the involvement of PI3K/Akt/mTOR in cell proliferation, 
follicular growth and development, maturation, and periodic ovulation, which is activated in oocytes and granu-
losa35–37. However, there are still limited studies that have been developed to determine whether MPA + hMG can 
affect follicle growth, development and maturation. In order to explore the molecular mechanisms underlying 
the regulatory function of MPA + hMG on follicle development, PI3K/Akt/mTOR pathway was examined in 
mouse ovaries. Most importantly, we found that the levels of p-Akt and p-mTOR in the MPA + hMG group were 
significantly higher compared to the control and MPA groups. Similar to previous studies, in this study, hMG 
was added to stimulate PI3K/Akt/mTOR signal transduction in granulosa cells38. As studies showed that FSH 
activated the PI3K pathway including increased Akt and mTOR, which predominantly occurs in the nucleus 
and cytoplasm39,40. This indicates that hMG can increase p-Akt and p-mTOR by activating the PI3K/Akt/mTOR 
signalling pathway. Our results clearly demonstrated that the development of follicles via activation of the PI3K/
Akt/mTOR pathway relied on the appropriate dose of MPA combined with hMG. To our knowledge, there are 
no published animal trials of MPA + hMG in ovarian stimulation including an analysis of its effect on the ovary 
microenvironment and PI3K/Akt/mTOR signaling pathway.

Although the ovarian index was higher in the MPA + hMG group than in the other three groups, there was 
no statistically significant difference between the groups. This may be due to the inhibition of ovulation in MPA 
group, multiple follicles development but no ovulation in the hMG group, and reduced the effect of multiple 
follicles development and inhibition of ovulation via MPA in MPA + hMG group were presented. Therefore, the 
number of follicles and ovulation may affect the size of ovarian index, although in the activated PI3K/Akt/mTOR 
pathway.

In conclusion, our results demonstrated that follicular development in MPA + hMG treated mice were associ-
ated with activation of the PI3K/Akt/mTOR pathway and the variation of serum hormone and hormone receptor 
via the synergistic effect of hMG and MPA. Moreover, our findings provide a theoretical basis to establish a new 
protocol for ovarian stimulation for infertile patients.

Methods
Animal treatment. Female, 6 week-old BALB/C mice were obtained from laboratory animal center, 
Shanghai Jiaotong University School of Medicine and kept under standard conditions: environmental temper-
ature 20 ± 2, relative humidity 60%~80%, and on light of 14 hours one day. Water and food were available ad 
libitum. Forty female mice were randomly divided into four groups including: control group, MPA group, hMG 
group and MPA + hMG group.

Experimental design. The female mice cycle was observed at 8 am every day and sexual cycle was divided 
by the characteristic of cellular changes and selected the normal cycle mice as the experimental object. According 
to the principle of vaginal exfoliated cells (leukocytes, nucleated cells and keratinocytes): proestrus stage, 
17–21 hours, lots of nucleated epithelium cells and a small amount of keratinocytes; estrus stag, 9–15 hours, kerat-
inocytes; metestyus stage, 10–14 hours, leukocytes, nucleated cells and keratinocytes; ciestrus stage, 60–70 hours, 
only the presence of white blood cells. The control group received 0.25 ml/day salad oil via gavage; the MPA 
group conducted 3.0 mg/kg·d MPA (Zhejiang Xianju Co. Ltd, Zhejiang, China) via gavage; 5 IU/d hMG (Anhui 
Fengyuan Pharmaceutical Co. Ltd, Hefei, China) was used for hMG group via intraperitoneal injection; and the 
MPA + hMG group administered 3.0 mg/kg·d MPA combined with 5 IU/day hMG via gavage and intraperitoneal 
injection, respectively. All animals were treated for 5 days and vaginal smears were taken to determine the estrous 
cycle continuously.

Ovary index calculation. Animals were sacrificed after 24 hours of MPA or/and hMG administration for 5 
days. Their ovaries (bilateral) were collected carefully. The fascia and adipose tissue was removed from the ovaries 
and the wet weight of the ovaries were measured. Ovary index was calculated according to the following formula: 
ovarian index = ovarian wet weight (mg)/body weight (g) × 100%.

Hormonal assay. Orbital blood collection were performed before treatmnet and blood collection of enucle-
ation were performed after 5 days of treatment. Then they were kept at room temperature for 2 hours and centri-
fuged at 2000 g for 30 minutes. Subsequently, serum were transferred into 1.5 mL polypropylene tubes, and stored 
at −20 °C. Serum FSH, LH, E2 and P levels were determined using an Euzyme Linked Immimosorbent Assay Kit 
(Yinggong Corporation, Shanghai, China) and measured the absorbance at 450 nm.

Histological examination. The ovaries were fixed in 4% polysorbate solution for 24 hours. Dehydration, 
embedding, slicing (thickness:5 um) and hematoxylin & eosin staining were performed, number of follicles at all 
levels were observed under an 10x magnification optical microscope. The classification of follicles refers to the 
classification of Myers41. Only follicles containing an oocyte with a visible nucleus were counted to avoid double 
counting.The percentage of the number of follicles at each stage on total number of oocytes was calculated.

Tissue microarray immunohistochemistry analysis. Mouse ovaries were fixed in 10% buffered for-
malin for paraffin embedding and arranged by array, with an aperture of 2 mm, spacing 2 mm. FSHR (1:500, 
anti-mouse, Abcam, United States), LHR (1:500, anti-mouse, Boster, China), E receptor (ER) (1:400, anti-mouse, 
Abcam, United States) and P receptor (PR) (1:200, anti-mouse, Abcam, United States) were used to via immu-
nohistochemistry staining. Finally, positive area analysis was performed using positive cell number expression 
points and according to the formula and the positive expression rate of the slice: positive rate (%) = positive num-
ber of expression/total number of cases × 100%.
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Western blotting analysis. After the mice were sacrificed, ovaries from different mice in each group were 
harvested and stored at −80 °C. Subsequently the protein was extracted using triple detergent lysis buffer, the 
expression of PI3K (CST, 1:1000), p-PI3K (CST, 1:1000), AKT (CST, 1:1000), p-Akt(CST, 1:2000), mTOR(CST, 
1:1000) and p-mTOR(CST, 1:1000) was detected by western-blotting.

Statistical Analysis. GraphPad prism 5 software was used for statistical analysis. Data was presented as the 
mean ± standard deviation (SD). Statistical analysis of normal distribution was performed on two independ-
ent samples. The Mann-Whitney U test was used to measure the non-normal distribution. The data were ana-
lysed by Chi-square. P < 0.05 was considered statistically significant. Assays were performed at least three times 
independently.

Data availability. See ‘Availability of materials and data’ section for more information

Ethical approval. The ethical review committee for animal experiments at the Shanghai Jiaotong University 
School of Medicine approved the use of mice for this study. Principles of laboratory animal care were followed and 
all procedures were conducted according to the guidelines established by the National Institutes of Health, and 
every effort was made to minimize suffering.
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