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Microbial metagenome of urinary 
tract infection
Ahmed Moustafa  1, Weizhong Li1,2, Harinder Singh3, Kelvin J. Moncera2,  
Manolito G. Torralba2, Yanbao Yu  3, Oriol Manuel4, William Biggs1, J. Craig Venter1,2,3,  
Karen E. Nelson1,2,3, Rembert Pieper1,3 & Amalio Telenti2

Urine culture and microscopy techniques are used to profile the bacterial species present in urinary 
tract infections. To gain insight into the urinary flora, we analyzed clinical laboratory features and the 
microbial metagenome of 121 clean-catch urine samples. 16S rDNA gene signatures were successfully 
obtained for 116 participants, while metagenome sequencing data was successfully generated for 
samples from 49 participants. Although 16S rDNA sequencing was more sensitive, metagenome 
sequencing allowed for a more comprehensive and unbiased representation of the microbial flora, 
including eukarya and viral pathogens, and of bacterial virulence factors. Urine samples positive 
by metagenome sequencing contained a plethora of bacterial (median 41 genera/sample), eukarya 
(median 2 species/sample) and viral sequences (median 3 viruses/sample). Genomic analyses suggested 
cases of infection with potential pathogens that are often missed during routine urine culture due to 
species specific growth requirements. While conventional microbiological methods are inadequate to 
identify a large diversity of microbial species that are present in urine, genomic approaches appear to 
more comprehensively and quantitatively describe the urinary microbiome.

Urinary tract infections (UTIs) occur in a high proportion of the population and are a significant health economic 
burden1. The criteria for diagnosis includes multiple clinical parameters and laboratory tests2, and the clinical sus-
picion of a UTI frequently triggers the prescription of broad spectrum antibiotics, with or without confirmation 
of the infecting organisms. The most common organism in uncomplicated UTIs is Escherichia coli followed by 
a number of gram-positive cocci and other Enterobacteriaceae3. Other organisms, including difficult-to-culture 
prokaryotes, eukaryotes such as Candida albicans and viruses, are involved in UTIs or other manifestations of 
genitourinary tract infection such as urethritis and sexually transmitted diseases. Because the care of UTI is 
streamlined, it is only after treatment failure that molecular tests and additional non-molecular investigations 
are launched.

Conventional microbiological methods are inadequate to fully determine the diversity of bacteria that are 
present in urine4. Next generation sequencing techniques create the possibility of investigating the microbial 
metagenome associated with infection and inflammation of the urinary tract. Metaproteomic methods have ena-
bled a deeper characterization of the inflammatory response towards uropathogens in cases of UTI and asymp-
tomatic bacteriuria5,6. Sixteen studies have characterized the urinary microbiome by 16S rRNA sequencing in 
adults. A cumulative number of 603 subjects were investigated across the various studies (UTI, n = 50; other 
urinary manifestations, n = 219; sexually transmitted diseases, n = 20; renal transplant samples n = 60; urine 
in bacterial vaginosis, n = 109; healthy, n = 145)4,7–21. However, a complete view of the microbiome, including 
eukarya and viruses, as well as an unbiased characterization of abundance and the identification of virulence 
factors as presented in this study can only be achieved by comprehensive microbiome analyses using metagenome 
sequencing. A study of the urine metagenome (35 samples) was published in 2014 by Hasman and colleagues22. 
Sequencing directly from the urine using Ion Torrent technology enabled bacterial identification in polymicrobial 
samples and the identification of putative pathogenic strains in some culture-negative samples.

The aims of this study were to discover new microbial and viral components in clinical urine specimens 
using metagenomics sequencing, and to examine the question of whether the microbial compositions of urine 
specimens justifies the description of a urinary microbial metagenome. The metagenomics component allowed 
for the exploration of organisms and their abundances from all microbial kingdoms and allowed us to investigate 
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the distribution of known virulence genes across the various study groups. Overall, the study reveals patterns of 
peri-urethral colonization and vaginal contamination of urine samples and of different profiles of what can be 
considered active infection. The study also contributes to the identification of difficult-to-culture and potential 
novel pathogens and addresses the presence of various human viruses and eukarya that are important in genito-
urinary medicine.

Results
Clinical laboratory data representation. To support an unbiased assessment of the clinical nature of the 
specimens, we approached the urine sample laboratory and microbiology data using dimensionality reduction, 
and clustering analysis. A listing of clinical data is provided in Tables S1 and S2. The PCA representation of the 
clinical laboratory data is presented in Fig. 1. The PCA analysis showed that the first two components (PC1, PC2) 
explained 65% of the variance in the clinical laboratory dataset. PC1 was driven by the vaginal contamination 
score (VCO), PC2 was contributed primarily by neutrophil activation and degranulation score (NAD), and sec-
ondarily by the erythrocyte and vascular injury score (ERY) and the presence of red blood cells (RBC) and leuko-
cytes (WBC) (Fig. 1B). The partitioning around medoids clustering resulted in three Clusters, with 9 individuals 
in Cluster #1, 63 individuals in Cluster #2, and 49 individuals in Cluster #3 (Fig. 1C). Clinical metadata were 
compared between these three clusters. NAD, CAC (Complement activity and coagulation score), WBC, VCO 
and ERY showed most significant difference (p < 0.001, Kruskal-Wallis rank sum test, Table S2).

From these data, we established a preliminary definition of Cluster #1 as likely representing urine from 
non-infected individuals, while Clusters #2 and #3 are consistent with separate manifestations of infectious and 
inflammatory processes of the urinary tract. The performance of 16S rDNA and metagenome sequencing across 
clinical laboratory clusters is presented in Table 1.

16S rDNA sequencing. 16S rDNA sequencing was successful for 116 (96%) samples (Table 1) with an aver-
age of 39,288 paired end high quality reads (2 × 300 bp) per sample (Table S3). The median (range) number of 
genera identified per individual was 38 (6–220). The median (range) number of genera varied across clinical 
Clusters: 51 (16–106) for Cluster 1, 32 (7–172) for Cluster 2, and 60 (6–220) for Cluster 3. Analysis of the normal-
ized abundance of the classified bacterial genera across the clinical groups (Fig. 2) confirmed that proteobacteria 
were the predominant phylum in cluster 2 - the Cluster that represents infection, with prominent identification 
of Citrobacter sp., Enterobacter sp., and Escherichia sp. Clusters 1 and 3 were more diverse in composition (Fig. 2). 

Figure 1. Definition of clinical and laboratory groups. The study used an unbiased approach to the 
classification of specimens using 20 parameters from the laboratory analysis of urine. (A) Explained variance 
from PCA; the first two PCs were retained for downstream clustering analyses. (B) Contributing factors 
(loadings) to the first two PCs. Note that the directionality of the loadings reflect enrichment independently of 
sign and direction. (C) Clustering of samples is based on the method of partitioning around medoids (pam).

Microbiome

Cluster 1 Cluster 2 Cluster 3 Total

Count Percent Count Percent Count Percent Count Percent

MG + 16S 5 56% 35 56% 7 14% 47 39%

MG 0 0% 1 2% 1 2% 2 2%

16S 4 44% 27 43% 38 78% 69 57%

None 0 0% 0 0% 3 6% 3 2%

Total 9 63 49 121

Table 1. Microbiome Sequencing performance rate. Clusters are defined on the basis of clinical and laboratory 
metadata. Cluster 1 is interpreted as reflecting contamination, Cluster 2 is most consistent with urinary 
infection, Cluster 2 is of unclear nature. MG: metagenome sequencing, 16S: 16S rDNA sequencing.
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Cluster 1 had greater abundance of Actinotignum, Aerococcus, Atopobium, Facklamia, Gardnerella, Lactobacillus, 
Megasphaera, Oligella, Prevotella, and Streptococcus species. Cluster 3 had greater abundance of Acidovorax, 
Alloscardovia, Epilithonimonas, Lachnospira, Peptostreptococcus, Pseudomonas, Rhodanobacter, Riemerella, 
Sphingobium and Ureaplasma (Fig. S1).

Metagenome sequencing. Shotgun metagenome analysis was successfully performed on 49 samples high-
lighting that, although samples with limited microbial content may amplify via 16S rDNA, insufficient reads or 
failed sequencing will occur if starting DNA material is limiting. However, metagenomics data will reflect quan-
titatively more accurate analyses compared to 16S rDNA data. Metagenomic sequencing generated 26.6 million 
paired end high quality reads (2 × 125 pb) per sample on average (Table S4). After removing reads that from 
human host, which range from 1.3% to 99.9%, on average, 4.26 million paired end high quality reads per sample 
were used for metagenomic analysis (Table S4). In the samples that were successfully investigated by microbial 
whole genome sequencing (WGS), the average composition of the reads per kingdom was 94.6% Bacteria, 0.05% 
Eukarya, 0.0027% Viruses, and 0.0001% Archaea (Fig. 3). The archaeal component was discarded from subse-
quent analyses. We also observed a significant proportion, 4.9%, of unmapped non-human sequence reads. The 
largest microbial content was observed in Cluster 1, the lowest in Cluster 3.

Bacteria. The median (range) number of bacterial species – genera - identified per individual was 41 (27–49). 
The median (range) number of species across clinical Clusters was 44 (29–48) for Cluster 1, 41 (28–49) for Cluster 
2, and 38 (28–47) for Cluster 3. Figure 4 depicts the read counts for genera across clinical groups, as well as the 
highest genome coverage of strains within each genus. Genomes of 27 strains in 9 genera were recovered with 
>90% genome coverage. In 33 genera, there were 411 strains whose genomes were recovered with >50%.

Figure 2. Normalized abundance of bacterial genera across the clinical groups using 16S rDNA. 116 samples 
were successfully analysed by 16S rDNA sequencing and grouped according to the clinical laboratory clusters. 
Proteobacteria were the predominant phylum in Cluster 2 - the cluster that represents infection, with prominent 
identification of Citrobacter, Enterobacter, Escherichia. Clusters 1 and 3 were more diverse in composition (Fig. S1).
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Figure 3. Metagenome sequencing mapped reads per sample. 49 samples were successfully sequenced and 
grouped according to the clinical laboratory clusters. Each point represents a sample. The thick line in the 
boxplot represents the median number of reads for the cluster.

Figure 4. Ranking of bacterial genera by counts from metagenome sequencing across clinical laboratory 
clusters. Shown are bacteria observed with at least 1% of total reads in a sample. Analyses reflect results from 49 
samples that were successfully sequenced and grouped according to the clinical laboratory clusters. Each point 
represents a genus in a sample. The horizontal represents the median number of reads for the genus.
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This analysis indicates that proteobacteria are the predominant phylum in Cluster 2 - the cluster that rep-
resents infection, including classic uropathogens such as Escherichia, Klebsiella, Pseudomonas, Enterobacter, 
Citrobacter, as well as species with unclear or unknown role in infection, such as Acidovorax, Rhodanobacter, 
and Oligella (Fig. S2). Cluster 1 had greater abundance of Actinomyces, Anaerococcus, Atopobium, Facklamia, 
Finegoldia, Gardnerella, Lactobacillus, Megasphaera, Peptoniphilus, Staphylococcus, and Streptococcus (Fig. S2). 
Given the depletion in total number of reads in Cluster 3, we could not identify any uniquely enriched genus.

We specifically chose to represent the metagenome data as read counts, a surrogate of absolute abundance, 
because the process does not involve amplification and thus, relative abundance may misrepresent actual content 
of microbiota. However, we compared the relative abundance as estimated by 16S rDNA with the absolute read 
number from metagenome sequencing to assess the degree of correlation. The correlation was high (R2 = 0.88), 
however, there were some discrepancies where relevant organisms appeared better identified by WGS than by 16S 
rDNA sequencing (eg. Gardnerella, Fig. S3). The presence of Gardnerella vaginalis in urine has been also recog-
nized through metaproteomic approaches5.

We also explored the nature of samples in Cluster 2 that were negative by WGS – despite the expectation that 
samples in this group would be indicative of infection. For this, we inspected differences in 16S rDNA read counts 
for 27 samples in Cluster 2 that were negative in WGS compared with 35 samples in Cluster 2 that were positive 
in WGS. We did not identify differences in median 16S rDNA bacterial read counts across these two sets, nor 
a significant difference in pattern of bacterial abundance. Therefore, it remains unclear what the true nature of 
those Cluster 2 samples is: inflammatory reactions, traumatic (for example, passage of a kidney stone), low grade 
infection, or technical limits to WGS that limit sensitivity.

It was also important to assess the correspondence of WGS and routine culture used in the clinics. A total of 
23 samples in Cluster 2 presented dominant flora (post hoc defined as >105 reads). For those, we observed eight 
samples with consistent WGS and culture results, 1 with a discrepant growth, and 4 reported as mixed flora in cul-
ture (Table 2). There was no reported culture growth for four samples in Cluster 1, and only one sample in Cluster 
3 despite the observation of dominant flora in sequencing. Two samples, one in Cluster 1 and one in Cluster 2 
contained high number of reads of Actinotignum sp. This facultative anaerobic gram-positive rod (in particular, 
A. schaali) has been claimed to be part of the urinary microbiota of healthy individuals while also responsible 
for UTIs, particularly in elderly men and young children23. Use of matrix-assisted laser desorption/ionisation 
time-of-flight mass spectrometry (MALDI-TOF MS) supports the better identification of this organism24.

The metagenome approach permits the identification of virulence genes in the bacterial pool. Searching for 
virulence factors against VFDB25, we observed enrichment of specific factors, in particular in Cluster 2 (Fig. 5). 
While the identification of virulence genes does not necessarily inform on potential for expression and patho-
genicity, it serves to illustrate the differences in output of WGS versus 16S rDNA sequencing.

Eukarya. The median (range) number of species identified per individual was 2 (1–8). The median (range) 
number of species was 2 (1–8) for cluster 1, 2 (1–6) for cluster 2, and 2 (1–3) for cluster 3. Nine species were 

Clinical and 
laboratory 
Cluster Majority species (≥10E5 reads)

Number of 
samples Culture results

Cluster 1

Actinotignum + Citrobacter 1 Negative

Atopobium + Gardnerella + Lactobacillus + Megasphaera + Streptococcus + Veillonella 1 Negative

Corynebacterium + Lactobacillus + Oligella 1 Negative

Gardnerella + Prevotella 1 Negative

Cluster 2

Escherichia 5 Escherichia (in 4 
of 5 samples)

Klebsiella 3 Negative

Lactobacillus 2 Negative

Actinotignum 1 Mixed

Anaerococcus + Peptoniphilus + Porphyromonas + Varibaculum 1 Mixed

Atopobium + Enterobacter + Escherichia 1 Escherichia

Atopobium + Escherichia + Gardnerella + Lactobacillus + Prevotella 1 Escherichia

Atopobium + Gardnerella + Lactobacillus + Megasphaera 1 Staphylococcus

Atopobium + Gardnerella + Megasphaera + Prevotella + Sneathia 1 Negative

Enterobacter 1 Enterobacter

Enterococcus 1 Mixed

Escherichia + Lactobacillus 1 Negative

Gardnerella 1 Negative

Gardnerella + Prevotella 1 Negative

Klebsiella + Prevotella 1 Klebsiella

Pseudomonas + Lactobacillus 1 Mixed

Cluster 3 Escherichia 1 Negative

Table 2. Relationship between metagenome sequencing and routine culture.
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identified (minimum 10 reads per sample): eight fungal species (Candida albicans, C. glabrata, C. orthopsilosis 
and C. tropicalis, Clavispora lusitaniae, Lodderomyces elongisporus, Meyerozyma guilliermondii and Malassezia 
globosa) and a metamonada (Trichomonas vaginalis). Figure 6 depicts the read counts for genera across clinical 

Figure 5. Virulence factors across clinical laboratory clusters. Metagenome sequencing data was used to search 
for open reading frames (ORFs) compared against the database VFDB25 to identify virulence factor genes with 
over 95% sequence identity. Listed are the factors identified in the dataset, grouped by taxonomic binning, with 
the VFDB accession number in parenthesis. The left panel shows enrichment in the abundance of ORFs across 
clusters. Here, the abundance is the depth of coverage of the genome where the ORFs were predicted. The right 
panel shows prevalence of samples that contain organisms carrying the corresponding virulence factor in each 
cluster.

Figure 6. Eukarya read counts across clinical laboratory clusters. Shown are eukarya observed with at least 
10 sequence reads in a sample. Analyses reflect results from 49 samples that were successfully sequenced and 
grouped according to the clinical laboratory clusters. Each point represents a species in a sample.
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groups. Relatively elevated counts were observed for C. glabrata and Clavispora lusitaniae in four individuals from 
Clusters 2 and 3. Candida species both colonize and cause invasive disease in the urinary tract26. The identifica-
tion of the lipophilic fungi Malassezia is not unexpected as these fungi predominate in most skin sites in healthy 
adults27.

Trichomonas vaginalis colonizes the genitourinary tract of men and women. Young women with urinary 
symptoms in the absence of documented UTI were found more likely to have Trichomonas vaginalis compared to 
those with a documented UTI28. Molecular amplification detects Trichomonas vaginalis in penile-meatal swabs 
and urine specimens of men29. The identification in the present study of sequence reads in 18 of 38 females (47%) 
and 4 of 11 (36%) males suggests the common presence of this organism in the genitourinary region – at least in 
populations in a clinical setting.

Viruses. The median (range) number of viruses identified per individual was 3 (1–9). The median (range) 
number of viruses was 3 (2–6) for cluster 1, 3 (1–9) for cluster 2, and 2 (1–7) for cluster 3 (Fig. 7). We identified 13 
phages that were generally dominant and associated with the cognate bacteria in the sample.

We identified 6 human viruses consistent with a genitourinary source (human papillomavirus and molluscum 
contagiosum virus), urinary excretion (BK and JC polyomavirus) or viruses possibly leaked into urine from 
bleeding and inflammation (Herpesvirus 6 and Anellovirus). As previously reported, excretion of polyomavirus 
is more commonly observed for JC than BK virus among nonimmunosuppressed individuals30,31, and excretion 
increases with immunosuppression32. Herpesvirus 6 is rarely excreted in urine33. During acute infection, some 
children with exanthema subitum may present sterile pyuria34. However, a likely source of significant number of 
viral reads in urine may be the sloughing off of cells in individuals with integrated copies of the HHV6 in the host 
genome – occurring in 0.5 to 1% of the population35,36.

Gender. We observed differences in the microbiome content across sex (Fig. S4A). The greatest differences 
(not significant after multiple testing correction) were greater numbers of sequence reads for Lactobacillus and 
Prevotella in women, and of Enterococcus, and Pseudomonas in men (Fig. S4B).

Discussion
This study provides a detailed view of the microbial metagenomes of urine specimens. The study departs from 
a classical analysis in that it maximizes a data-driven approach that extracts laboratory metadata features and 
matches them to metagenomic profiles. It provides an unbiased identification of the flora associated with sam-
ples colonized or contaminated with vaginal commensal organisms or local flora, and with samples associated 
with infection. Colonizing bacteria may be present at the urinary meatus, the distal urethra or along the entire 
urothelium. Where such bacteria reside cannot be determined from voided urine samples. Our study extends the 
identity of possible pathogens to include unconventional microorganisms and thus represents a new view of the 
nature of infection in the genitourinary region and an approach to the question of a normal urinary tract flora. 
Indeed, the concept of urine not being sterile has been raised in the past8,17.

Figure 7. Viral read counts across clinical laboratory clusters. Shown are viruses observed with at least one 
sequence read in a sample. Analyses reflect results from 49 samples that were successfully sequenced and 
grouped according to the clinical laboratory clusters. Each point represents a virus in a sample.
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We identified 16 reports4,7–21 in the literature that used 16S rDNA sequencing in the analysis of urinary micro-
biome. The target of these studies was very diverse, encompassing the study of urine samples from healthy indi-
viduals, urinary tract infection, clients of sexual transmitted clinics, and various disorders of the upper urinary 
tract. These studies identified microbial communities, and characterized the impact of various perturbations, 
including antibiotherapy. One report22 used whole genome sequencing of urinary specimens in the setting of 
infection. The complementarity and properties of either approach are not well studied. To evaluate those ques-
tions, we used both 16S rDNA and metagenome sequencing techniques. In a review, Jovel et al.37 concluded that, 
in the study of other human microbial niche, WGS offers increased resolution, enabling a more specific taxonomic 
and functional classification of sequences as well as the discovery of new bacterial genes and genomes, and offer-
ing a greater potential for identification of strains. A recent paper underscores the existence of sub-populations 
(subspecies) in the majority of abundant gut prokaryotes – leading to a better functional and ecological under-
standing of the human gut microbiome38. This dimension is not captured by 16S rDNA sequencing.

In our hands, 16S rDNA sequencing provided a greater sensitivity, as it identified bacterial species across the 
majority of samples and clinical groups. In contrast, less than half of the clean catch urine samples generated 
sequencing libraries for WGS. The basis for the lower sensitivity rests on the fact that WGS uses limited technical 
amplification of the nucleic acid content in the sample, thus more closely reflecting the proportionate biomass 
contributed by microbes in the urinary metagenomes. WGS also provides a unique view of non-prokaryotic con-
tent of urine through the identification of eukarya - mainly Candida species, and of human viruses and phages. 
These differences notwithstanding, both sequencing techniques identify a substantial diversity of microbial spe-
cies. WGS also provides a representation of virulence factors in the bacterial pool of the individual. Not unexpect-
edly, the analysis identifies differences in the microbial metagenome across sexes.

The study convincingly identifies high numbers of sequence reads of conventional uropathogens, but also 
proposes novel bacterial species associated with features of infection. It also challenges the cutoffs used to define 
infection: generally, 105 colony forming units in culture. The quantitative nature of the WGS approach identifies 
traditional uropathogens at lower quantities in samples with features of infection. It identifies non-cultured/
difficult to grow bacteria long discussed as a possible pathogenic organism, for example, Alloscardovia39–42 and 
Actinotignum sp.23. A. schaalii may be an underestimated cause of UTIs because of its fastidious growth on usual 
media and difficulties associated with its identification using phenotypic methods23. WGS also provides a broader 
screen compared to the conventional urinary culture. For example, we identified sequence reads of Ureaplasma – 
a potential pathogen that requires dedicated culture systems or molecular testing. It is expected that the approach 
will identify Mycoplasma, Chlamydia and other agents associated with sexually transmitted diseases.

Use of WGS also captures viral DNA sequence reads. The identification of viruses in the genitourinary tract is 
important because of the potential for transmission from local disease (e.g., HSV2, papillomaviruses), or because 
of the interest in monitoring of shedding (e.g., CMV, BK virus). WGS also identified shedding of common blood 
viruses such as Anellovirus (Torque teno virus)43. There is however limited information on the role of viruses as 
a cause of UTI44. Consistent with the work of Santiago-Rodriguez the al.45, we observed the abundant presence 
of phages that match the presence of the cognate bacteria in urine. Metagenomic analyses could thus expand the 
understanding of viruses as flora of the genitourinary tract.

The present study uses specimens collected for clinical diagnostic purposes, but de-identified and considered 
medical waste. This limits in-depth understanding of the clinical setting beyond what can be established from the 
urine laboratory metadata. However, it allows the assessment of the metagenome content on the basis of objective 
laboratory data, while excluding subjective clinical interpretation. We propose that future studies on the urinary 
microbiome should use baseline unbiased microbial metagenome analysis to prospectively understand the nature 
of infection and of treatment response. We speculate that “Cluster 3” may to some extent include urine samples 
from individuals that received treatment with antibiotics. This cluster has the least amount of sequence reads in 
WGS, and the presence at low titers of classical uropathogens such as Pseudomonas aeruginosa or Escherichia coli. 
Another consideration for the interpretation of Cluster 3 is that we did not use negative extraction controls as 
they rarely generate the appropriate libraries for sequencing, and thus, cannot formally exclude reagent or envi-
ronmental contamination. A systematic, prospective use of metagenomic tools may also shed light on the role of 
unknown and unconventional microorganisms in the urinary tract. Additional aspects that could be approached 
by urinary metagenomics are the characteristics of the urinary “normal flora” – as it is increasingly observed that 
the urinary tract may not be sterile. These studies could be performed via suprapubic collection of urine. Overall, 
the present study underscores that the current understanding of the etiology of UTIs can be improved through 
the combined used of unbiased clinical laboratory data and microbial metagenome analysis.

Methods
Study participants and urinalysis. A total of 121 human urine specimens were collected by the Pathology 
and Clinical Microbiology Laboratory of the Shady Grove Adventist Hospital (SGAH) in Rockville, Maryland. 
Details on the set of specimens and the urinalysis methods performed were described previously5. A total of 92 
samples were collected from women, and 29 from men. The study was exempted from review by Institutional 
Review Boards of the J. Craig Venter Institute (JCVI) and SGAH because the specimens were collected for diag-
nostic purposes and considered medical waste prior to use for the study. All experiments were performed in 
accordance with relevant guidelines and regulations. The urine samples left over after clinical urinalysis were 
de-identified prior to transfer to JCVI. Clinical laboratory records included gender and the results of urinalysis 
tests, such as presence of bacterial cells, red blood cells, leukocytes, epithelial cells and casts (assessed by phase 
contrast microscopy), nitrite concentration (associated with bacterial nitrate reduction) and leukocyte esterase 
activities (derived from the activity of white blood cell proteases and esterases released into urine).
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Sample processing. Urine specimens (5 to 30 ml) were stored at 4 °C for up to 6 h after collection and cen-
trifuged at 3,000 × g for 15 minutes at 10 °C. Given that microbiome results are prominently expressed in the log 
scale throughout the work, we consider the maximal 0.5 log effect of the different volumes of urine as a small 
component of the variance. Urinary pellets were washed twice with a 10-fold volume of PBS and frozen at −80 °C 
until used for proteomic analyses as reported5 or for microbiome and metagenomics analyses. On the day of DNA 
extraction, 300 µl of TES buffer (20 mM Tris-Cl, pH 8.0, 2 mM EDTA, and 1.2% Triton X-100) was added to a 5 to 
25 µl urinary pellet sample. The sample was vortexed, incubated at 75 °C for 10 min and cooled to room temper-
ature. The suspension was supplemented with 60 µl chicken egg lysozyme (200 µg/ml), and 5 µl Linker RNase A, 
gently mixed and incubated for 60 min at 37 °C. After addition of 100 µl 10% SDS and 42 µl Proteinase K (20 mg/
ml), bacterial lysis was allowed to proceed overnight at 55 °C. The DNA was extracted by adding an equal volume 
of phenol: chloroform: isoamylalcohol (25:24:1; pH 6.6), followed by vortexing and centrifuging at 13,000 RPM 
for 20 min. The aqueous phase was removed and transferred to a sterile microcentrifuge tube. The residual sample 
was then re-extracted by repeating the previous step. The aqueous phase was re-extracted with an equal volume of 
chloroform: isoamylalcohol (24:1) and centrifuged at 13,000 RPM for 15 min. The aqueous phase was transferred 
to a sterile microcentrifuge tube and 3 M sodium acetate (pH 5.2) was added at a 10% volume. The DNA was 
precipitated by adding an equal volume of ice cold isopropanol followed by incubation at −80 °C for 30 minutes. 
Samples were then centrifuged at 16,100 × g for 10 min and the supernatant was removed. The pellet was washed 
with 80% ethanol and centrifuged again. After air drying, the DNA pellet was resuspended in Tris EDTA buffer 
in preparation for sequencing.

Special phenotypic tests. Previous work using the same samples focused on the integrated evaluation 
of urinalysis and proteomic data to diagnose UTI and inflammatory conditions in the genitourinary tract5. 
Specifically, proteomics tools were used to calculate three scores: NAD (neutrophil activation and degranula-
tion), ERY (erythrocyte score) and VCO (vaginal contamination score); see below. The experimental shotgun 
proteomic methods were based on tryptic peptide analysis via nano-liquid chromatography tandem mass spec-
trometry (LC-MS/MS) with the high resolution high accuracy Q-Exactive mass spectrometer (V1.4, Thermo 
Electron) followed by computational searches of a database comprised of the combined sequences of the 
human proteome and 21 proteomes of microbial species known to colonize the human genitourinary tract5. 
Semi-quantitative proteomic data were obtained counting the peptide-spectral matches for a given proteins using 
the Proteome DiscovererTM software analysis tool (Thermo Electron) at a 1% peptide and protein false discov-
ery rates. Quantitative analyses for the performance of phenotypic tests utilized the MaxQuant software tool46. 
The iBAQ protein values were computed for 35 proteins highly expressed in activated neutrophils, 32 proteins 
highly expressed in erythrocytes and five proteins highly expressed in squamous epithelial cells (cornifelin, cor-
nulin, galactin-7, serpin B3, and mucin 5B) compared to the abundance of the urine-specific protein uromodulin. 
Summed iBAQ values then permitted the calculation of scores, which were termed the NAD score for neutro-
phil contents, the ERY score for red blood cell contents and the VCO score for squamous epithelial contents5. 
Specifically, the vaginal contamination score is based on the quantification of the VCO proteins defined in a 
previous publication5. VCO markers are strongly expressed in vagina/cervix and/or are strongly associated with 
stratified squamous epithelium and are not expressed in the urinary tract.

Sequencing and analysis of 16S rDNA genes. DNA extracted from urine samples was amplified using 
primers that targeted the V1-V3 regions of the 16S rDNA gene47. These primers included the i5 and i7 adaptor 
sequences for Illumina MiSeq and unique 8 bp indices incorporated into both primers such that each sample 
received its own unique barcode pair. The method of incorporating the adaptors and index sequences into prim-
ers at the PCR stage provided minimal loss of sequence data when compared to previous methods that would 
ligate adaptors to every amplicon after amplification. This method also allowed the generation of all sequence 
reads in the same 5′-3′ orientation. Using approximately 100 ng of extracted DNA, amplicons were generated with 
Platinum Taq polymerase (Life Technologies, CA) using the following cycling conditions: 95 °C for 5 min for an 
initial denaturing step followed by 95 °C for 30 sec, 55 °C for 30 sec, 72 °C for 30 sec for a total of 35 cycles followed 
by a final extension step of 72 °C for 7 min then stored at 4 °C. Once the PCR for each sample was completed, the 
amplicons were purified using the QIAquick PCR purification kit (Qiagen Valencia, CA), quantified fluorometri-
cally using SYBR Gold Nucleic Acid Gel Stain (ThermoFisher Scientific), normalized, and pooled in preparation 
for bridge amplification followed by Illumina MiSeq sequencing using V3 chemistry dual index 2 × 300 bp format 
(Roche, Branford, CT) following the manufacturer’s protocol.

Phylogenetic classification. 16S rDNA amplicons were quality control using Infernal48. Only sequences 
identified as bacterial 16S using Infernal were considered for downstream steps. Bacterial 16S sequences were 
searched against SILVA (release 128)49 using blastn50 to initially determine the species found in the samples 
to include the corresponding SILVA reference sequences in a reference phylogenetic tree. Identified reference 
sequences were aligned using MAFFT51 with the G-INS-i settings for global homology. A maximum likelihood 
reference tree was inferred under the general time-reversible model with gamma-distributed rate heterogeneity 
(GTR + Γ) using FastTree52. The 16S reads were mapped onto the reference tree using pplacer53 with the default 
settings. The number of sequences assigned to each node on the reference tree was normalized to the total num-
ber of sequences from the corresponding samples. The normalized abundances of the mapped reads were visu-
alized using ggtree54.

Metagenome sequencing. Nextera XT libraries were prepared manually following the manufacturer’s 
protocol (Illumina). Briefly, samples were normalized to 0.2 ng/μl DNA material per library using a Quant-iT 
picogreen assay system (Life Technologies) on an AF2200 plate reader (Eppendorf), then fragmented and tagged 
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via tagmentation. Amplification was performed by Veriti 96 well PCR (Applied Biosystems) followed by AMPure 
XP bead cleanup (Beckman Coulter). Fragment size was measured using Labchip GX Touch high-sensitivity. 
For cluster generation and next generation sequencing, samples were normalized to 1 nM, pooled, and diluted 
to 8 pM. The paired-end cluster kit V4 was used and cluster generation was performed on an Illumina cBot, with 
pooled samples in all 8 lanes. Sequencing was performed on an Illumina HiSeq. 2500 using SBS kit V4 chemistry. 
Median cluster densities (K mm2) were 908.5 for Nextera XT.

Taxonomic assignments, microbial abundance, and virulence markers. Sequences were pro-
cessed using the Human Longevity Inc. microbiome annotation pipeline as described in55. Briefly, after trimming 
adapter sequence, removing low quality bases, excluding reads shorter than 90 nucleotides, removing duplicated 
reads, reads were aligned to the human reference genome hg38 using BWA56. Reads that were mapped to hg38 
were excluded from downstream analyses. Non-human reads were mapped to Human Longevity Inc. reference 
genomes database, which is composed of almost 19,023 NCBI reference genomes of bacteria, archaea, eukarya, 
and viruses. Successfully mapped reads were taxonomically classified using the Expectation Maximization algo-
rithm57. The relative abundance of a reference genome was estimated as the genome coverage divided by the sum 
of all genome coverages. Non-human reads were assembled using IDBA-UD58 and ORFs are predicted from 
assembled scaffolds with Metagene59. An assembled scaffold was binned to a species if more than 50% of the reads 
that mapped to the scaffold were also mapped to the species using BWA. ORFs were compared against VFDB25 to 
identify virulence factor genes. An ORF is considered as a virulence gene if (a) it is over 95% identity to a gene in 
VFDB, and (b) the alignment must cover over 90% of the length of the ORF and over 50% of the gene in VFDB, 
and (c) the scaffold from which the ORF was predicted must be taxonomically binned to a species that contains 
the gene in VFDB, and (d) all the assembled scaffolds from that species must cover at least 33% of the genome 
size.

Dimensionality reduction of clinical laboratory data and clustering. The clinical laboratory meta-
data matrix was imputed for missing entries using MissForest60. Then principal component analysis (PCA) was 
conducted for a matrix of twenty clinical and sampling meta parameters (collection date, sex, urine appearance, 
urine volume, urine color, urine blood, hemoglobin presence with urine dipstick, red blood cells (RBCs), vascu-
lar injury score (ERY, see definition above), protein presence with urine dipstick, nitrate concentration, number 
of leukocytes, neutrophil activation and degranulation score (NAD, see definition above), complement system 
activity and coagulation, leukocytes microscopy, squamous epithelial cells [Epithelium], vagina contamination 
score [VCO, see definition above], urinary pellet appearance and color, urinary pellet volume and weight) from 
121 individuals. The first two components from the PCA analysis, which explained 35% and 30% of the variance, 
were used to cluster the individuals using the partitioning around medoids (pam) method61. The optimal number 
of clusters was determined to be three using the silhouette method62. Microbial taxa were filtered for those with 
relative abundance ≥1e-4 in at least one individual. Clinical laboratory parameters were compared between clus-
ters and the differences were tested with Kruskal-Wallis rank sum test.

Data resources. The metagenomic sequence data is available at NCBI under BioProject with accession 
PRJNA385350 https://www.ncbi.nlm.nih.gov/bioproject/385350.
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