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Unsupervised Segmentation of 
Greenhouse Plant Images Based on 
Statistical Method
Ping Zhang & Lihong Xu

Complicated image scene of the agricultural greenhouse plant images makes it very difficult to obtain 
precise manual labeling, leading to the hardship of getting the accurate training set of the conditional 
random field (CRF). Considering this problem, this paper proposed an unsupervised conditional random 
field image segmentation algorithm ULCRF (Unsupervised Learning Conditional Random Field), which 
can perform fast unsupervised segmentation of greenhouse plant images, and further the plant organs 
in the image, i.e. fruits, leaves and stems, are segmented. The main idea of this algorithm is to calculate 
the unary potential, namely the initial label of the Dense CRF, by the unsupervised learning model 
LDA (Latent Dirichlet Allocation). In view of the ever-changing image features at different stages of 
fruit growth, a multi-resolution ULCRF is proposed to improve the accuracy of image segmentation in 
the middle stage and late stage of the fruit growth. An image is down-sampled twice to obtain three 
layers of different resolution images, and the features of each layer are interrelated with each other. 
Experiment results show that the proposed method can segment greenhouse plant images in an 
unsupervised method automatically and obtain a high segmentation accuracy together with a high 
extraction precision of the fruit part.

The phenotypic information of greenhouse crop is an important property of plants, which has been applied 
to assist the production and processing of agricultural products in some research works1–3. To obtain 
high-throughput plant phenotypic information automatically has a significant meaning for synergistic analysis 
of genome-environment-phenotype4–7. During the period of fruit growth, it is very helpful to monitoring crop 
growth if the phenotypic information of fruits can be acquired automatically, since the phenotypic information 
can be used to estimate the yield and analyze the influence of environment to production. In the literature, the 
convolutional neural network (CNN) has been applied to agriculture. However, an urgent problem is that a large 
amount of reliable training data is needed to train it. For the analysis of greenhouse plants, it is an important 
process to get enough high-quality labelled images. In this regard, a well-segmented image of the plant can help 
labeling the image fast and accurately. Thereafter, the part of fruit image can be extracted to make further pheno-
typic analysis.

Till now, various image segmentation algorithms have been proposed in literature, among which the ones 
that can extract image features through statistical methods are important and practical scientific techniques. The 
characteristic of statistical approaches is to model the image in a statistical way. Each pixel in the image is viewed 
as the probability distribution of a variable. And the combination of pixels that has the maximum probability 
should be found from a statistical perspective.

As a popular conditional probability distribution model, the conditional random field (CRF)8 has been applied 
widely to some fields, such as image processing and pattern recognition9,10. To take advantage of global infor-
mation of the observation field, CRF can avoid the error caused by improper modeling. Hence, an algorithm is 
more suitable for image segmentation if the fully connected CRF is utilized. Shotton J. et al.11,12 proposed a new 
approach to represent the features of image combined with boosting classifier. It optimized the unary potential 
of Dense CRF, and the precision of segmentation can be improved even when the number of categories of objects 
in the image is large. Moreover, the inference algorithm of Dense CRF was considered in refs13,14, and a more 
efficient way was provided to calculate the pairwise potential, thereby improving the efficiency and the image 
segmentation accuracy of the algorithm.
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Since CRF is a supervised learning model, generally, its unary potential is obtained in supervised methods. It 
needs a high-quality training set containing a large amount of labeled images to learn related models of all kinds 
of objects. This is not realistic in the greenhouse problem. In the scene of greenhouse, light condition is very 
complex, and the leaves overlap each other to form shadow areas in the images. There are many indistinguishable 
regions in the greenhouse images. It is difficult to label the objects in the highlight or shadow areas accurately 
by hand. Given that some mistakes are contained in the training set, the models learned from it is not reliable 
enough. Thus, it has a negative impact on the accuracy of segmentation in CRF. For greenhouse problems, it 
is hard to obtain very reliable results by supervised methods. To this end, we take unsupervised methods into 
account in our study. Latent Dirichlet Allocation (LDA)15 is an unsupervised learning method in the domain 
of language models to identify hidden information in a large collection of documents or corpus16. It has been 
applied to solve the problems of computer vision widely17–19. The conception of bag of words20,21 conversed the 
information of pixels to visual words, which solved the problem of encoding words to get a better result of image 
classification and segmentation. Ref.22 proposed an algorithm called Spatial Latent Dirichlet Allocation (SLDA) 
to encode the spatial structure of visual words better. It designed the vision documents considering the spatial 
structure of image and got a better image segmentation result than that obtained by conducting LDA directly. 
Despite the promising potential of LDA for different segmentation tasks, it needs to generate a uniform random 
number during each iteration, leading to noises in the segmentation result. Furthermore, the generative model 
LDA shows the similarities of similar data. To some extent, it has a poor performance to reflect the difference 
between different objects in the image. We expect to consider both similarities and differences of objects in the 
images, hence we can get more complete image information in the process of segmentation.

In this paper, we combine the above two methods, namely CRF and LDA, and propose an unsupervised 
learning method to segment the greenhouse plant images. The segmentation result of LDA is used as the initial 
labels of CRF. At first, LDA is modeled with the features of pixels, and the pixels are clustered into some classes 
according to the maximum probability. Thus, LDA can get more reliable label information than manual labeling 
to obtain the training set in the process of greenhouse plant image segmentation. Meanwhile, this method takes 
advantage of CRF to reflect the differences between pixels of different classes. Therefore, the proposed method 
makes the supervised method and the unsupervised method complementary to each other. Experimental results 
showed that this unsupervised learning method can achieve a high accuracy of image segmentation.

ULCRF
Statistical Model. Before discussing the unsupervised learning method Unsupervised Learning Conditional 
Random Field (ULCRF), we introduce the statistical models related to this method briefly.

CRF (Conditional Random Field). CRF calculates the conditional probability distribution P Y X( )|  of random 
variable Y (label sequence) given random variable X (observation sequence), which can be described as follow9:

| =P Y X
Z X

P Y X( ) 1
( )

( , )
(1)



where P Y X f Y X( , ) exp ( , )i i iω= ∑ × , Z X f Y X( ) exp( ( , ))Y i i iω= ∑ ∑ × , f Y X( , )i  represents the feature func-
tion, ωi is the weight of the corresponding feature function. The CRF is a sum of every joint probability distribu-
tion of random variables X and Y.

For the problem of image segmentation, we establish a fully connected CRF. Suppose that the observation 
sequence I:{I1, …, IN} represents a set of input images, for which the label sequences are X:{X1, …, XN} that take 
their values in the domain of the set L = {l1, l2, …, lk}. The Gibbs distribution of CRF can be described as follow:
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The corresponding Gibbs Energy is

∑ ∑ψ ψ= +E x x x x( ) ( ) ( , ) (3)u i p i j

where i and j take values from 1 to N. The unary potential ψ x( )u i  is computed independently for each pixel by a 
classifier that produces a distribution over the label assignment xi given image features. The pairwise potential 
ψ x x( , )p i j  is computed in the correlation of pixels to identify the category information of each pixel. Afterwards, 
we determine the label assigned to each pixel by computing the probability distribution.

LDA (Latent Dirichlet Allocation). It is known that the generative probabilistic model LDA can be applied to 
calculate the topic probability of words in documents. The basic idea of this model is to view documents as 
random mixtures over latent topics, where each topic is characterized by a distribution over words. Its graphical 
model is shown in Fig. 1. A document consists of a sequence of N words denoted by W = (w1, w2, …, wN), and 
a corpus is a collection of M documents. All the words in a corpus will be clustered into K topics, where each 
one is modeled as a multinomial distribution over the codebook. Suppose that α and β are Dirichlet prior hyper 
parameters. A multinomial parameter θ over the K topics is sampled from Dirichlet prior as θ ~ Dir(α). Topic z 
is the multinomial distribution of θ:z ~ Multinomial(θ). For a topic k, the polynomial parameter ϕk is sampled 
from the Dirichlet prior such that ϕk ~ Dir(β). The value w of a word is sampled from the discrete distribution of 
topic z:w ~ Discrete(ϕz).
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The joint probability distribution of the model shown in Fig. 1 is:

P Z W P W Z P Z P Z P( , , , , ) ( , ) ( ) ( ) ( ) (4)θ ϕ α β ϕ θ ϕ| = | ⋅ | ⋅ ⋅

where, the parameters θ, ϕ, α, β have been described above. For the sake of simplicity, we can simplify the 
Equation (4) as follows:

ϕ θ ϕ= | ⋅ | ⋅ ⋅P Z W P W Z P Z P Z P( , ) ( , ) ( ) ( ) ( ) (5)

The probability of each topic is iteratively calculated by Gibbs sampling. Thereafter, the visual words are clus-
tered into topics which correspond to object classes.

Unsupervised Learning CRF. The joint probability distributions P Y X( , )  and Z X( ) in Eq. (1) are obtained 
by learning a mass of samples from the training set. At the beginning, we took some tomato plant images from a 
greenhouse to label them manually. However, some serious problems should be addressed during the labeling 
process. It is ubiquitous that all kinds of objects reflect light and the leaves overlap each other, which makes the 
objects under reflective or shadow areas to be different from normal ones in appearance. Sometimes, it is impos-
sible to confirm exactly what the objects in these areas are. There are also some objects far away from the lens, 
causing difficulties in labeling them. Under these conditions, the manual labeled training set is not accurate 
enough.

As an unsupervised learning method, LDA delves the individual information of pixels to get the joint proba-
bility distribution of pixels and classes. Each pixel in the image is represented by a feature vector. For the compo-
nents of plant image which are difficult to distinguish manually, their dissimilarities can be reflected by calculating 
the probabilities of these vectors. Hence, the distributions P Y X( , ) and Z X( ) in Eq. (1) that should be learned 
from the training set, can be calculated by the joint probability distribution P(Z, W) in LDA. For eq. (3), the unary 
potential ψu of Gibbs Energy shows the individual information of pixels. It is computed by a classifier as described 
in Section 2.1.1, and the LDA can fit its role. We can apply the unsupervised learning method LDA to get the 
unary potential of CRF. It avoids negative influence of the unreliable greenhouse plant image training set of the 
supervised learning method. As for the second term ψp(xi, xj) in Eq. (3), the pairwise potential categorizes the 
pixels depending on the inter-pixel relationships, which is outside the scope of this study. A highly efficient infer-
ence algorithm based on a mean field approximation to the CRF distribution14 is applied here.

There are some noises in the segmentation results of LDA due to the generation of random number in the iter-
ation process. These noises can be removed in the subsequent calculation of pairwise potential for CRF. To some 
extent, CRF avoids noise generation, one of LDA’s disadvantages. These two algorithms can be complementary 
to each other. The method described in this section can be summarized as follows: Firstly, the initial labeling of 
the plant image is calculated by LDA. Then the initial segmentation determined from the individual features of 
pixels is viewed as unary potential of CRF. Finally, a mean field approximation is applied to obtain the pairwise 
potential of CRF, and ensure the class of each pixel. Since the unary potential is calculated by LDA, the training 
process of CRF is replaced by an unsupervised learning method. We name the algorithm described in this section 
Unsupervised Learning CRF, abbreviated as ULCRF.

MR-ULCRF Method
Usually, the color, shape and density of greenhouse crops are changeable at different cultivation periods. As a 
result, the features of greenhouse plant images are also different at these periods. It may not be reasonable to 
segment plant images with a fixed scale throughout the whole period of crops. To cope with this problem, we can 
take advantage of the image multi-resolution modeling. It is known that the resolution is an important property 
of images. For instance, it is difficult to observe some features at a specific resolution, while they can be reflected 
at another resolution. Here, we take the greenhouse plant image as an example: when the image has high reso-
lution, pixels in a window of specific size in the image may be part of a leaf or a fruit; however, at low resolution, 
pixels within a window of the same size may be the image of a complete leaf or a fruit. In these two resolutions, we 
can extract different information from the same size of image window23–28. Therefore, we can mine richer image 
information based on multi-resolution modeling.

Some factors such as glasses, plastic films and pipelines may reflect light in the greenhouse. As a result, there 
is evident light reflection on the surface of the leaves and fruits, leading to highlight regions on the image. In this 

Figure 1. The graphical model of LDA.
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regard, the features of objects that reflect light cannot be sufficiently well described. On the other hand, the pixels 
of shadow areas appear to be dark colors, which are different from those on non-shaded areas. Thus, it is inevita-
ble to make mistakes in segmentation of these objects. Note that, some small highlight or shadow areas become 
smaller when reducing the resolution of the image, resulting in the reduction of feature differences between the 
same objects. Therefore, the negative impacts on the segmentation result will be mitigated. After obtaining the 
segmentation result of low resolution, we map it to a high-resolution image, therefore reducing the misclassifica-
tion of highlight and shadow areas.

In this article, considering the size of images, we can down-sample an image twice to produce three layers of 
different resolutions, where the top layer has the lowest image resolution. For the feature association between each 
layer, since a more accurate annotation can lead to a more precise segmentation result of CRF, the segmentation 
result of the upper layer image (lower resolution) is used as the annotation of the lower layer image (higher reso-
lution). Note that, the image is blurred if the resolution of the image is reduced, and hence, the influence of noise 
on the image is diminished. Here, we present the process of multi-resolution image segmentation briefly. For the 
top layer image (lowest resolution), the method described in Section 2.2 is adopted to get an initial segmentation 
by LDA. After that, the initial segmentation is viewed as the unary potential for CRF to further obtain the final 
segmentation result of this layer of image. By using the above-mentioned method of associating two layers of 
images, we map the segmentation of the low-resolution image to the high-resolution image, obtaining the seg-
mentation result of the image with the original resolution. We name this unsupervised CRF on multi-resolution 
images as multi-resolution ULCRF, abbreviated as MR-ULCRF.

Experiments
In our research, all the images were taken under real field conditions from the glass greenhouses of the Sunqiao 
Modern Agricultural Development Zone in Shanghai and the Chongming Base of National Facility Agricultural 
Engineering Technology Research Center. It deserves pointing out that, all the ground truths and training set for 
comparison experiments were labeled manually by the author. We consider the images of tomatoes, which have a 
resolution of 200 × 300. All experiments were conducted on a 1.40 GHz machine with 6GB memory.

Visual word and document definition of LDA. A local descriptor is computed for each image patch and 
quantized into a visual word. To obtain local descriptors, images are convolved with the filter bank proposed in21, 
which has shown to have good performance for object categorization. After that, each pixel is represented as a 
feature vector, namely the descriptor. We divide an image into local patches on a grid and densely sample a local 
descriptor for each patch. The K-means algorithm is used to cluster these local descriptors in the image into a 
code book of size W. Next, these visual words are clustered into classes.

According to ref.22, we cannot get good segmentation result to view an image as a single document, because 
there will be a lot of noise in the segmentation result. It is known that, if visual words are from the same class of 
objects, they not only often co-occur in the same image but are also close in space. Therefore, an image should be 
divided into several documents, and the image patches that are close in space should be grouped into the same 
document. A straightforward method is to divide an image to several regions equally on a grid, where each region 
is viewed as a document. However, we may divide pixels belonging to the same object into two regions (docu-
ments) in the process of grid division, which cause misclassification to some extent. To solve this problem, we put 
many overlapped regions on the image, each of which is a document. Hence, there will always be some regions 
containing almost all the pixels of an object in the image. The overlapped document assignment is shown in Fig. 2.

The extraction of foreground fruit image. For greenhouse plant images, objects can generally be 
divided into three classes: fruits, leaves and backgrounds. However, as the nature of unsupervised learning, both 
ULCRF and MR-ULCRF can only segment different classes of objects but cannot point out the specific name 
of each class. After getting the segmentation results, we developed a strategy to determine the name (fruit, leaf, 
background) of each class. Through analyzing the color feature of each class on greenhouse images, we found 
that the main color of fruits part tends to be red, while that of leaves part tends to be green, and the color of the 
other background objects in greenhouse tends to be bright white. For the pixels belonging to each class, we firstly 
calculate the mean value of each color component of RGB, from which the variance of these three mean values 
is calculated. The background class has the minimum variance. For the remain two classes of fruit and leaf, the 

Figure 2. The overlapped document assignment.
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mean value of the R component of fruit class is greater than that of the other two color components, and the mean 
value of the G component of leaf class is greater than that of the other two color components. Through the above 
calculation, we can determine the specific name of each class on the greenhouse images. Then we can extract the 
fruit part from the image easily.

The experimental results of ULCRF. In this section, we show experimental results of the ULCRF method. 
In ref.11, a supervised learning method, namely Texton Boost, was applied to calculate the unary potential of CRF. 
To compare the image segmentation qualities between supervised and unsupervised learning method, we have a 
contrast experiment between the ULCRF and Texton Boost. Meanwhile, there are two other common image seg-
mentation methods used for contrast experiments. They are the OTSU method and the Multi-resolution Markov 
Random Field (MRMRF) in the wavelet domain. The comparison of the segmentation results is shown in Fig. 3.

As described in Section 4.2, after getting the segmentation results of the original images, we keep the fruit part 
pixels on the image and set RGB values of other part pixels to be zero to extract the image of fruits. Figure 4 shows 
the fruit image segmentation results of the same original images with Fig. 3.

To demonstrate and compare the segmentation qualities of these methods more apparently, we calculate the 
accuracy of image segmentation and the fruit image segmentation respectively. The accuracy of image segmen-
tation is defined as:

Figure 3. Comparison experiment of image segmentation: (a) the original greenhouse plant images; (b) the 
ground truths of segmentation; (c) Texton Boost; (d) ULCRF; (e) OTSU; (f) MRMRF.
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Acc k
m n( ) (6)seg =

×

where k is the number of pixels that have the same label as the ground truth, m and n are the width and height of 
the image. The unit of measure is pixel. In other words, m × n is the number of pixels on the image.

The accuracy of fruit image segmentation is defined as:

=Acc
l

a (7)fruit
fruit

where lfruit is the number of pixels which have the same fruit label as the ground truth, a is the total number of 
pixels labeled as fruit on the ground truth. The comparison of calculated image segmentation accuracy is shown 
in Table 1.

The comparison of the fruit segmentation accuracy is shown in Table 2.
Since our goal is to obtain the image information of fruits, we calculate the over-segmentation rate and 

under-segmentation rate of the fruit image to further compare the above methods. The rate of over-segmentation 
and under-segmentation are, respectively, defined as follows:

Figure 4. Comparison of fruit image segmentation results: (a) the original images; (b) the ground truths of 
fruit images; (c) Texton Boost; (d) ULCRF; (e) OTSU; (f) MRMRF.
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where Pgt is the number of fruit pixels in the fruit image ground truth, Pover is the number of fruit pixels that exist 
in the fruit image segmentation result but do not exist in the fruit image ground truth, Punder is the number of fruit 
pixels that should but do not exist in the fruit segmentation result. We draw line charts of the over-segmentation 
rates and the under-segmentation rates of fruit image of the above four segmentation methods in Fig. 5.

From the comparison of segmentation results, the accuracy, and the rates of segmentation, the ULCRF method 
is superior to the supervised learning method to some extent. Here we first analyze the results of comparison 

Image 1 Image 2 Image 3 Image 4 Image 5

Texton Boost 0.8040 0.9071 0.5755 0.7616 0.8499

ULCRF 0.9409 0.9367 0.5223 0.7672 0.8132

OTSU 0.7217 0.7335 0.6154 0.6569 0.4818

MRMRF 0.8236 0.8004 0.7835 0.5517 0.7811

Image 6 Image 7 Image 8 Image 9 Image 10

Texton Boost 0.7267 0.7376 0.7359 0.9577 0.7876

ULCRF 0.8890 0.7676 0.8254 0.4272 0.6178

OTSU 0.5617 0.7064 0.4401 0.4309 0.3516

MRMRF 0.6680 0.7867 0.6184 0.4899 0.1408

Table 1. The calculated image segmentation accuracy of comparison experiments.

Image 1 Image 2 Image 3 Image 4 Image 5

Texton Boost 0.5780 0.7126 0.5911 0.4971 0.4673

ULCRF 0.8158 0.8859 0.3694 0.9277 0.9824

OTSU 0.7758 0.4596 0.5249 0.3701 0.5777

MRMRF 0.9803 0.9960 0.8347 0.8170 0.9828

Image 6 Image 7 Image 8 Image 9 Image 10

Texton Boost 0.8059 0.1512 0.5187 0.6956 0.2518

ULCRF 0.9034 0.8543 0.9657 0.9511 0.9736

OTSU 0.4812 0.8119 0.8211 0.7210 0.8100

MRMRF 0.9195 0.9961 0.9087 0.9907 0.9792

Table 2. The fruit segmentation accuracy of comparison experiments.

Figure 5. Segmentation rates of fruit images: (a) over-segmentation rate; (b) under-segmentation rate.
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experiments. In the process of labeling training set for Texton Boost manually, almost on every image, there are 
some regions locate in the shadow of leaves or highlight areas. There are also some objects far away from the lens. 
We cannot exactly determine what they are at all. Note that, the number of labeled images suitable for the training 
set is limited, and the training set is not very accurate. Hence, the calculation of both unary potential and pairwise 
potential of CRF are adversely affected. In addition, pixels with similar characteristics may represent different 
objects on different images, hence the different labels assigned. The supervised learning method cannot obtain a 
model with high recognition of these pixels. For example, the characteristics of unripe fruits and leaves are simi-
lar. However, it can be particularly observed that, for the fruits of high under-segmentation rate of Texton Boost, 
some are misclassified as leaves or backgrounds. Therefore, in cases of complex greenhouse scene, the probability 
distribution obtained through this supervised learning method is not accurate enough.

Although it is impossible for LDA to label every pixel precisely, the statistical method that cluster every pixel 
in the aspect of feature vectors can get a relatively reliable initial labeling result. Subsequently, a more precise seg-
mentation can be obtained through the mean field approximation. It deserves noticing that, we can only extract 
one of the three fruits on the image for the image 3, both the accuracy of image segmentation and that of fruit 
segmentation are not satisfactory. In this image, the difference of light reflection between each fruit is quite large, 
and there is prominent feature difference between them, which affects the feature clustering and the correct cal-
culation of the probability distribution of LDA. For this kind of images, the accuracy of later image segmentation 
can be improved through a simple preprocessing step or a more reasonable way of image collection, such as taking 
images under a shade screen to reduce reflection. Here we take the image 3 under a shade screen in simulation 
through adjusting the intensity, saturation and contrast of this image. Figure 6 shows the segmentation results of 
adjusted images. We select some other images with the same adjustment as contrasts.

Compared with the previous segmentation result in Table 1 and Table 2, the accuracy of image and fruit seg-
mentation increased to 0.5537 and 0.5776 respectively for image 3, which is similar to other contrast methods. 
For other comparison images, the segmentation results are still satisfactory. From the result of fruit segmentation, 
all the ripe fruits have been segmented, which has met the requirement of dynamic yield estimation. We can 
assume that, images taken under a true shade screen should have a much lower level of reflection than the ones we 

Figure 6. Segmentation results of adjusted images: (a) simulated images under shade screen; (b) image 
segmentation results; (c) fruit segmentation results.

Figure 7. The structure of the image pyramid.
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simulated. And differences between several fruits will also be smaller. It is credible that our ULCRF can perform 
better in that circumstance. Since the shade screen is an essential facility to diminish the radiation in greenhouse, 
it is feasible to take images under it. Thus our method has an advantage as it is applicable in segmenting green-
house images.

From the running time, the average execution time for ULCRF is 95.45 s. For Texton Boost, the training pro-
cedure takes 50 minutes for 700 rounds on the training set of 45 images. The average execution time for Texton 
Boost to segment an image is 125.07 s. Therefore, the supervised learning method has no advantage in running 
time.

For the other two contrast experiments of the OTSU and the MRMRF, it is obvious that these two methods are 
not applicable in segmenting the greenhouse plant images. The OTSU method segment images into a few classes 
through setting thresholds. Obviously, it is not suitable to process the complex plant images only through setting 
thresholds. As for the MRMRF, the features are obtained by wavelet transform on the RGB components of pixels. 
Although the wavelet transform was carried out under multiresolution condition to get more features from the 
images, it is not enough to describe the complicated greenhouse plant features merely based on the RGB color 
components of the image. Our feature vectors described in Section 4.1 have shown the advantages here.

Through qualitatively and quantitatively analyzing comparison experiments, ULCRF is an efficient way to 
segment greenhouse plant images in terms of the quality of training set and running time.

Multi-resolution modeling and image pyramid. As described in Section 3, we generated an image 
pyramid to obtain more image features and reflect the diversity of features in different cultivation periods. The 
original image consisting of 200 × 300 pixels is down-sampled twice in the x and y directions to get two layers of 
images, their sizes are 100 × 150 pixels and 50 × 75 pixels respectively. Each layer of image is convolved with the 
filter bank mentioned in Section 4.1 to obtain the feature expression. The structure of image pyramid is shown 
in Fig. 7.

Figure 8. Contrast experiment of the image segmentation: (a) the original images; (b) the ground truths; (c) 
ULCRF; (d) MR-ULCRF; (e) OTSU; (f) MRMRF.
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After obtaining the image pyramid, the image segmentation process is carried out through the MR-ULCRF 
described in Section 3. We can obtain the segmentation result of the image at the bottom layer (original image).

The experiment results of MR-ULCRF. In this section, we show the segmentation results of the 
MR-ULCRF method. In contrast, we perform the ULCRF approach on single-layer images to get the segmenta-
tion results. Moreover, we employ the other methods (e.g., OTSU and MRMRF) for the purpose of comparison. 
The experiment results obtained by all these approaches are shown in Fig. 8.

After getting the segmentation of original images, we extract the component of fruits in each image. The seg-
mentation results of fruit images are shown in Fig. 9.

Figure 9. Comparison of fruit image segmentation results: (a) original images; (b) ground truths of fruit 
images; (c) ULCRF; (d) MR-ULCRF; (e) OTSU; (f) MRMRF.

Image 1 Image 2 Image 3 Image 4 Image 5

ULCRF 0.6980 0.9409 0.9367 0.8132 0.9244

MR-ULCRF 0.9597 0.9300 0.8136 0.8949 0.9669

OTSU 0.6526 0.7217 0.7335 0.4818 0.4656

MRMRF 0.3123 0.8236 0.8004 0.7811 0.4896

Image 6 Image 7 Image 8 Image 9

ULCRF 0.8254 0.5631 0.4685 0.6178

MR-ULCRF 0.6577 0.7936 0.7447 0.8330

OTSU 0.4401 0.7094 0.5481 0.3516

MRMRF 0.6184 0.6826 0.2545 0.1408

Table 3. Comparison of image segmentation accuracy.
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We calculated the image segmentation accuracy, the fruit image segmentation accuracy, and the fruit 
over-segmentation and under-segmentation rates described in Section 4.3. Table 3 shows the comparison of 
image segmentation accuracy on these methods.

The comparison of fruit segmentation accuracy is shown in Table 4.
The line charts of over-segmentation and under-segmentation rates are shown in Fig. 10.
The average total execution time for ULCRF is 94.45 s, while it is 64.89 s for MR-ULCRF. For multi-resolution 

method, the processing speed of low resolution images is faster, and the total running time is less. To compare 
the segmentation results, the accuracy, and the segmentation rates, there is little difference between the results 
of fruit image segmentation obtained by methods ULCRF and MR-ULCRF. But there are some differences in 
the segmentation accuracy of the entire image. For the MR-ULCRF, the segmentation results of the upper layer 
image have a significant influence on the segmentation results of the next layer, and the final results are influenced 
through iterating segmentation result layer by layer. Before fruits ripening, they distribute loosely, or the num-
ber of these fruits is small. Also, some of them are green or not red enough. When the resolution is reduced, the 
differences between fruits and other objects are not obvious. Thus, the segmentation results of ULCRF is a little 
better than the MR-ULCRF under these circumstances. For example, in the image 2, image 3 and image 6, the 
MR-ULCRF have mislabeled part of the green fruits to the class of leaves, or mislabeled pipelines and stems to 
the class of fruits, their over-segmentation or under-segmentation rates are also a little higher. This is because the 
differences between unripen fruits and leaves or some other facilities are not obvious in the low-resolution image. 
It is observed that some cases of mislabeling occur on the initial scale of the image pyramid, resulting in the 
decrease of the final image segmentation accuracy. Note that, the fruits occupy more regions on the image, and 
they appear redder in the middle and the late periods of fruit growth. In these periods, the main cause of mislabe-
ling is the highlight and shadow areas on the image due to the uneven illumination and light reflection. It can be 
well solved in a low-resolution image, thanks to the insensitive recognition of the objects with unobvious feature 
differences. For example, in the image 1 and image 5, the segmentation results of all kinds of objects obtained by 
MR-ULCRF have almost no difference from the ground truths. This method also shows better performance on 
segmenting the same class of objects with large difference of distance to the lens, such as the segmentation results 
of image 1, image 7 and image 8. Because for the same objects with different distances to the lens, the difference 

Figure 10. Segmentation rates of fruit images: (a) over-segmentation rates; (b) under-segmentation rates.

Image 1 Image 2 Image 3 Image 4 Image 5

ULCRF 0.9674 0.8241 0.8859 0.9824 0.9889

MR-ULCRF 0.9419 0.7706 0.7797 0.9062 0.9497

OTSU 0.7004 0.7758 0.4596 0.5777 0.8967

MRMRF 0.6158 0.9803 0.9960 0.9828 0.9598

Image 6 Image 7 Image 8 Image 9

ULCRF 0.9657 0.9817 0.9998 0.9736

MR-ULCRF 0.9962 0.9493 0.9993 0.9547

OTSU 0.8211 0.6554 0.5850 0.8100

MRMRF 0.9087 0.9944 0.9996 0.9792

Table 4. Comparison of fruit segmentation accuracy.
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of their features is smaller than that with other objects in a low-resolution image. For these kinds of pictures, the 
MR-ULCRF can improve the accuracy of image segmentation.

For the approaches OTSU and MRMRF, the segmentation results obtained are still not satisfying. Since their 
shortcomings have been discussed in Section 4.2, we do not describe more here.

According to the above analyses, we can conclude that, at the early stage of growth, fruits are not red enough 
and distribute loosely. The single-layer image segmentation method ULCRF can obtain more accurate segmen-
tation results for the greenhouse plant images. However, as fruits mature gradually and distribute closely at the 
middle and late fruit period, the MR-ULCRF can segment images with a high accuracy.

Conclusions
In this study, we proposed a modified statistical model of CRF, namely ULCRF, to segment greenhouse plant 
images. Through our experiments in different cases, some conclusions are drawn as follows.

 (1) Commonly, there are many highlight and shadow areas on plant images, and some of the regions on the 
images cannot be distinguished accurately, which cause difficulties in analyzing these images. For example, 
supervised learning from the inaccurate labeled images of training set leads to a model with low recog-
nition. In view of these complicated scenes of plant image in the greenhouse, we apply the unsupervised 
learning topic model LDA to calculate the unary potential as the initial label of CRF. The initial clustering 
of image features is carried out by the probability statistical model. And a more preferable rough classifi-
cation result is obtained than that of manual labeling training. Through the Dense CRF algorithm, we can 
obtain a more precise segmentation result of the image. Experiments show that this method can obtain a 
better segmentation result than the supervised learning method.

 (2) At different cultivation period, fruits have different colors, shapes and distribution densities. As the fruits 
grow gradually, they are more distinct from other objects in some periods. As a result, the misclassification 
is mainly caused by interference of highlight and shadow regions, which result in the differences between 
the same objects in the greenhouse. In these regards, we propose a multi-resolution image segmentation 
method. Since the image feature information is obtained at different resolutions, it is hard to distinguish 
the same kind of objects with some feature differences in the original image of low-resolution. Thus, these 
objects will not be divided into different categories, which can reduce the possibility of mislabeling. The 
proposed method can improve the image segmentation accuracy to a certain extent in the case of a dense 
and lush distribution of fruits on the image.
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