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Simulation of solute transport 
through heterogeneous networks: 
analysis using the method of 
moments and the statistics of local 
transport characteristics
Min Li1, Tao Qi1, Yves Bernabé2, Jinzhou Zhao1, Ying Wang1, Dong Wang1 & Zheming Wang3

We used a time domain random walk approach to simulate passive solute transport in networks. In 
individual pores, solute transport was modeled as a combination of Poiseuille flow and Taylor 
dispersion. The solute plume data were interpreted via the method of moments. Analysis of the first and 
second moments showed that the longitudinal dispersivity increased with increasing coefficient of 
variation of the pore radii CV and decreasing pore coordination number Z. The third moment was 
negative and its magnitude grew linearly with time, meaning that the simulated dispersion was 
intrinsically non-Fickian. The statistics of the Eulerian mean fluid velocities ûi, the Taylor dispersion 
coefficients D̂i and the transit times τ̂i were very complex and strongly affected by CV and Z. In 
particular, the probability of occurrence of negative velocities grew with increasing CV and decreasing Z. 
Hence, backward and forward transit times had to be distinguished. The high-τ branch of the transit-
times probability curves had a power law form associated to non-Fickian behavior. However, the 
exponent was insensitive to pore connectivity, although variations of Z affected the third moment 
growth. Thus, we conclude that both the low- and high-τ branches played a role in generating the 
observed non-Fickian behavior.

Solute transport is a subject of great importance in fundamental physics as well as in applied disciplines such as 
hydrogeology (e.g., mixing of fresh and salt water in coastal aquifers), chemical engineering (e.g., use of reactors 
packed with granular aggregates) and petroleum engineering (e.g., secondary recovery techniques using misci-
ble displacements). Although the continuum approach and the advection-dispersion equation1,2 (ADE) are still 
widely used today, a number of experimental and field studies exposed substantial deviations with respect to 
the ADE analysis, i.e., non-Fickian behavior3–12. Non-Fickian behavior can take different forms11. For example, 
data recorded during tracer experiments often indicate that the dispersion tensor needed for ADE modeling 
varies with time or, equivalently, with traveled distance. This type of behavior is expected during the transient 
(“pre-asymptotic”) regime preceding an eventual long-term Fickian regime. Another frequent indicator of 
non-Fickian behavior is asymmetry of the solute plume.

As a consequence, alternative modeling frameworks have been investigated. Probabilistic models inspired 
by the Fokker-Planck treatment of Brownian motion13–16 as well as models based on the critical path analy-
sis of percolation theory17–20 were proposed. In this paper, we will focus on the probabilistic approach. 
Advection-dispersion is viewed as a stochastic process characterized by the conditional probability P(x, x′, t, t′) 
of a solute particle transition from point x′ at time t′ to x at t. The probability P is generally assumed stationary 
in time and space and can thus be written P(s, τ), with s = x − x′ and τ = t − t′. This approach is particularly well 
suited to interpret the results of random walk/particle tracking simulations21–28. Random walk/particle tracking 
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simulations have often been implemented in idealized representations of porous media such as networks of cylin-
drical pores29–35. The results of such network simulations can be conveniently analyzed using the method of 
moments. The second central longitudinal moment of the solute plume quantifies macroscopic dispersion and its 
linear growth with time is an operational indicator of the asymptotic regime. The third central moment provides 
a measure of the asymmetry of the solute plume.

Here, we report the results of time domain random walk simulations performed using a network simula-
tion technique based on that of Bernabé et al.35 (this approach is poorly adapted to the study of fracture sets, 
which are thus not considered here despite their importance in field applications). The simulations were set in 
three-dimensional networks of cylindrical pores with randomly distributed radii. The rules governing the motion 
of solute particles were selected considering that advection and molecular diffusion are two transport mecha-
nisms invariably present in experimental or field applications. The importance of molecular diffusion has often 
been questioned1,8,11,17. However, its interaction with a non-uniform fluid velocity field leads to a great enhance-
ment of local spreading known as Taylor dispersion36. Accordingly, we assumed that solute transport in individual 
pores obeyed Taylor dispersion. Other mechanisms, such as those arising from, e.g., chemical interactions, may 
actually occur in real situations11,19,20, but were not included here for the sake of simplicity.

Thus, the simulations involved a cascade of four sets of random variables. The primary random variables are 
the pore radii, r̂i, followed in order of dependence by the Eulerian mean fluid velocities of individual pores, ûi, the 
coefficients of Taylor dispersion, D̂i, and the transit times, τ̂i. The pore radii r̂i are assumed independent and spa-
tially uncorrelated. They obey stationary and ergodic probability distributions. The pore fluid velocities are deter-
ministically linked to the pore radii through the flow equations, i.e., the velocity realizations, ui, can be calculated 
from the radius realizations, ri, by application of mass conservation and Poiseuille equation. Notice that, owing to 
mass conservation27, realizations of ûi must display some amount of spatial correlation depending on the width of 
the pore radii distribution and the network connectivity (the pore flow rates π=ˆ ˆ ˆq r ui i i

2  are the random variables 
most directly controlled by mass conservation). The coefficients of Taylor dispersion are also deterministically 
related to r̂i and ûi by = +ˆ ˆ ˆD Di m
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, where Dm is the solute molecular diffusion coefficient and C a geometric 

constant, the value of which depends on the shape of the cross-section36,37 (C = 48 for a circular cross-section). 
Finally, the transit times τ̂i are stochastically generated from the preceding three variables, r̂i, ûi and D̂i, i.e., the 
realizations, τi, are randomly produced according to the local cumulative distribution functions corresponding to 
Taylor dispersion35:
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where l denotes the length of the pores. The first three variables, r̂i, ûi and D̂i, characterize the heterogeneity of the 
pore networks while the fourth variable, τ̂i, describes the combined advective/dispersive motion of the solute 
particles.

Our goals in this study are: (i) to extract possible relationships between dispersivities and pore structure 
parameters, and, (ii) to relate the measured advection/dispersion properties to the statistical properties of the 
corresponding random variables r̂i, ûi, q̂i and D̂i. In particular, we wish to estimate the evolution of the third spatial 
moment of the solute plume with time and thus quantitatively test the Fickian character of the simulated 
transport.

Numerical Procedures
We essentially followed the same procedures as Bernabé et al.35. However, there is one important difference, 
namely, we restricted solute transport to the network backbone. Owing to round-off numerical errors, solute 
particles in Bernabé et al.’s simulations had an extremely small but nevertheless non-zero probability to enter 
dangling pores (i.e., pores that do not belong to the backbone)35. Despite their rarity, these uncontrolled events 
significantly increased the ensemble statistical fluctuations of dispersivity and therefore the uncertainty of the 
results. Here, we preferred to avoid this problem completely by removing the dangling pores. Percolation models 
that focus on advective transport, also restrict solute motion to the backbone of the pore network17,20. Diffusion 
traps such as the dangling pores are often present in porous media, of course, and will be properly simulated in 
our future work (specific rules governing diffusion transport need to be devised). Details of the various stages of 
the numerical procedures are briefly described below.

Construction of the network realizations.  We constructed nominally isotropic networks of cylindri-
cal pores using three different types of underlying three-dimensional lattices, simple cubic (SC), body-centered 
cubic (BCC) and face-centered cubic (FCC). The pore radii, ri, were assigned according to truncated log-uniform 
distributions such that R, the hydraulic radius of the network (i.e., two times the ratio of the total pore volume by 
the total pore surface area), had a fixed value. The log-uniform distribution is strongly skewed as often observed 
in rocks35. We used distributions with different coefficients of variation CV (i.e., standard deviation normalized to 
the mean). R and CV are related to the upper and lower limits of the distributions, rmax and rmin, by

=
+R r r
2 (2)

min max



www.nature.com/scientificreports/

3SCIEnTIfIC REPOrTS |  (2018) 8:3780  | DOI:10.1038/s41598-018-22224-w

=
+

−
−CV r r r r

r r
( )ln( / )

2( )
1

(3)
max min max min

max min

We also changed the connectivity of the networks by randomly selecting pores according to a probability 
1 − Z/Zmax and setting their radii to zero. In the preceding rule, Z denotes the bond coordination number (i.e., 
mean number of bonds per node) and Zmax is the maximum possible bond coordination number in each lattice 
type (i.e., 6, 8 and 12 for SC, BCC and FCC, respectively). Note that the critical coordination number Zc at the 
percolation threshold is nearly equal to 1.5 in three-dimensional lattices, including SC, BCC, FCC as well as 
Delaunay triangulation networks38. Hence, Zc is an approximately universal parameter in the sense of percolation 
theory. It is well known that the ensemble statistical fluctuations in the network properties (e.g., permeability or 
dispersivity) are increasingly severe when the percolation threshold is approached. We only considered coordina-
tion numbers greater than 2.5 to avoid the additional complication of large ensemble fluctuations.

We determined the network backbone by identifying the nodes with a local coordination number of 1, remov-
ing the single pore attached to them and repeating the process until no new dead-end pores could be found. We 
verified that the backbone was complete by assigning a unit conductance value to all pores belonging to the pre-
sumed backbone and zero to the other ones, simulating electrical conduction through the resistor network thus 
formed, searching for bonds carrying zero current and removing them39. We found that the node exploration 
technique alone gave accurate results as long as coordination numbers Z > 2.5 were considered, but failed for 
networks closer to the percolation threshold. All results reported hereafter correspond to backbones of networks 
with Z > 2.5.

Fluid flow simulation.  To calculate the mean fluid velocity ui in the pores we used the standard method 
of solving the linear system of Kirchoff equations (mass conservation) for the fluid pressure at the nodes and 
then applied Poiseuille equation to determine the flow rates qi and mean velocities ui = qi/(πri

2). For solving the 
Kirchoff system, we used the successive over-relaxation (SOR) iterative method, a technique especially well suited 
for partially connected networks (Z < Zmax). In these calculations, we adjusted the global pressure gradient to 
produce a previously specified macro-scale fluid velocity U = ∑ri

2ui/∑ri
2, where the summations are effected on a 

network face normal to the flow.

Motion of the solute particles.  Our main assumption is that, at the scale of an individual pore, the solute 
particles obey Taylor dispersion. We simulate the combined advective-dispersive motion of a particle in a given 
pore by random drawing a realization of the transit time according to the cumulative distribution function given 
in equation 1. To save CPU time we calculated and stored digital representations (100 points) of the CDF’s for all 
pores in the network backbone using the local values of ri, ui and Di. The digital CDF’s were then used whenever 
necessary to generate realizations of the transit times by the inverse transform method35.

A particle exiting a pore can enter into any of the connected pores, provided their fluid velocities are out-
wardly oriented (the particles are not allowed to travel against the local flow). To select the outwardly flowing pore 
into which the particle enters next, we used the perfect mixing rule, i.e., the next pore is randomly chosen with 
a probability proportional to its flow rate. The alternative rule (stream tube routing) can only be implemented in 
simple, effectively two-dimensional systems40,41. Moreover, it was previously found that the perfect mixing rule 
actually permits accurate simulation of longitudinal dispersion but tends to over-estimate transverse dispersion28. 
Therefore, although they are qualitatively consistent with experimental observations, our simulations of trans-
verse dispersion may not be quantitatively meaningful. Thus, only longitudinal dispersion will be discussed in 
this paper.

Method of moments.  We injected the solute by introducing from 10000 to 50000 particles at time zero in 
pores located on the downstream face of the network corresponding to X = 0, where X denotes the nominal flow 
direction. The particles were randomly distributed according to a probability proportional to the cross-section 
area of the pores. This wide initial distribution of the particles in the transverse directions Y and Z facilitates fast 
sampling by the solute particles of the velocity field (complete velocity sampling is necessary to reach the asymp-
totic regime)42. We then propagated the particles through a large periodic array of identical copies of the current 
network realization and recorded their positions Xi, Yi and Zi at different fixed times (for example, 5000, 10000, 
20000, 40000, 60000, and 100000 s when U was set to 10−4 ms−1, corresponding to average traveled distances of 
0.5, 1, 2, 4, 6 and 10 m). According to the method of moments43, the plume of particles at these different times can 
be characterized by the central moments, Mn(t) = 〈(Xi − 〈Xi〉)n〉, Kn(t) = 〈(Yi − 〈Yi〉)n〉 and Ln(t) = 〈(Zi − 〈Zi〉)n〉, 
where n is the order of the moment. Owing to the nominal isotropy of the network realizations, Kn(t) and Ln(t) 
are expected to be nearly equal. If the dispersion process is Fickian, the following relations must hold: 〈Xi〉 ≈ Ut, 
〈Yi〉 ≈ 〈Zi〉 ≈ 0, M2(t) = 2DLt, K2(t) ≈ L2(t) = 2DTt and M3(t) ≈ K3(t) ≈ L3(t) ≈ 0, where the constants DL and DT 
are the longitudinal and transverse macroscopic dispersion coefficient, respectively. Thus, the method of moments 
provides a convenient way to test whether or not the asymptotic regime is established (linear time dependence of 
the second moments) and to identify non-Fickian behavior (growing and non-zero third moments).

Results
We considered ranges of the input parameters similar to those used in Bernabé et al.35: the network hydraulic 
radius R ranged from 20 to 100 × 10−6 m (the pivot, i.e., most frequent value, was 40 × 10−6 m), the pore radii 
coefficient of variation CV varied from 0.05 to 1.05, the mean coordination number Z from 2.5 to 12 and the 
macro-scale fluid velocity U from 10−5 to 10−2 ms−1 (the pivot was 10−4 ms−1). We investigated ratios of pore 
length to hydraulic radius l/R between 5 and 10 (the pivot was 7.5) and we used a single value for the coefficient 
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of molecular diffusion (i.e., 10−10 m2 s−1). The velocity values were selected to insure that the simulated dispersion 
coefficients were proportional to U. They tend to be high compared to naturally occurring groundwater flow but 
still lie in the range corresponding to experimental or geotechnical applications.

First and second central moments.  We will first report the results concerning the first and second central 
moments of the solute plume and their evolution. Many of the following observations were already reported in 
Bernabé et al. and therefore do not need to be illustrated by specific figures35.

	(a)	 In all cases, the center of mass of the solute plume (first moment) traveled downstream at a constant veloc-
ity that was very nearly equal to the imposed fluid velocity U, indicating that the solute particles sampled 
the entire set of local velocities characterizing the flow field. This good agreement was probably due to our 
restricting transport to the network backbone.

	(b)	 We always observed a linear growth of the second moments M2(t) and K2(t) ≈ L2(t), indicating that the 
asymptotic regime was reached earlier than the shortest time analyzed (5000 s for U = 10−4 ms−1). We 
could therefore unambiguously define and measure DL and DT in all simulations. The shortness of the 
pre-asymptotic regime was due to the periodic structure used here44. Indeed, the particles travelled more 
than 200 network lengths in the shortest simulated time analyzed, largely enough for the set of particles to 
sample the velocity field completely and to reach the asymptotic regime.

	(c)	 The simulated longitudinal dispersion coefficient was more than one order of magnitude larger than the 
transverse coefficient, in general agreement with experimental observations18,45. In equivalent conditions 
of U, R, CV and Z, the dispersion coefficients simulated here were smaller by a factor up to 2~3 than the 
coefficients reported by Bernabé et al.35, most likely because they did not restrict solute transport to the 
network backbone as we did.

	(d)	 The simulated coefficients DL and DT were found linearly related to U. This result is consistent with 
compilations of experimental values of DL showing a roughly linear relationship of DL and the Péclet 
number, Pe = lU/Dm, for Pe greater than ten45. Here, the simulations were run in a range of Pe between 30 
and 30000. This result also enables us to report our results in terms of the dispersivities, αL = DL/U and 
αT = DT/U.

	(e)	 The dependence of the simulated αL and αT on the coordination number difference (Z − Zc) was dif-
ferent in SC, BCC and FCC networks (see examples for αL in Fig. 1, corresponding to 10000 particles, 

Figure 1.  Simulated longitudinal dispersivity as a function Z − Zc. These simulations were run in (a) SC, 
(b) FCC and (c) BCC network realizations. In these examples, we used 10000 particles, U = 10−4 ms−1, 
R = 40 × 10−6 m, l = 300 × 10−6 m and 7 different coefficients of variations CV, namely, 0.05 (solid black), 0.15 
(dotted black), 0.20 (dotted blue), 0.30 (solid blue), 0.55 (purple), 0.80 (red) and 1.05 (orange).
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U = 10−4 ms−1, R = 40 × 10−6 m and l = 300 × 10−6 m). Thus, our network simulations of dispersion do 
not behave like similarly implemented network simulations of permeability or electrical conductivity, 
which consistently demonstrated independence on lattice type. We note, however, that the discrepan-
cies between SC, BCC and FCC primarily occurred for low values of the heterogeneity measure CV and 
high coordination numbers. For example, the nearly homogeneous SC and FCC networks (CV = 0.05) 
displayed an uncharacteristic increase of the simulated αL with increasing Z, opposite to the typical trend 
of decreasing dispersivity with increasing connectivity seen in all networks with CV > 0.3. The lattice-de-
pendent behavior of the nearly homogeneous SC and FCC networks can be attributed to the presence of 
bonds perpendicular to the macroscopic pressure gradient. These bonds carry negligible flow and, hence, 
act as traps for the few solute particles entering them35. On the other hand, all bonds in the BCC lattice are 
equally inclined and are therefore unlikely to trap particles. Yet, the sharp decrease of αL with increasing 
Z − Zc observed in BCC networks with CV < 0.3 may also be singular (see Fig. 1c). However, we found 
that a sufficient amount of disorder (e.g., introduced by increasing CV beyond 0.3) produced lattice-inde-
pendence (i.e., approximate universality in the sense of percolation theory). Indeed, when all SC, BCC and 
FCC data corresponding to CV ≥ 0.55 are mixed together, we observe relatively well-defined power laws 
αL ∝ (Z − Zc)−m, where, moreover, the exponent m is very nearly equal to CV (Fig. 2). Other power laws, 
αL ∝ Rβ and αL ∝ (l/R)γ, were observed (Fig. 3; BCC simulations with 10000 particles, Z = 6, CV ≥ 0.55 and 
U = 10−4 ms−1; l/R = 7.5 in Fig. 3a yielded β ~ 0.9; R = 40 × 10−6 m in Fig. 3b produced small variations of γ 
between 0.6 and 0.7).

Third moments.  We performed additional simulations, during which we recorded the third moments M3(t), 
K3(t) and L3(t) at the same fixed times as mentioned earlier. It is well known that simulated moments exhibit 
ensemble statistical fluctuations that grow with the moment order. Thus, to ensure statistical stability and a suffi-
cient level of accuracy, we increased the number of particles to 50000. In all simulations, the longitudinal moment 
M3(t) had negative values, corresponding to a solute plume shaped like a water-drop with a relatively long trail-
ing wake. We also observed that the absolute value of M3(t) increased linearly with increasing time according 
to |M3(t)| ≈ FL t (see Fig. 4a, showing the ensemble-averaged results of five BCC simulations, with 10000 to 
50000 particles, CV = 0.80, U = 10−4 ms−1, R = 40 × 10−6 m and l = 300 × 10−6 m). Thus, we can conclude that the 
asymptotic regime was established simultaneously for the first, second and third moments and that long-term 
macroscopic dispersion was intrinsically non-Fickian in our network simulations. Furthermore, we found that, 
except for CV = 0.05, the proportionality coefficient FL had an approximate power law dependence on Z − Zc 
(Fig. 4b, showing ensemble-averaged values over 5 simulations). The exponents of these power laws ranged from 
~ −1 to ~ −2 and seemed to decrease with increasing CV. The specific values of the exponent observed may not 
be accurate, however, owing to the substantial statistical uncertainties expected. The transverse moments K3(t) 
and L3(t) were negligible compared to M3(t) and fluctuated irregularly both in magnitude and sign.

Statistics of pore-scale fluid velocities, flow rates and Taylor dispersion coefficients.  The results 
described above were produced in each network realization by the variations in the local pore-scale hydrody-
namic conditions, i.e., the values of the flow rates qi, Eulerian mean fluid velocities ui and Taylor dispersion 
coefficient Di. To quantify these variations, we recorded the complete sets of qi, ui and Di values produced in 

Figure 2.  Approximately “universal” power law relationships of the simulated dispersivities with Z − Zc 
in networks realizations with CV ≥ 0.55 (indicated using the same colors as in Fig. 1). The clusters of data-
points include SC, BCC and FCC simulations. The data-point scatter helps visualize the statistical uncertainty 
associated with each value of CV. The best fitting equations are indicated in matching colors. The simulations 
corresponding to CV = 0.05 and 0.30 are omitted because they produce results that depend on lattice type (see 
text).
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simulations of fluid flow through BCC network realizations (with CV = 0.05, 0.55 and 1.05, Z = 2.8, 3.2, 4.0, 4.8, 
6.4 and 8.0, U = 10−4 ms−1, R = 40 × 10−6 m and l = 300 × 10−6 m). To facilitate the description of these data sets, 
we normalized the parameters with respect to the values expected in an exactly homogeneous, fully connected 
BCC network, namely, ri* = ri/R, ui* = ui/U, qi* = qi/q0 (with q0 = UπR2) and Di* = Di/D0 (with D0 = Dm + R2U2/
(48Dm)). It is not necessary to discuss the pore radii distributions since they were directly assigned log-uniform 
distributions obeying equations 2 and 3. It is worth noting, however, that the mean pore radius 〈ri〉 is not equal to 
the hydraulic radius R but to R/(1 + CV2).

Pore-scale fluid velocities.  The simulated values of ui* were nearly normally distributed (symmetric CDF’s, actu-
ally well fitted by normal distribution CDF’s; see Fig. 5a) in network realizations with very narrow radius distri-
butions (CV = 0.05) and became more and more skewed as CV increased (see Fig. 5c and e). Negative velocities 
occurred in all cases, except the most homogeneous one, i.e., CV = 0.05 and Z = 8 (Fig. 5a). The proportion of 
negative velocities increased substantially with increasing CV and decreasing Z − Zc. The local fluid velocities 

Figure 3.  Approximate power law dependence of the simulated longitudinal dispersivities on (a) the network 
hydraulic radius R and (b) the bond length-to-radius ratio l/R. These simulations correspond to BCC networks 
realizations with CV ≥ 0.55 (indicated using the same colors as in Fig. 1). These simulations were performed 
with 10000 particles, Z = 6, U = 10−4 ms−1, l/R = 7.5 (a) and R = 40 × 10−6 m (b). The best fitting equations are 
indicated in matching colors. The simulations corresponding to CV = 0.05 and 0.30 are omitted because they 
produce results that depend on lattice type (see text).

Figure 4.  (a) Examples of the evolution with time of the simulated third moments M3(t). The data shown are 
averages of pairs of simulations in identical conditions (BCC, 50000 particles, CV = 0.80, U = 10−4 ms−1 and 
Z between 3.2 and 8 as indicated by the colored symbols). (b) Relationship of the time rate coefficient FL and 
Z − Zc. For CV ≥ 0.3 the data obey approximate power laws, the exponents of which are indicated in matching 
colors. For CV = 0.05 a power law is not observed. The error bars represent the ensemble statistical fluctuations 
expected in these simulations.
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were not correlated to the local pore radii as demonstrated by scatter-plots of |ui*| versus ri* (see Fig. 5b,d,f). 
The shape of the data-point clusters changed significantly with CV and Z (horizontal bands for CV = 0.05, 
Fig. 5b, horizontal bands transforming into increasingly wide sectors for CV ≥ 0.55, Fig. 5d,f). Note that the 
data-points in Fig. 5b,d,f are arranged in superposed layers, so that the data-points corresponding to low CV’s 
mask the high CV ones. The average velocities 〈ui*〉 of the network realizations approximately followed power 
laws, 〈ui*〉∝ (Z − Zc)−b, where the exponent b increased from nearly zero to 1.2 with increasing CV (Fig. 6a). The 
velocity standard deviation σu increased with increasing CV and, except for CV = 0.05, also obeyed approximate 
power laws, σu ∝ (Z − Zc)−c, where the exponent c increased from about 0.7 to 1.6 with increasing CV (Fig. 6a). 
Qualitatively similar results were obtained in Vasilyev et al.34.

Pore-scale flow rates.  The simulated values of qi* had similar characteristics as ui*, namely, nearly normal dis-
tribution for CV = 0.05 (Fig. 7a), becoming more and more skewed at increasing CV’s (Fig. 7c,e). The main dif-
ference was that the effect of Z was considerably reduced in high CV simulations. Scatter-plots of qi* versus ui* 
show that fluid velocities and flow rates were relatively well correlated in simulations corresponding to CV = 0.05 
(Fig. 7b) but became increasingly uncorrelated as pore radius heterogeneity was increased. The data-point clus-
ters formed widening sectors, with negative qi* automatically corresponding to negative ui* (Fig. 7bdf). The 
average pore-scale flow rate 〈qi*〉 was independent of Z − Zc and decreased increasing CV (Fig. 6b). The flow 
rate standard deviation σq moderately increased with increasing CV, while approximately following a power law, 
σq ∝ (Z − Zc)−1/4, again with exception of the simulations with CV = 0.05 (Fig. 6b).

Figure 5.  Examples of the cumulative distribution function (CDF) of ui* in BCC simulations with CV = 0.05 
(a), 0.55 (c) and 1.05 (e). In each diagram, the CDF’s corresponding to different coordination numbers (Z = 8.0, 
6.4, 4.8, 4.0, 3.2 and 2.8) are represented by colored lines as indicated in the inset. Scatterplot of |ui*| versus ri* 
for the same simulations, CV = 0.05 (b), 0.55 (d) and 1.05 (f). Layers of colored data-points are superposed with 
the ones corresponding to Z = 8 on top and Z = 2.8 at the bottom. (See text for more details).
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Taylor dispersion coefficients.  Since it is a function of the product ri*2ui*2, the pore-scale Taylor dispersion coef-
ficient Di* varies substantially more than either ri* and ui*. Hence, we considered Log10Di* rather than Di* itself. 
The CDF’s of Log10Di* were marginally more skewed than the normal distribution CDF in simulations with 
CV = 0.05 (Fig. 8a) and evolved with increasing CV towards uniform distributions, truncated at the low end 
because Di* reaches the minimum value of Dm/D0 when the local fluid velocity becomes very low (Fig. 8e). In 
simulations with CV = 0.05, ri had a very narrow range of variation around R and, therefore, Di* was nearly equal 
to ui*2 (except when ui was very near zero), thus producing parabolic data-point clusters (Fig. 8b). The data-point 
clusters became gradually more dispersed as CV was increased (Fig. 8d,f). The average local Taylor dispersion 
coefficient 〈Di*〉 increased strongly with increasing CV and decreasing Z − Zc (Fig. 6c). Its minimum value, 〈Di*〉 
≈ 1, was reached for CV = 0.05 and Z = 8. As before, 〈Di*〉 and the standard deviation σD displayed approximate 
power laws, 〈Di*〉 ∝ (Z − Zc)−b and σD ∝ (Z − Zc)−c, with the exponents b and c increasing from about 0.5 and 0.7 
to 1.6 and 1.8, respectively (Fig. 6c).

Discussion
Our results confirm that increasing pore-size heterogeneity and/or decreasing pore connectivity enhance disper-
sivities simulated in pore networks35. Moreover, the newly observed growth with time of the third central moment 
suggests that the simulated dispersion process is intrinsically non-Fickian. Importantly, non-Fickianity in our 
network simulations does not seem to be related to a transitory transport regime because the constantly observed 
linear growth with time of the central moments indicated a fully established asymptotic regime in all cases. 
Because our simulations were performed on network backbones and all dangling pores with zero fluid velocity 
were removed, the non-Fickian behavior observed here cannot be attributed to the existence of diffusion traps 
(i.e., stagnant pores) as assumed in some theoretical models4,11,18 and sometimes experimentally observed6,12. 
Certain percolation models do not include stagnant pores and relate solute dispersion to the tortuosity of the crit-
ical paths17,20. Diffusion traps also tend to retard solute transport, so that the velocity of the solute center-of-mass 
is lower than the mean fluid velocity. Retardation effects were not observed in our backbone-restricted simula-
tions since the velocity of the solute center-of-mass was always nearly equal to the imposed mean fluid velocity.

Thus, the results summarized above were produced by the hydrodynamic random variables, ui, D̂i, q̂i and τ̂i, 
and their response to different distributions of the geometric random variable, r̂i or, or, in other words, to changes 
in pore-size heterogeneity and pore connectivity. Indeed, the behavior of 〈ui*〉, 〈Di*〉, σu and σD with increasing 
CV and/or decreasing Z − Zc was qualitatively similar to that of the dispersivity αL. Remarkably, examinations of 
ui, D̂i and q̂i showed that they were influenced differently by CV and Z − Zc. The difference was particularly clear 
for q̂i, for which 〈qi*〉 decreased with increasing CV but was unaffected by Z − Zc. We also note a stronger differ-
entiation of the effects of CV and Z − Zc in conditions of near pore-size homogeneity (CV ≤ 0.3). For example, 

Figure 6.  Means (solid lines) and standard deviations (dotted lines) of the distributions of the normalized pore 
velocities ui* (a), flow rates qi* (b) and Taylor dispersion coefficients Di* (c) as functions of Z − Zc from BCC 
simulations with CV values indicated in the inset.
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cross-plots of αL against σu or σD at constant values of CV reveal approximate power law relationships, whose 
exponents moderately vary for CV above 0.3 but sharply increase at low CV values. Thus, trying to identify gen-
eral relationships of αL with σu, σD or other statistical characteristics of ui, D̂iand q̂i is probably not an effective 
approach. It is more fruitful to focus on the transit time random variable, τ̂i

10–12,23,24.

Lagrangian transit times and velocities.  One particularly useful approach is to consider τ̂i from a 
Lagrangian viewpoint28. We ran additional BCC simulations, during which we recorded the motion of individual 
particles, i.e., we saved the values of 150,000 successive transit times τi experienced by each particle along its 
particular trajectory. The transit times ranged over more than 6 orders of magnitude and it was, therefore, con-
venient to consider their decimal logs hereafter. Since the local fluid velocities ui can be positive or negative, we 
calculated two Lagrangian transit-time probabilities P+(τ) = P(+l, τ) and P−(τ) = P(−l, τ) by forming two sepa-
rate lists of Log10(τi) corresponding to forward and backward advective motion. We then performed bin counts 
of the elements of these lists (we used a bin width of a half-order of magnitude as a compromise between resolu-
tion and uncertainty). The probabilities P+(τ) and P−(τ) were estimated as the ratios N+(τ)/N and N−(τ)/N of the 
numbers of forward and backward transit times present in the bin containing τ by the total number of pore 
transitions (i.e., 150,000). The results were ensemble-averaged over 4 realizations and 5 particles per realization.

We observed that the arch-like curves of P+ and P− versus the normalized transit time τ/t0 (with t0 = l/U) 
became broader with increasing CV and decreasing Z − Zc, in agreement with the growth of the simulated disper-
sivity in the same conditions (Fig. 9). As logically expected, the P+(τ/t0) curve for the most homogeneous network 
(CV = 0.05 and Z = 8) coincided almost exactly with the theoretical curve inferred from the Taylor dispersion 
transit-time CDF (equation 1) with a velocity U and a dispersion coefficient D0 (note that the P−(τ/t0) curve did 

Figure 7.  Examples of the cumulative distribution function of qi* in BCC simulations with CV = 0.05 (a), 0.55 
(c) and 1.05 (e). In each diagram, the CDF’s corresponding to different coordination numbers (Z = 8.0, 6.4, 4.8, 
4.0, 3.2 and 2.8) are represented by colored lines as indicated in the inset. Scatterplot of qi* versus ui* for the 
same simulations, CV = 0.05 (b), 0.55 (d) and 1.05 (f). Layers of colored data-points are superposed with the 
ones corresponding to Z = 8 on top and Z = 2.8 at the bottom. (See text for more details).
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not exist in this case; Fig. 9). Most importantly, the low- and high-τ flanks of the P+(τ/t0) and P−(τ/t0) curves 
responded differently to changes in CV and Z − Zc. The low-τ branches tended to shift horizontally with varia-
tions of both CV and Z − Zc while the high-τ branches of both P+(τ/t0) and P−(τ/t0) approximately fell on top of 
a single power law, P+(τ/t0) ≈ P−(τ/t0) ∝ (τ/t0)−f, depending on CV but not on Z − Zc (Fig. 9). Moreover, the 
exponent f decreased with increasing pore-size heterogeneity (namely, f ≈ 2.5, 2 and 1.5 for CV = 0.05, 0.55 and 
1.05, respectively). Actually, a power law form of the transit-time probability function is often associated with 
non-Fickian dispersion10–12,28 and the non-Fickian character is enhanced when the exponent f decreases. Low 
values of f around 1.5 are usually associated with the presence of stagnant micro-porosity12 but were obtained here 
by simply increasing the width of the pore radius distribution. We can also infer from our simulations that the 
non-Fickian behavior observed was not solely due to the high-τ power laws discussed above, but was also affected 
by the low-τ branches of the P+(τ/t0) and P−(τ/t0) curves. Indeed, if the high-τ power laws were the sole contrib-
utors to non-Fickianity, we should not observe any effect of pore connectivity Z − Zc on the 3rd moment coeffi-
cient FL and its growth, contrary to the results shown in Fig. 4b. We note also that, owing to the observed 
agreement of the velocity of the solute center-of-mass with U, any elongation of the high-τ tail must be balanced 
by a change of the low-τ leading front. Elongation of the leading front is not possible since the velocity of individ-
ual solute particles has a finite upper limit. Examination of examples of solute plumes suggests that the leading 
fronts tended to become steeper with time, although we were not able to quantify this effect accurately. Indeed, 
significant differences of breakthrough curves with the best-fit ADE solutions have been experimentally observed 
at both early and late times10,11, suggesting that the low-τ leading front does indeed contribute to non-Fickian 
dispersion in real materials. We speculate that the large variability of the local Taylor dispersion coefficient (about 
6 orders of magnitude for CV = 1.05, from values close to Dm to nearly 1000 D0) is one of the main factors produc-
ing this behavior. The variability of D̂i is fundamentally caused by its dependence on the squares of ûi and r̂i, a 
functional form that should remain valid even in pores with irregular cross-sections36,37. The situation is very 

Figure 8.  Examples of the cumulative distribution function of Log10Di* in BCC simulations with CV = 0.05 (a), 
0.55 (c) and 1.05 (e). In each diagram, the CDF’s corresponding to different coordination numbers (Z = 8.0, 6.4, 
4.8, 4.0, 3.2 and 2.8) are represented by colored lines as indicated in the inset. Scatterplot of Log10Di* versus |ui*| 
for the same simulations, CV = 0.05 (b), 0.55 (d) and 1.05 (f). Layers of colored data-points are superposed with 
the ones corresponding to Z = 8 on top and Z = 2.8 at the bottom. (See text for more details).
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different in typical continuum models, for which the small-scale dispersion process is usually assumed constant 
and assigned a relatively small magnitude8,42.

One important feature of the network flow fields simulated here is the presence of backward flowing bonds. 
Backward pore transitions are not explicitly excluded in models such as the continuous time random walk 
approach of Berkowitz et al.11 but rarely included although negative fluid velocities have indeed been observed 
in simulations of flow through random packs of spheres and porous rocks46. Negative ui were, of course, not 
the majority in our simulations and did not form long connected chains, thus precluding long-range backward 
advection (their effect is to increase the tortuosity of the flow paths47; see also Hunt and Skinner17 and Hunt and 
Sahimi20). Consequently, the P−(τ/t0) curves were always substantially lower than the P+(τ/t0) curves (Fig. 9). For 
a given simulation, the probability of a backward pore transition is given by:

∑ ∑τ τ τ= +− − + −p N N N( )/ ( ( ) ( )) (4)i i i

We found that p− grew from a minimum of exactly zero for the most homogeneous networks (CV = 0.05 and 
Z = 8) to a maximum of 30% for the most heterogeneous (CV = 1.05 and Z = 2.8) and was well related to the sim-
ulated dispersivities by αL ≈ 1.7 × 10−3 Exp[14 p−].

Another issue is that, owing to mass conservation, the sets of Lagrangian fluid velocities experienced by a 
solute particle have a correlated structure that can significantly affect macroscopic dispersion28. To estimate this 
effect we performed further BCC simulations, during which we recorded 15,000 pore velocities ui and flow rates 
qi successively encountered by individual particles along their trajectories (here, positive and negative velocities 
were recorded in the same list). We then calculated the autocorrelation functions, χu(s) = Corr[ui(x + s), ui(x)] 
and χq(s) = Corr[qi(x + s), qi(x)], for each set of ui and qi data (x is the longitudinal coordinate of the particle and 
s the separation distance). The results were ensemble-averaged over 4 realizations and 10 particles per realization. 
In the simulations with CV > 0.05, the flow rate autocorrelation functions approximately obeyed the exponential 
relationship, χq(s/l) ≈ Exp[−(s/l)/sq] (Fig. 10a). The estimated correlation length sq increased with increasing 
CV and decreasing Z − Zc (namely, from 1.3 to 4.1 for CV = 0.55 and from 2.6 to 6.8 for CV = 1.05, with Z drop-
ping from 8 to 2.8). A similar trend was observed in Kang et al.28. The pore velocity autocorrelation functions 
can be roughly described as a combination of exponential decay and nugget effect (sudden drop at the origin), 

Figure 9.  Transit time probabilities P+(τ/t0) (solid lines) and P−(τ/t0) (dotted lines) for BCC simulations 
with CV = 0.05 (a), 0.55 (b) and 1.05 (c). The curves corresponding to different values of Z are represented 
in colors as indicated in the inset. The thick grey curve in each diagram represents the theoretical transit 
time probabilities inferred from the Taylor dispersion transit time CDF (equation 1) with a velocity U and a 
dispersion coefficient D0. (See text for more details).
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χu(s/l) ≈ χ0 Exp[−(s/l)/su] (Fig. 10b). The nugget effect arises because ui, unlike qi, is not directly controlled by 
mass conservation and its magnitude (measured by 1 − χ0) reflects the de-correlating effect of random variations 
in pore radius. We found that 1 − χ0 was rather variable and tended to increase with increasing CV (namely, 
from 0.63 ± 0.11 to 0.79 ± 0.11 for CV = 0.55 and 1.05, respectively). The correlation length su was longer than sq 
(namely, from 1.8 to 4.9 for CV = 0.55 and from 3.8 to 10.3 for CV = 1.05). These values are significantly greater 
than those reported in Kang et al.28. It must be noted that the description above did not apply to the simulations 
with the narrowest pore radius distributions, again indicating that nearly homogeneous BCC simulations have 
a singular behavior, probably not generalizable to porous rocks. Indeed, χq(s/l) and χu(s/l) in simulations with 
CV = 0.05 and Z < 8 showed fast decaying oscillations about zero (for Z = 8 the autocorrelation functions decayed 
to zero extremely fast, with no oscillations). The separation s/l corresponding to the first negative oscillation 
moved from 1 for Z = 6.4 to greater values at decreasing coordination numbers. To understand the origin of this 
behavior, we consider a perfectly homogeneous network (CV = 0) from which a single bond was removed. The 
flow field must be uniform everywhere in this network, except in the immediate vicinity of the missing pore, 
effectively an obstacle around which the fluid must revolve. We can visualize the flow field by idealizing the miss-
ing pore obstacle as a sphere. It becomes clear then that the fluid velocities normal to the upstream/downstream 
poles must be reduced while the velocities tangent to the equator are amplified. This alternated velocity structure 
produces anti-correlation of the fluid velocity at separations comparable to the diameter of the obstacle, similar 
to the negative oscillations displayed by χq(s/l) and χu(s/l) for dilute distributions of missing pores (high coordi-
nation numbers). When Z decreases, interactions between missing pores become more frequent and gradually 
dampen the oscillations of χq(s/l) and χu(s/l).

Concluding remarks.  Our numerical simulations are based on a physically based description of the 
pore-scale transport processes. Poiseuille law is used to determine the mean fluid velocity and Taylor dispersion 
to evaluate the distribution of transit times in individual pores. These rules include complex interactions among 
the geometric and hydrodynamic variables involved. The upside of this approach is that we can introduce very 
broad/skewed pore radius distributions and vary the pore connectivity. The downsides are the idealized pore 
geometry, the periodicity of the medium (preventing the occurrence of long transients), the perfect mixing rule 
(limiting the accuracy of simulated transverse transport) and the restriction of simulated transport to the back-
bone (excluding diffusion traps).

Studies such as Kang et al.28, or, Bijeljic et al.25 and Bijeljic et al.26 have strong similarities with ours but some 
differences arise owing to the different scales they used for the description of the transport processes. Kang et al.28 
effectively worked at the continuum scale. They discretized the porous continuum into a two-dimensional square 
lattice, the elements of which obeyed Darcy’s law. They assumed that permeability varied spatially while porosity 
remained constant. As a consequence, the mean fluid velocity in any lattice bond was proportional to the flow rate 
and they obtained velocity autocorrelation functions (shown in their Fig. 8b) similar to our exponential χq curves 
(Fig. 10a). We also note the qualitative resemblance of Kang et al.’s Lagrangian transit-time distributions (in their 
Fig. 8a) to ours (Fig. 9). Quantitative differences (e.g., lower correlation length sq of the Lagrangian velocities and 
exponent f of the transit-time distributions) had multiple causes such as differences in the heterogeneity levels 
considered, two-dimensional lattices or their assumption of purely advective transport in the lattice bonds. Kang 
et al.’s continuum approach does not allow explicit investigation of the effect of pore connectivity.

Bijeljic et al.25 and Bijeljic et al.26 solved the steady-state flow equations in three-dimensional images of the 
pore space of porous geo-materials. Solute transport was then numerically simulated by combining sub-pore 
scale advective motion along the streamlines determined earlier and molecular diffusion via a discretized space 
domain random walk. This method has been previously demonstrated to correctly reproduce Taylor dispersion 
in long cylindrical tubes and includes the same interactions among the geometric and hydrodynamic variables as 

Figure 10.  The autocorrelation functions, (a) χq(s) and (b) χu(s), as functions of the normalized separation 
distance s/l. These examples correspond to BCC simulations with CV = 0.05 (thick grey dashed line), 0.55 
(dotted lines) and 1.05 (solid lines), and to different values of Z as indicated in the inset. The nugget effect 
characteristic of the χu(s) curves is made more visible by using very thin lines at the beginning of the curves (see 
text for more details).
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in our study, albeit with a much more complicated geometry. The results tend to be in qualitative agreement with 
ours although differences in focus makes a full comparison difficult. For example, Bijeljic et al.25 reported that the 
high-τ branches of the observed transit-time distributions had an approximate power law form and showed a 
dependence of the exponent f on heterogeneity (in their Fig. 1) consistent with our results (Fig. 9). But the other 
branch of the transit-time distribution was not discussed, an omission due to their following the notion that only 
trapped and/or slowly moving solute particles contribute to non-Fickianity11. Our result that pore connectivity 
affects the 3rd moment coefficient FL but not the exponent f, suggests that fast moving particles may play a role too. 
The Eulerian velocity fields visualized in Bijeljic et al.’s26 Fig. 2 and the propagators of Figs. 5 and 6 suggest that 
velocities with a negative component in the nominal flow direction were present in these simulations. Propagator 
is a term referring to the probability distribution function of the displacements ζ experienced during a time δt 
by solute particles uniformly distributed in the pore space. For infinitesimal δt’s, the portion of the propagator 
corresponding to displacements greater than the diffusion displacement ζdiff ≈ (2Dmδt)1/2 is essentially associated 
with the Eulerian velocities u = ζ/δt (for ζ ≤ ζdiff, molecular diffusion may contribute significantly to the displace-
ment). We estimate that Bijeljic et al.’s26 characteristic advective displacement < ζ0 > for δt = 0.106 s (the shortest 
time interval considered) is on the order of 4.5 to 6.5 times ζdiff, thus implying that a portion of the negative dis-
placements in the propagators of Bentheimer sandstone and Portland carbonate can be attributed to backward 
fluid velocities (see the first row of their Fig. 6bc). The bead-pack case is less conclusive (top of Fig. 6a) although 
Cai et al.46 observed negative velocities in similar bead-pack simulations. Bijeljic et al.’s26 observations confirm 
our result that the amount and magnitude of negative velocities increase with increasing material heterogeneity 
and decreasing pore connectivity (Portland carbonate is likely more heterogeneous and less well connected than 
Bentheimer sandstone). However, the effects of heterogeneity and connectivity are difficult to separate and quan-
tify using the approach of Bijeljic et al.26.

Conclusions

	(a)	 We used a time domain random walk approach based on Poiseuille flow and Taylor dispersion to simulate 
passive solute transport in the backbone of heterogeneous and partially connected networks of cylindrical 
pores. We used the method of moments to extract the advection/dispersion characteristics of the simulated 
transport from the evolution with time of the plume of solute particles.

	(b)	 Analysis of the first and second moments showed that the asymptotic regime was reached in all simulations 
and that the longitudinal dispersivity increased with increasing pore-size heterogeneity (CV) and decreas-
ing pore connectivity (Z − Zc).

	(c)	 One major finding was that the third moment was negative and that its magnitude grew linearly with time, 
unequivocally indicating that the asymptotic transport regime was intrinsically non-Fickian. Importantly, 
the non-Fickian behavior could not be attributed to diffusion traps (i.e., stagnant pores) since the simula-
tions were restricted to the network backbones. Furthermore, we observed that the non-Fickian character 
was enhanced by increasing pore-size heterogeneity and/or reducing pore connectivity.

	(d)	 The probability distributions of the Eulerian mean fluid velocities ûi, the coefficients of Taylor dispersion D̂i 
and the transit times τ̂i had complex non-Gaussian forms and were strongly affected by CV and Z − Zc.

	(e)	 One important characteristic of the simulated Eulerian flow fields was the presence of negative velocities, 
the amount and magnitude of which increased with increasing CV and decreasing Z − Zc. As a conse-
quence, backward and forward transit times had to be distinguished.

	(f)	 The high-τ branch of the transit-time probability curves had a power law form, which was also observed 
in other studies and usually associated with non-Fickian behavior. The power law exponent decreased with 
increasing CV but was insensitive to changes in Z − Zc. On the other hand, pore connectivity did affect 
to the simulated non-Fickian behavior, which would not be possible if the high-τ branches were the sole 
contributors to non-Fickian dispersion11,15,19,25,27. We therefore conclude that the low-τ branches, often 
thought to exclusively embody Fickian dispersion, can in fact be partially responsible for non-Fickian 
transport.

Data availability statement.  The authors declare that the data are available.
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