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A machine learning approach for 
automated assessment of retinal 
vasculature in the oxygen induced 
retinopathy model
Javier Mazzaferri   1, Bruno Larrivée1,2, Bertan Cakir   3, Przemyslaw Sapieha1,2,4 & Santiago 
Costantino   1,2

Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies 
in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular 
regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that 
highlight the vascular network. Such manual measurements are time-consuming and hampered by user 
variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning 
approach to segment and characterize vascular tufts, delineate the whole vasculature network, and 
identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique 
uses a simple machine learning method and morphological analysis to provide reliable computations 
of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. 
We demonstrate the high degree of error and variability of manual segmentations, and designed, 
coded, and implemented a set of algorithms to perform this task in a fully automated manner. We 
benchmark and validate the results of our analysis pipeline using the consensus of several manually 
curated segmentations using commonly used computer tools. The source code of our implementation 
is released under version 3 of the GNU General Public License (https://www.mathworks.com/
matlabcentral/fileexchange/65699-javimazzaf-qurva).

The oxygen induced retinopathy (OIR) model is the gold standard preclinical model for research in ocular vas-
cular pathologies and is one of the most widely cited disease models in ophthalmology and vascular biology 
research1,2. Modelled on retinopathy of prematurity, it is now also widely used3 to gain insight on several retinal 
diseases characterized by hypoxia or inflammation-driven angiogenesis4 such as neovascular age-related macular 
degeneration5 and proliferative diabetic retinopathy6,7 that collectively make-up the leading causes of blindness 
in North America8. The successful demonstration of the role of VEGF in vivo in the pathogenesis of retinal neo-
vascularization9 and its use for screening anti-angiogenic paradigms has also made this model a critical tool for 
drug development10,11.

In the OIR model, mouse pups are exposed to high oxygen from postnatal day 7 (P7) to 12 (P12). During this 
time, immature vessels in the central retina degenerate, yielding central ischemic zones. When mice are returned 
to room oxygen, the metabolic demand of the retina senses a relative hypoxia and trigger a process ultimately 
culminating in pathological pre-retinal angiogenesis12.

Currently, the OIR model can be considered a medium throughput model, largely limited by the cumbersome 
quantification methods. The severity of the oxygen-induced retinopathy is scored by the number of preretinal 
tufts and the size of avascular zones that can be observed on flat mount retinal preparations. This critical task 
is performed manually, therefore yielding highly subjective results; an unbiased reliable methodology is thus 
required. To the best of our knowledge13 there is currently only one published tool designed to detect retinal 
vascular tufts and quantify the degree of vascular obliteration/regeneration in retinal flat mounts14. SWIFT_NV 
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detects tufts based on fluorescence intensity thresholds determined manually by the user. It is a very practical tool 
to accelerate the procedure of manually curating flat mount fluorescence microscopy mosaics. Rather than an 
unbiased quantification methodology, this ImageJ15 macro helps users delineate tufts in a semi-automated way, 
but it may lead to inter-user variability.

Here we present a novel fully automated and unbiased algorithm to score the mouse OIR model. Our quantitative 
retinal vascular assessment (QuRVA) technique uses a simple machine learning approach and morphological analysis 
to provide reliable computations of vascular density, avascular zones and pathological vascular tuft regions, devoid of 
user intervention within seconds. Our implementation of QuRVA is offered free of charge for academic research.

Results
Identification of retinal tufts.  The abnormal vessel growth leading to cystic retinal tufts can adopt highly 
variable shapes and sizes. Therefore, recognizing tufts in retinal flat mounts can readily result in user discrepancy. 
To assess this, we first showed images displaying different levels of severity and image quality to six scientists 
who routinely curate OIR samples. To produce manual segmentations, we selected 14 images (Supplementary 
Information, Fig. S1) that were presented sequentially to these independent evaluators who were asked to deline-
ate tufts manually. The evaluators segmented images directly on the touch screen of a tablet computer (Samsung 
Galaxy Note 10.1, Model SM-P600), using a stylus pen and the digital zoom to adjust the resolution as needed. 
Traces were drawn using pre-set colors and analyzed to extract individual manual segmentations.

An example of one of the images analyzed by the experts is shown in Fig. 1A, where a different color was 
assigned to each evaluator tracing and consensus pixels are displayed in white. Such consensus regions are defined 
using a majority criterion, i.e. pixels selected as tuft regions by at least four among the six evaluators. We defined 
as ground truth the pixels that belong to this consensus; thereby pixels shown in color represent false positive 
(non-consensual) segmentations made by evaluators.

To further quantify inter-user variability, we calculated the total number of false positive and false negative 
pixels for every one of the images that were manually segmented. The magnitude of the relative error made by the 
experts is presented in Fig. 1B, showing that adding together false positive and false negative pixels, the median of 
the distribution of relative errors is 120%.

Automatic segmentation of preretinal vascular tufts.  The remarkable disagreement among evaluators sug-
gests a lack of a clear image-based definition of retinal tufts. Nonetheless, a visual inspection of the images side-by-side 
with the evaluator’s consensus, reveal cues that can be used for automatic segmentation. In fact, tufts regions are typi-
cally brighter, larger structures and thicker than normal vessels, with different texture. However, each of these features 
individually does not consistently identify tufts, as some tufts are not brighter than normal vasculature, their shape can 
occasionally be similar to normal vessels, and the identification of distinct texture patterns is not evident.

In order to further explore these characteristics, we computed a number of image features and compared their 
statistical distributions in and out of consensually designated tuft regions. We divided images in small square 
regions of side 1% of the diameter of the flattened retina (Φretina) and we computed features within them. In Fig. 2 
we show five features that significantly differ in tufts and normal vasculature regions.

Among the features most likely to differentiate regions, we used the following five (see details in Materials and 
Methods):

	(1)	 the average intensity of pixels, normalized in a local neighbourhood, Iloc.
	(2)	 the average intensity normalized globally to the whole image range, Ig.
	(3)	 the average intensity after a band-pass frequency filter normalized globally, ILoG.
	(4)	 and two local binary patterns for characterizing texture16,17:
	(5)	 LBP0, which describes regions of relatively homogeneous intensity.
	(6)	 and LBP9, which includes all features that cannot be described as edges.

Figure 1.  Retinal tufts. (A) Left: Tufts in a mouse retina where insets zoom in tuft (yellow) and normal (cyan) 
regions of the retina. Right: Manual segmentation of tufts where each color indicates a different evaluator, and 
the consensus is displayed in white. (B) Relative error of manual segmentation, defined as the number of false 
positive plus false negative pixels, using the consensus as ground truth. It is presented as a percentage of the 
consensus pixels per image. The median error throughout users and images is 120%. Vertical scale has been 
truncated for better visibility and some bars are not fully shown.
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We have combined these features to classify regions (Fig. 2B) as tufts or normal tissue using Quadratic 
Discriminant Analysis (QDA), a supervised machine learning approach18,19. We first trained the classifier using 
images where tufts have been manually annotated (we used the consensual regions), and used the trained model 
to identify diseased regions in new images. For training, square regions were considered diseased when more 
than 25% of their pixels belonged to the consensus. Both for training and prediction, we restricted our analysis to 
an annular area with inner and outer diameters of 0.2 × Φretina and 0.8 × Φretina respectively, centered on the optic 
nerve head (Fig. 3A, yellow shade), to avoid considering the central region and the edges of the sample.

The training step determines the parameters of a 5D multivariate conic section (ellipse, parabola, or hyper-
bola) that separates the 5D descriptor space in regions associated to each of the two classes (tuft or normal) by 
minimizing the expected classification cost.

As mentioned before, tufts are typically identified as structures standing out from the background that are 
thicker, and often brighter, than normal vessels. However, the described QDA model alone recurrently mistakes 

Figure 2.  Statistical distribution of features used to describe retinal tufts. (A) Flat mounted mouse retina 
stained with lectin (red), where the consensual tuft areas are enhanced in magenta. (B) Zoom in the square area 
in (A) depicting the subdivision in small squares (1% of Φretina). (C) Violin plots illustrating the distribution 
of several features computed within the small square regions depicted in (B) Iloc, Ig, and ILoG are normalized 
quantities, and LBP0 and LBP9 are the fraction of pixels with code 0 and 9 within each region, respectively. 
We only display features presenting a significant difference between tuft and normal regions. All features are 
expressed in arbitrary units, and for each one, the similarity between distributions is expressed as the absolute 
difference between medians normalized by the standard deviation of the values of normal vessels. All of them 
differ more than one standard deviation.
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regions with bright vessels for tufts, yielding a large number of false positives. In order to further refine the seg-
mentation, we implemented an additional validation step. Building on the idea that tuft structures are thicker 
than normal vessels, we compute the fraction of pixels above the local background within a square neighbour-
hood around each pixel of the image. Only pixels previously identified by QDA, where this fraction exceeds 80%, 
are kept as tufts, thereby removing most false positive regions. In section 3.5 we describe the computation of the 
local background in detail.

For evaluating the method we divided the 14-image set in two groups. We analyzed the first seven images 
using a classifier trained with the last seven images, and similarly we analyzed the last seven images using a clas-
sifier trained with the first seven images. In Fig. 3B we show the results from a sample image (Fig. 3A), where we 
indicate agreement with the consensus of manual segmentations.

We compared the performance of the automatic segmentation to manual and SWIFT_NV. Since results 
obtained with SWIFT_NV are user-dependant, we asked the same group of manual evaluators of Fig. 1, to also 
segment the image set using SWIFT_NV. Therefore, we compared the performance of the automatic segmenta-
tion with the 12 other evaluations, 6 manual segmentations and 6 SWIFT_NV segmentations. In Fig. 3C we show 
the total error (false positive plus false negative pixels) expressed as a percentage of the consensus pixels, for each 
image, grouped by user. As we pointed out, the observed large errors for manual segmentations reveal the lack of 
precise criteria defining retinal tufts. The automatic segmentation also yields high errors but it is free from inter 
and intra-subject bias. Additionally, observing the median segmentation error across images (black arrows in 
Fig. 3C), our automatic method show lower errors than three of the six manual segmentations.

Figure 3.  Segmentation performance of QuRVA. (A) Original image of a lectin-stained flat-mounted retina, 
where the region considered for analysis is enhanced in yellow. (B) QuRVA segmentation overlapped with 
original image indicating agreement and disagreement with manual segmentation consensus. (C) Relative error 
of all methods grouped by user. The total error is defined as the number of false positive plus false negative 
pixels, using the consensus as ground truth, and displayed as a percentage of the consensus pixels per image. 
The median relative error across images for each method is indicated with a black arrow. The median error 
of QuRVA is better than three of the six manual segmentations and is better than all swift segmentations, 
independently of the operator. The vertical scale has been adjusted to fully fit 97% of the bars in the plot. (D) 
Correlation between Tufts areas computed by SWIFT_NV and QuRVA, normalized by the whole retina area 
(RA) from a set of 272 C57BL/6 J OIR images. For this computation, the image set used to train the model was 
enlarged by adding 50 images segmented with SWIFT_NV by only one user to the original set of 14 images. 
Pearson correlation coefficient is R = 0.79 (p = 10−50). The inset describes the fit results where both the slope 
(m) and the y-intercept (b) are displayed along with the 95% confidence range.
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We compared the performance of QuRVA with SWIFT_NV, which is currently the gold standard for segment-
ing and measuring retinal tufts, by computing the correlation between areas segmented by both methods on a 
database of 232 images. These results are shown in Fig. 3B, consisting of a linear fit (slope = 0.88 +/− 0.09) and a 
Pearson correlation coefficient of 0.79 (p = 10−50) that demonstrate highly consistent results.

Analysis of vascular network density.  The segmentation of vessels throughout the retina was obtained 
using the Bradley’s adaptive thresholding method20. This adaptive intensity thresholding method was used to 
overcome uneven illumination in different regions of the sample, and allowed accurate delineation of the full 
vascular network in a computationally efficient fashion. This very fine examination of image intensity yields 
a high-density vascular network, which can be skeletonized to obtain detailed quantitative parameters as the 
number of branching points and the total length of the retinal vasculature. We display in Fig. 4 low (A) and high 
(B) magnification images of the vessel network segmentation, where the vessels’ skeleton is shown in yellow and 
branching points in red.

An exhaustive manual validation of automatically obtained results is unrealistic, since segmenting the whole 
vasculature by hand would require an enormous amount of time. As a reasonable compromise, we asked two 
evaluators to pinpoint all branching points of the vascular network on small regions of the retina, and compared 
this to the automatic segmentation. We subdivided the same 14 images we used before in small square regions 
of only 10% of the retinal diameter (Φretina), from which we selected 16 regions randomly for manual assessment. 
Evaluators used a graphical user interface that allowed mouse clicking on top of branching points of each image 
to retrieve their number and locations (Fig. 5D). These counts are well correlated with the branching points 
detected by the automatic algorithm (Pearson coefficient 0.84, Fig. 5C). It is important to note that despite a high 
correlation, manual segmentations systematically underestimate the total number of branching points. A careful 
inspection of the results allows us to suggest that this is due to a different estimation of the local intensity thresh-
old for detecting vessels. The algorithm detects and analyses dim vessels that human evaluators tend to disregard, 
yielding different total counts.

Additionally, we studied certain descriptors of the vascular network from data already published21 that were 
originally assessed manually. The original study compared retinal vascular development in mice with neuropilin-1 
deficient myeloid cells and genetically matched controls (LysM-Cre and LysM-Cre Nrp1fl/fl) as well as wild type 
animals from P2 to P7. We reanalyzed these raw images with the automated method and compared the outcome 
to their manual estimations. The original study computed the percentage of the retinal area that is vascularized 
(vascular area). Instead, we computed the vasculature skeleton length obtained with the automatic algorithm and 
showed it follows the same progression with age than the vascularized area (see Fig. 5A). Indeed, the QuRVA 
vascular length and the manually computed vascular area are highly correlated (Pearson coefficient of 0.98, see 
Fig. 5B).

Assessment of avascular zones.  Avascular retinal zones are regions devoid of vessels, but this definition 
depends on details of healthy vascular density and the visibility of small capillaries. We restricted our analysis to 
avascular zones in a circular region of diameter 0.6 × Φretina centered on the optic nerve, as depicted in Fig. 6A, 
although this parameter can easily be adjusted by the user.

For delineating avascular zones, we first smoothed the vasculature skeleton using a Gaussian kernel with 
standard deviation Φretina/250 to discard small details, and then binarized the image using a Bradley threshold. 
The resulting 8-pixel connected background objects correspond to all avascular areas, and are displayed in Fig. 6A 
for illustration, labeled in different randomly-assigned colors to facilitate visualization.

For each pixel of these avascular objects, we calculated the Euclidean distance to the closest vessel skeleton 
pixel (see Fig. 6B, where distance has been color coded in a grayscale), and then computed the maximum distance 

Figure 4.  Automatic delineation of vascular network. (A) Vascular network skeleton (yellow) superimposed 
to the image of the whole retina. Branching points are depicted as red squares. (B) Magnified image of region 
indicated with a white square in panel A.
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value for each one of these objects. We kept objects with maximum distance larger than 1% of Φretina (see areas 
delimited with a cyan line in Fig. 6B). The avascular zone was finally defined as the union of these large avascular 
objects followed by a series of morphological operations for discarding small details (see Fig. 6C). All the hard-
coded parameters, including the percentages of Φretina mentioned above, can be easily modified in the parameters 
file of the code to adapt it to the user images.

For validating this segmentation, 6 evaluators segmented manually the avascular zones on the same set of 14 
images using a tablet computer and a stylus pen as described before. Pixels were defined as ground truth if at least 
4 evaluators annotated them as belonging to an avascular zone. In Fig. 6D we show the fraction of the retinal area 
that belongs to the avascular zones for each image and user. For the vast majority of the images the area computed 
with QuRVA lies within 1 standard deviation around the median value of manual evaluations.

We finally computed the fraction of false positive plus false negative pixels respect to the ground truth for each 
image and for each evaluator (see Fig. 6E). This shows that the total error made by QuRVA is very similar to that 
of manual segmentation.

Methods
Sample preparation.  OIR was performed as described by Dejda et al.21. Briefly, mouse pups were exposed to 75% 
O2 from P7 to P12. Pups were then exposed to room air for an additional 5 days. Eyes were collected at P17, fixed with 
4% paraformaldehyde for 30 minutes and retinas were subsequently dissected. For visualization of retinal vasculature, 
dissected retinas were flatmounted and stained overnight with Alexa488-labeled Griffonia (Bandeiraea) Simplicifolia 
Lectin I (Life Technologies). Mosaic images from mounted retinas were acquired using an epifluorescence. It should be 
noted that this marker is known to also label microglia and other mononuclear phagocytes, although this does not sig-
nificantly augment the amount of staining. In any case, the interested reader could train the machine-learning software 
presented here, which is offered as open source, using images labeled with any other vasculature marker.

Image features.  We have explored several features for machine learning classification, and we have chosen 
5 as the ones that yielded the best segmentation.

Figure 5.  Validation of vasculature segmentation. (A) Segmentation of vasculature branching points, Manual 
segmentation is indicated with green circles, and automatic segmentation with yellow ones. (B) Correlation 
of manual versus automatic segmentation of branching points. Pearson’s coefficient is 0.84 with p < 0.001. 
(C) Progression of retinal fraction consisting of skeleton pixels versus age for three mutants. This fraction 
evolves analogously to the fraction of vascularized area21 as expected. (D) Correlation between skeleton pixels 
(automatic segmentation) and vascularized area (manually computed). Pearson’s coefficient is 0.98.
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We have used local binary patterns to quantify image texture. A detailed explanation of this technique can be 
found elsewhere22, but here we make a brief conceptual description. Considering a pixel at the center of a circle 

Figure 6.  Computation of avascular zones. (A) Vasculature skeleton and avascular regions, defined as 
8-connected background objects within the circular region of interest (red circle), displayed in random colours 
for better visibility. (B) Grey-scale-coded distance to the closest skeleton pixel. Cyan contours indicate regions 
enclosing pixels which maximal distance to the skeleton is larger than 1% of Φretina. Remaining avascular regions 
are contoured in red. (C) Resulting avascular region overlapped with original image. (D) Avascular area computed 
by QuRVA (red) and manual segmentations (shades of green), for each image of the image set. Note that the value 
of the automatic algorithm lies within the range of manual segmentations for the vast majority of the images. 
(E) Percent fraction of retinal pixels that are either false positive or false negative, according to the consensus of 
manual evaluators, for all images and grouped by user. Arrows indicate the median value across images for each 
evaluator, and the dashed red line indicates the median error for QuRVA, which is similar to manuals.
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(see Fig. 7), the intensity of surrounding pixels (Pi) placed along the circumference of radius R, is compared to the 
intensity of the central pixel (Pc), and a binary pattern is defined as = ∑ − −=

−C H P P U( )2i
P

i c
i

0
1 , where the sum 

goes over the surrounding pixels, H denotes the Heaviside step function, and U is used as a threshold to ignore 
small differences. We set P = 8, therefore C can take values in the range [0, 28]. We grouped them in 10 categories, 
the rotational invariant edge-like patterns C0–8 (Fig. 7) and C9, which includes the remaining (more irregular) 
patterns. After computing these descriptors every pixel is assigned a code Cn. We define the feature LBPn in a 
region as the fraction of pixels assigned code Cn.

Features 4 and 5. Local binary patterns LBP0 and LBP9. These are the LBPs that present the largest differ-
ences between tufts and normal vasculature. This can be interpreted by observing patterns C0 to C8 in Fig. 7 
and the characteristic textures depicted in the insets of Fig. 1, for tuft and normal regions. Patterns with 
codes C1 to C7 describe edges of various curvatures, which may be present, but not specifically, within either 
of these textures. Code C0, which describes homogeneous patterns, is more frequent in normal vasculature 
regions since the image background is approximately homogeneous, yielding high LBP0 values. Finally the 
kind of texture in the tuft regions can be described as heterogeneities that are not exclusively edges. These 
structures are more likely to be described by patterns not depicted in Fig. 7, which are labeled with code C9, 
rendering higher values of LBP9.

Bradley thresholding.  In this algorithm each pixel is compared to an average of neighboring pixels. A small 
square of surrounding pixels is used to determine the local threshold. The size of this moving region used to com-
pare the intensity, was set to 1/50th of the flat mount diameter.

Quadratic Discriminant Analysis (QDA).  As other supervised machine learning approaches, QDA uses 
a training set of N observations xn, pre-classified in k classes, where each xn is an array of features describing the 
particular observation n, to build a classification model. The model is later used to predict the class of a new 
observation x. The QDA model divides the observations space in regions, each one associated to a single class, 
using conic sections (ellipses, hyperbolas, or parabolas) as region limits.

It assumes the data has a Gaussian mixture distribution, where each class corresponds to a component of the 
mix. The model is constructed by computing the mean ˆkμ  and covariance Σ̂k for each class. The class mean is 
computed as

μ = ∑
∑
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where Mnk is the membership matrix that equals 1 if xn is in class k and 0 otherwise. The unbiased estimate of the 
covariance matrix is computed as
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Figure 7.  Local binary patterns. The intensity relation between a central pixel “c” and the pixels at a fixed 
distance R, labeled 0 to P, is characterized by a code initially computed as = ∑ − −=

−C H P P U( )2i
P

i c
i

0
1 . U 

denotes the minimal value of the intensity difference to be considered significant, and H denotes the Heaviside 
step function. An additional classification of features is implemented by mapping the initial codes to a reduced 
code set. As an example, the particular pattern on the left is characterized by the value 210 = 0 × 20 + 1 × 21 +  
0 × 22 + 0 × 23 + 1 × 24 + 0 × 25 + 1 × 26 + 1 × 27. We implemented a simplified scheme of patterns where only 
uniform patterns are considered, and simple rotations of patterns are assigned a unique code. On the right, we 
show the simplified scheme used in this work, where all remaining patterns are assigned the value 9.
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where ˆ |P k x( ) is the posterior probability that observation x belongs to class k, and C(y|k) is the cost of classifying 
and observation as y when its true class is k. In our case it is simply 0 for y = k and 1 otherwise. The posterior 
probability is defined as

ˆ | =
|P k x P x k P k
P x

( ) ( ) ( )
( )

,
(8)

where P(x) is the prior probability of class k, empirically estimated as the fraction of observations of class k in the 
training set, P(x) is a normalization constant computed as the sum over k of P(x|k)P(k), and P(x|k) is the density 
function of the multivariate normal distribution with mean μk and covariance Σk at a point x, defined as

π
μ μ| =

|Σ |
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− − Σ −
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−P x k x x( ) 1
(2 )
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T

k k1/2
1

where kΣ  is the determinant of Σk, and Σ−
k

1 is the inverse matrix.

Local background calculation.  The background intensity of the flat mount retinal mosaics display sig-
nificant spatial fluctuations due to several factors such as variations of sample thickness, uneven staining, out of 
focus areas, local photobleaching from previous imaging, or stitching artifacts. Therefore, a robust estimation of 
the local background is key to accurately reveal the vasculature details.

For this, we first rescale the intensity range linearly so that the bottom 1% and the top 1% of all pixel values 
become saturated. Values are then binned using 10 equally spaced levels to avoid considering small fluctuations 
in the calculation. All 8-connected pixels with uniform values surrounded by higher intensity pixels are identi-
fied as local minima. The pixels on each connected object are assigned a weight proportional to the object area, 
so that larger uniform areas are favoured over smaller minima. Finally, at each pixel the weighted mean (Ib) and 
standard deviation (σb) of the image values are computed within a circular region with diameter 7% of Φretina. In 
order to reduce the impact of outliers in this calculation, pixels beyond 3σb off Ib were excluded from a refined 
computation of Ib and σb. The final background image is set as Ib + 3σb, and pixels far from connected minima are 
estimated using cubic interpolation.

Animals.  All studies were performed according to the Association for Research in Vision and Ophthalmology 
(ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research. The studies described in 3.1 
were approved by the Animal Care Committee of the University of Montreal in agreement with the guidelines 
established by the Canadian Council on Animal Care. Flat mounted image mosaics used to generate Fig. 3D, 
were obtained by methods approved by the Institutional Animal Care and Use Committee at Boston Children’s 
Hospital.

Data availability.  The source code of QuRVA implementation is released under version 3 of the GNU 
General Public License and is available in the Mathworks’ Fileexchange repository, https://www.mathworks.com/
matlabcentral/fileexchange/65699-javimazzaf-qurva.

Flat mount delineation.  Our algorithm is initialized with the determination of the retinal region. To com-
pute this original binary mask, we smooth the image using a Gaussian filter with a standard deviation of 2.5% of 
the image size, and we binarize it using as threshold the minimal value of the image histogram between the two 
highest peaks. The retinal mask is obtained by morphologically filling the holes and keeping the biggest binary 
object. The user can optimize the mask by modifying the size of the smoothing Gaussian and the threshold value 
according to the characteristics of the input image set.

Discussion
Images of flat-mounted retinas are widely used to study several aspects of the vascular development. The vast 
majority of studies are based on manual segmentation of tufts and vasculature descriptors, such as avascular 
zones, vessel branching points or tip cell filopodia23,24. Our results demonstrate an impressive degree of variabil-
ity of the manual assessment of retinal tufts, posing a challenge to data reproducibility. Manual segmentation of 
tufts is not only tedious and time-consuming, but this inconsistency we showed makes the analysis highly prone 
to bias. The automated segmentation method based on machine learning that we present (QuRVA) is devoid of 
subjectivity and permits analyzing large image databases thereby increasing statistical significance.

Careful inspection of evaluators’ consensus regions yielded no evident pattern that allowed us to unequiv-
ocally distinguish preretinal tufts from healthy vasculature. The tortuous 3-dimensional shapes that growing 
pathological vessels display are highly diverse. Furthermore, their 2-dimensional projections in fluorescence 
microscopy images added to variable perfusion and diffusion of fluorescent probes in flat-mount preparation add 
an extra level of complexity and variability that hamper a straightforward identification. Although certain char-
acteristics are common to unhealthy growth, features like brightness or thickness are not enough to discriminate 
between tufts and normal tissue. A supervised machine learning approach optimizes how independent image 
features should be combined for successful discrimination.

We have chosen a set of features with clear and intuitive interpretation for image classification. The intensity, 
normalized in different ways, revisits the basic concept used in SWIFT_NV and is the most obvious parameter. 
A frequency filter that enhances thick and globular structures in the vasculature, consistent with the 3D topology 
of tufts. Local binary patterns characterize texture, understood as intensity changes in the local vicinity of each 
pixel. LBP0, and LBP9 represent relatively homogeneous textures and patterns that cannot be described as edges, 
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respectively. This list is far from exhaustive and a different set of features can be conceived in future version for 
better, more accurate results. In our hands, the use of convolutional neural networks did not yield better segmen-
tations, probably due to the size of our training image set, but there is certainly room for improvement with this 
approach.

The high variability observed between users complicates the definition of ground truth for supervised learn-
ing. The creation of a larger database of annotated images would certainly be of great use for ameliorating the 
current results. Careful analysis of curated images suggests that several regions were simply omitted by certain 
users and that their attention decreased as more images were inspected. Different seasoned evaluators seemed to 
search for different characteristics, although they routinely deal with flat mount preparations for analysis, and we 
could not detect a correlation neither with their training nor with their experience. A communal effort to assem-
ble a larger collection of segmented images generated in laboratories around the world to advance this possibility 
would thus be of high value.

The performance of QuRVA’s tuft segmentation compared to the evaluator consensus as ground truth is satis-
factory. The distribution of false pixels obtained with the automated method is as good as manual segmentations, 
with the obvious gain in time and objectivity. QuRVA systematically yields the smallest errors in segmentation 
when compared with other methods that are solely based on globally normalized image brightness.

The approach we have adopted for vascular segmentation is straightforward, and provides rich information 
about the vascular network of the retina. Beyond classically evaluated parameters in OIR such as vascular tuft-
ing and vaso-obliterated areas, additional features like branching points and vasculature length can be easily 
computed from the vascular skeleton. Other informative descriptors such as the spatial uniformity and isotropy 
of branching points, or the average inter-vessel distance can be obtained. Indeed, a large number of vasculature 
descriptors can be used and explored to characterize vascular growth and health, such as vessel thickness or tor-
tuosity as both local and global parameters. We believe QuRVA has the potential to reliably expedite the analysis 
of retinal vascular health in mouse models of OIR and thus help gain valuable mechanistic and therapeutic insight 
on retinal angiogenesis.

Since a thorough comparison with manual segmentation of the vasculature is prohibitive due to the enor-
mous time it would require, we validated our results using two indirect approaches. We correlated the number of 
branching points computed from QuRVA vasculature skeleton with manual counts performed by two evaluators 
at a reduced scale. The correlation is highly significant (Pearson’s coefficient is 0.82 with p < 0.001), suggesting the 
automatic method is consistent with specialists’ observations. Despite this high correlation, there is a difference 
in the total number of branching points detected, since QuRVA systematically finds more points than users. This 
difference arises from the thresholding algorithm that we used to segment the vasculature; humans tend to con-
sider only the brightest vessels whereas QuRVA finds dimmer structures too, thereby rendering a more complex 
vascular ramification.

We have also revisited data from a previously published paper and re-analyzed it with QuRVA. In this case, 
we correlated the length of the vasculature skeleton with the vascular area, which was manually estimated in the 
publication. The correlation is also very high (Pearson’s coefficient is 0.98), bolstering the reliability of QuRVA 
segmentation of the vascular network.

We have used the detailed segmentation of the vasculature to compute and measure avascular regions. This is 
another typical measurement obtained from flat-mount images, and it is almost always computed manually. In 
this case, manual segmentations are highly consistent and do not necessarily display great user disagreement. We 
have created a strict mathematical definition of a concept that is rather intuitive, and implemented this method 
in QuRVA. We classified as avascular regions, areas whose distance to the closest vessel is larger than 1% of the 
characteristic size of the retina. Although this criterion seems to agree with users’ delineations, we understand it 
is not based on a physiological definition and could be refined.

Finally, the detailed inspection and analysis of hundreds of image mosaics from different research groups 
stimulated us to make a few suggestions regarding how the acquisition of these microscopy data should be 
done. Although this is very commonly found in the literature, image saturation must be avoided. The dynamic 
range of modern cameras, typically 12 bits, provides an impressive amount of information that is lost when 
images are saturated. Furthermore, QuRVA, SWIFT_NV and manual inspection, all heavily rely on the analysis 
of intensity changes, and saturation becomes a guaranteed source of segmentation artifacts. Practically, the 
areas of maximum brightness in the full retina should be found before the mosaic is acquired, so that detection 
parameters are adjusted accordingly to circumvent this problem. Nevertheless, QuRVA implementation adjusts 
the brightness contrast and resolution of the images so that a wide variety of images can be analyzed without 
pre-processing.

Resolution is also critical for accurate segmentation of the vasculature. Image mosaics can become large files, 
but we have found optimal analysis results when magnification is set so that the typical vessel width is at least 5 
pixels and the diameter of the flat-mount preparation is roughly 3000 pixels.

Finally, long inspection of certain regions of the sample induces photobleaching. These artificially dimmed 
areas become evident when mosaics are acquired and can confound the analysis. Both QuRVA and SWIFT_NV 
use local and average image intensity as critical values for several calculations.

In conclusion, the approach we proposed here allows identifying retinal tufts regions, segmenting the vascula-
ture skeleton, and delineating avascular zones. We explained the method rationale, provided all necessary details 
for reproducing the algorithm and showed validation of all aspects of the analysis with currently available meth-
ods and manual segmentations. We have highlighted a remarkable variability in manual and semi-automated 
procedures for tuft detection, demonstrating the need for fast unbiased quantification tools in a highly active 
research field with tremendous implication for the pharmaceutical industry.
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