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Exotic complexes in one-
dimensional Bose-Einstein 
condensates with spin-orbit 
coupling
D. Belobo Belobo1,2 & T. Meier3

By means of the F-expansion method and intensive numerical simulations, the existence of three 
families of nonlinear matter waves including Jacobi elliptic functions, solitons, and triangular periodic 
functions, is demonstrated for spin-orbit coupled Bose-Einstein condensates with a linear potential. 
In addition, several complexes are obtained by taking two distinct solutions of each family or two 
distinct families. These solutions sustain different types of two-body interactions in the condensate that 
can be repulsive, attractive, or attractive and repulsive. Whereas the spin-orbit coupling destabilized 
these nonlinear matter waves, the linear potential leads to a stabilization. The numerical results are 
in excellent agreement with our analytical findings and it can be expected that the proposed robust 
solutions should be observable for experimentally relevant conditions.

Spin-orbit coupling (SOC) is an interaction between a quantum particle’s spin and its momentum1,2 which plays 
an important role in several areas in physics. SOC appears in condensed matter systems for example when elec-
trons are placed in an electric or magnetic field, or possess strong SOC. Though neutral ultracold atomic sys-
tems do not have gauge coupling to electromagnetic fields nor SOC, in the few past years, the ability to control 
and manage the atom-light interaction in these settings allowed the creation of external Abelian or non-Abelian 
artificial gauge fields coupled to neutral atoms with many important implications3. Exploiting the possibility of 
creating gauge fields in ultracold atomics systems, in 2011, the group of Spielman first reported the observation 
of SOC in Bose-Einstein condensates (BECs)4. The latter work paved the way to the exploration of SOCs physics 
in ultracold neutral atomic gases for many reasons5,6. SOC is at the origin of important concepts in condensed 
matter systems such as the spin Hall effect and topological insulators7–9. It is also believed that SOC is also of 
relevance for the fundamental and exotic physics of superfluids, fermions and BECs4,7–9.

In recent years, many studies of BECs with SOC have revealed several interesting aspects like the partial 
wave scattering10, the phenomenon of Zitterbewegung (ZB)11, the tunability of the SOC strength12, the exist-
ence of a ‘stripe phase’13,14, vortices with15 or without16,17 rotation, tunneling dynamics18–21, and nonlinear matter  
waves15–17,22–32. Most of the above mentioned studies on nonlinear matter waves consider BECs with SOCs con-
fined either in optical lattices22–25, or in harmonic potentials26–29, or self-trapped condensates30–32 focus on sol-
itons, i.e., topological excitations of nonlinear systems with a broad range of applications33. BECs with SOCs 
loaded in a linear potential have not been investigated so far and neither periodic nonlinear waves nor the exist-
ence of complexes like a soliton with a periodic wave have been considered.

It has been shown that periodic waves can be found in single BECs with a linear potential34–37 and in 
self-trapped coupled BECs38,39. In this work, we report the existence and dynamics of ‘exotic’ complexes in BECs 
with SOC in the presence of a linear potential. These complexes consist of combinations of nonlinear matter 
waves such as solitons with Jacobi elliptic function (JEF), two JEF, or two triangular periodic function solutions, 
as well as bright-bright, dark-dark, and bright-dark solitons. The solutions to be constructed are stable in the 
absence of the linear potential provided that the strength of the SOC is sufficiently small, but they are unstable for 
large values of the SOC. However, the instability is wiped out when the linear potential is taken into account. The 
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parameters used in our analytical and numerical studies are close to realistic experimental conditions and it can 
thus be expected that the predicted nonlinear matter waves may be observed in current experiments.

Results
Model.  The nonlinear dynamics of BECs with SOC in quasi-one dimension is described by the coupled Gross-
Pitaevskii equations in the mean-field limit1,2,5,6
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in which the linear cross coupling Rabi term ψ −
R

j2 3  of strength R has been set to zero (R = 0) for simplicity40. Such 
a situation was recently suggested in ref.40 since the presence of the cross coupling Rabi term does not impact the 
stability of the condensates and merely induces small stripes for small values of R. In Eq. (1), space and time are 
measured in units of ζ = 1 μm and mζ2/ħ, respectively, m being the reduced mass, and ħ the Planck’s constant. ψj 
( j = 1, 2) denotes the two pseudospin components of the condensate wave function. The term γ
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the momentum transfer between the laser beams and the atoms arising from the SOC while, gjj and gj3−j are the 
two-body intra and inter atomic interaction strengths, respectively. For simplicity, we consider here g = g12 = g21. 
V(x) = βx is the external linear potential that may mimic the gravitational field experienced by atoms due to their 
mass or an exposure of the condensate to a linear force realized by appropriate laser beams34–37. This may be 
explained by the fact that atoms of the condensates which are in the nK-mK regime have a nonzero mass such that 
the effect of the gravitational field is no longer negligible. It has been shown that the gravitational field explains 
the vortex fragmentation during topological phase imprinting observed in the Kyoto experiment unless the field 
time reverse belongs to a narrow window41,42. In condensate experiments, a linear potential may be realized by an 
exposure of the condensate to a laser beam with an appropriate wavelength34–37. Therefore, a linear potential act-
ing along the free axis here x is the general form of the field which may be, in a specific case, represented by the 
gravitational field34–37. Very recently, Belobo showed that the linear potential stabilizes unstable bright solitons in 
a derivative Gross-Pitaevskii model of condensates43. Moreover, the linear potential is a key ingredient to explain 
the acceleration and dynamics of nonlinear waves in other media such as laser pulses in fiber optics, Langmuir 
waves in plasma physics, one-dimensional water channel gravity waves in hydrodynamics, extreme nonlinear 
waves with possible applications to optical soliton supercontinuum generation and ocean coast line protection44 
and references therein. The set of Eq. (1) (and its variant forms) represents a quite general system of nonlinear 
evolution equations which also appears in other fields in physics such as field theory and the massive Thirring 
model, in optical fiber gratings, birefringent optical fibers, coupled optical wave guides and so on, see, e.g.26–32, 
and references therein.

Analytical results.  Here we adopt the F-expansion method45 in order to construct solutions of Eq. (1). We 
use the Ansatz

ψ φ ξ θ= =h i x t j( ) exp[ ( , )], 1, 2 (2)j j j j

where ξ = k(t)x + n(t) is the one phase-traveling variable and θj(x, t) = Γj(t)x + Ωj(t) and Γj(t), Ωj(t) are the linear 
frequency shift and the homogeneous phase, respectively.

The function φj(ξ) satisfies the auxiliary equation46
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with coefficients bmj, m = 0, 2, 4, being real constants. The solutions of Eq. (3) can be found in Table 1. Inserting 
Eq. (2) into Eq. (1) one obtains, after a little algebra, the following relations

β= Γ = − + Γ Γ = Γ + Γk t k t t t( ) , ( ) , ( ) , (4)1 10 2 1 20

β γ=






−
Γ + Γ 





+ =
Γ − Γn k t t n

2
( )

2
,

2
,

(5)
2 20 10

0
20 10

∫ ∫γ φ φ φ= Ω =






− Γ + − Γ






− ≠− −b
g h

k
k b dt g h dt, 1

2
( ) ( 1) , ,

(6)j
jj j

j j j
j

j j4

2

2
2

2
2

3 1
2

3
2

1 2

∫ γ φ φ=
+

Ω =






− Γ + − Γ






=
−

b
g h gh

k
k b dt, 1

2
( ) ( 1) , ,

(7)j
jj j j

j j j
j

j4

2
3
2

2
2

2
2

1 2

hj, gjj being free real constants.
All relevant information about the solutions of Eq. (1) can be deduced from Eqs (4–7). For example, Eq. (5) 

implies that the SOC strength must be half of the linear frequency shift difference at the initial time. In other 
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words, the experiment needs to be performed such that the initial phase difference of the pseudospin components 
be twice the strength of the SOC parameter γ. Furthermore, Eqs (5–6) tell us that the values of two-body interac-
tions of the condensate can be chosen at will, such that it is simply possible to fit them with those used in current 
experiments where g11 = g22 ≈ g4–6. One may also be interested in the dynamics of symbiotic BECs with SOC 
where the two-body interactions in the condensates might have opposite signs, i.e., g11g22 < 0. Such a situation is 
realizable in BECs due to the Feshbach resonance management technique47. In addition, the position, velocity, 
and acceleration of the center of mass of each pseudospin component is given by = −
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20 10 , ̈ β= −XCM , respectively. The mean dynamics of the pseudospin components depends 
mainly on the strength of the linear potential and the homogeneous phases at initial time. The linear potential 
might be used in BECs with SOC with applications to their transport or the realization of atomic spin-orbit BEC 
lasers, in a similar fashion as in single condensates34–37.

The functions φ1,2(ξ) dictate the profiles of the solutions. The explicit expressions of our solutions of Eq. (1) are 
ψj,p (x,t) = hjφj,p (ξ)exp[iθj(x, t)] where j = 1, 2 and = −p 1 36. There are three families of solutions provided in 
Table 1 which are JEFs ( = −p 1 30), solitons ( = −p 31 34), and triangular periodic solutions ( = −p 35 36). 
The integer p indicates the solution of Eq. (3) one chooses in Table 1. One should note that JEFs degenerate to 
other functions when K takes some special values. To be precise, dn(ξ, 0) = 1, cn(ξ, 0) = cos(ξ), sn(ξ, 0) = sin(ξ) 
and dn(ξ, 1) = cn(ξ, 1) = sech(ξ), sn(ξ, 1) = tanh(ξ) hereby enriching the number of solitons and triangular peri-
odic solutions. For φ1(ξ) = φ2(ξ), families of periodic solutions in BECs with SOC like JEFs and triangular peri-
odic solutions proposed here have not been reported yet. Moreover, novel exotic complexes are obtained for φ1(ξ) 
≠ φ2(ξ). Such complexes include two mixed solutions of each family or two distinct families. These solutions thus 
open the route to explorations of new physical phenomena in BECs with SOC and related fields which is different 
to the well known solitons (bright-bright, bright-dark, dark-dark, see22–32) that are commonly studied in these 
media.

Numerical results.  We perform numerical simulations in order to test the robustness of the solutions that 
are constructed analytically as only robust or stable waves might be observable in real experiments. We consider 
a quasi-one-dimensional BEC with two-body intra and inter pseudospin interaction strengths being |gjj| = 1, 
and g = 0.8 and take the SOC’s strength in the interval 0 ≤ γ ≤ 1.5. Our numerical simulations run up to t = 
1000 which corresponds to ≈1.342 s for 87Rb atoms with repulsive interactions4 (≈0.111 ms for 7Li atoms with 
attractive interactions28). The split-step Fourier method is used to integrate the set of Eq. (1). We have used 
4096 points in the integration domain of length x ∈ [−1500, 1500] and the time step was dt = 0.001. A random 
amplitude-phase perturbation of one percent strength the maximum of the initial wave functions was used to 
launch the integration. In the following, we discuss and analyze the dynamics for some interesting profiles of 
solutions that could be realizable in experiments.

Periodic solutions.  Figure 1 displays robust JEF solutions of types sn and dn for the pseudospins ψ1 and ψ2 
with repulsive, attractive, and symbiotic two-body interactions in the left, middle and, right columns, respectively. 
The SOC is γ = 0.01 while the external linear potential is turned off (β = 0). The first and second rows in Fig. 1 
show a very good agreement between the analytical and the numerical solutions for times t = 100 and 500, 

Figure 1.  Top and middle rows: spatial comparison between numerical (red solid line) and analytical (blue 
dotted line) solutions at t = 100 and 500, respectively. Robust numerical solutions in bottom row. The columns 
are in pairs of |ψj|2(j = 1, 2), left columns g11 = g22 = 1, middle columns |ψj|2, g11 = g22 = −1, right columns |ψj|2, 
g11 = −1, g22 = 1 and g = 0.8, γ = 0.01, β = 0, p = 1 with sn for ψ1, p = 3 for ψ2 everywhere. Other parameters 
are: k = 0.3, k1 = 0.5, k2 = 0.8, Γ10 = π, n0 = 0.



www.nature.com/scientificreports/

4Scientific REPOrTS |  (2018) 8:3706  | DOI:10.1038/s41598-018-22008-2

respectively. The third row which exhibits the spatiotemporal evolution of the pseudospin densities moving at the 
constant velocity V = γ = 0.01 confirms their robustness due to their long time behavior without disintegration. 
However, not all values of the SOC parameter γ allow robust self-trapped solutions. Indeed, after intensive 
numerical simulations, we deduced that self-trapped solutions are stable for ⪅ γ.0 015 . In other words, SOC 
strengths γ above the critical value γcrit ≈ 0.015 destabilize self-trapped matter waves. This situation is rather dif-
ferent from the one reported in 2015 where three dimensional self-trapped solitons where stabilized by SOC30–32. 
Nevertheless, we found that the instability generated by SOC is completely removed when a linear potential is 
turned on, see Fig. 2. The first row with γ = 0.5 belonging to the unstable region, presents self-trapped solutions, 
while the second row displays the stabilizing effect of the linear potential. This suggests that the linear potential 
can be a very useful tool appropriate to reinforce the robustness of nonlinear waves in BECs and related fields. 
However, the strength of the linear potential should remain relatively small, as large values of β induce periodic 
oscillations at the top of the pseudospin densities.

Family p φ(ξ) Conditions

JEF

1 cd(ξ), sn(ξ) b0 =​ 1, b2 =​ −​(1 +​ K2), b4 =​ K2

2 ns(ξ), dc(ξ) b0 =​ K2, b2 =​ −​(1 +​ K2), b4 =​ 1

3 dn(ξ) b0 =​ K2 −​ 1, b2 =​ 2 −​ K2, b4 =​ −​1

4 cn(ξ) b0 =​ 1 −​ K2, b2 =​ 2K2 −​ 1, b4 =​ −​K2

5 nc(ξ) b0 =​ −​K2, b2 =​ −​1 +​ 2K2, b4 =​ 1 −​ K2

6 nd(ξ) b0 =​ −​1, b2 =​ 2 −​ K2, b4 =​ K2 −​ 1

7 cs(ξ) b0 =​ 1 −​ K2, b2 =​ 2 −​ K2, b4 =​ 1

8 sc(ξ) b0 =​ 1, b2 =​ 2 −​ K2, b4 =​ 1 −​ K2

9 sd(ξ) b0 =​ 1, b2 =​ 2K2 −​ 1, b4 =​ K2(−​1 +​ K2)

10 ds(ξ) b0 =​ K2(−​1 +​ K2), b2 =​ 2K2 −​ 1, b4 =​ (1 −​ K2)/4

11 ns(ξ) ±​ cs(ξ) b0 =​ 1/4, b2 =​ (1 −​ 2K2)/2, b4 =​ 1/4

12 nc(ξ) ±​ sc(ξ) b0 =​ (1 −​ K2)/4, b2 =​ (1 +​ K2)/2, b4 =​ (1 −​ K2)/4

13 ns(ξ) +​ ds(ξ) b0 =​ K2/4, b2 =​ (K2 −​ 2)/2, b4 =​ 1/4

14 sn(ξ)dn(ξ)/cn(ξ) b0 =​ 1, b2 =​ 2 −​ 4K2, b4 =​ 1

15 dn(ξ)cn(ξ)/D1[1 +​ sn(ξ)][1 +​ Ksn(ξ)] = −b K D( 1) /40
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24 [Ksn2(ξ) +​ 1]/D2[Ksn2(ξ) −​ 1] = − + +b K K D(2 1)/0
2

2
2, b2 =​ 2K2 +​ 2, 

= − + +b D K K( 1 2 )4 2
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25 Kns(ξ) ±​ cs(ξ), sn(ξ)/[1 ±​ cn(ξ)], cn(ξ)/[(1 −​ K2)1/2sn(ξ) ±​ dn(ξ)] b0 =​ b4 =​ 1/4, b2 =​ (1 −​ 2K2)/2

26 dn(ξ)/[1 ±​ Ksn(ξ)], Ksd(ξ) ±​ nd(ξ) b0 =​ b4 =​ (K2 −​ 1)/4, b2 =​ (K2 +​ 1)/2

27 cn(ξ)/[1 ±​ sn(ξ)], nc(ξ) ± ​sc(ξ) b0 =​ b4 =​ (1 −​ K2)/4, b2 =​ (K2 +​ 1)/2

28 Kcn(ξ) ±​ dn(ξ) b0 =​ −​(1 −​ K2)2/4, b2 =​ (K2 +​ 1)/2, b4 =​ −​1/4

29 sn(ξ)/dn(ξ) ±​ cn(ξ) b0 =​ 1/4, b2 =​ (K2 +​ 1)/2, b4 =​ (1 −​ K2)2/4

30 ξ ξ ξ ξ− ± ±cn K dn sn dn( )/[ 1 ( )], ( )/[1 ( )]2 b0 =​ 1/4, b2 =​ (K2 −​ 2)/2, b4 =​ K4/4

Solitons

31 b b sech b/ ( )2 4 2 ξ− b0 =​ 0, b2 >​ 0, b4 <​ 0

32 ξb b csch b/ ( )2 4 2 b0 =​ 0, b0 =​>​ 0, b4 >​ 0

33 ξ− −b b b/2 tanh( /2 )2 4 2 =b b b/40 2
2

4, b2 <​ 0, b4 >​ 0

34 ξ ξ± − − −D D2 2tanh ( ) /tanh( )2
4 4 b0 =​ 0, b =​ 1, b2 =​ 1/2

Triangular periodic
35 ξ ξ− − − −b b b b b b/ sec( ), / csc( )2 4 2 2 4 2 =b b b/40 2

2
4, b2 <​ 0, b4 >​ 0

36 ξ−b b b/2 tan( /2 )2 4 2 =b b b/40 2
2

4, b2 >​ 0, b4 >​ 0

Table 1.  Classification of different solutions. 0 ≤​ K ≤​ 1 is the modulus of the JEF, = −K K11
2, D1, D2, 

D3(D1D2D3 ≠​ 0) are arbitrary real constants.
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Soliton-periodic solutions.  We present the coexistence of the JEF solution of type dn with bright and dark 
solitons in Fig. 3. Once again, the linear potential enhances the stability of the solutions that are also dynamically 
stable.

We would like to emphasize that all analytical solutions presented in Figs 1–3 for the case φ1 = φ2, have analo-
gous results with respect to their robustness and regarding the effects of the SOC and that of the linear potential, 
during numerical simulations.

Conclusion
In summary, we have used the F-expansion method to construct three families of solutions for spin-orbit coupled 
BECs with linear potential including JEFs, solitons of bright and dark types, and triangular periodic solutions. 
Our numerical findings show that the linear potential stabilize the solutions with large values of SOC strength 
while, it may be used to control important features of the center of mass like its position, velocity, and acceleration 
as suggested by analytical calculations. Hence, the linear potential offers the possibility to transport BECs with 
SOC and may even be helpful for the realization of ’spin-orbit atomic lasers’. Our analytical solutions are for a wide 
range of physical parameters very well confirmed by extensive numerical simulations which show that the matter 
waves proposed in this work are robust and should be observable in experiment. An interesting future direction 
is the investigation of the existence and stability properties of the exotic complexes found here in higher spatial 
dimensions.
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