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A novel P300 BCI speller based on 
the Triple RSVP paradigm
Zhimin Lin1, Chi Zhang   1, Ying Zeng2,1, Li Tong1 & Bin Yan1

A brain–computer interface (BCI) is an advanced human–machine interaction technology. The BCI 
speller is a typical application that detects the stimulated source-induced EEG signal to identify the 
expected characters of the subjects. The current mainstream matrix-based BCI speller involves two 
problems that remain unsolved, namely, gaze-dependent and space-dependent problems. Some 
scholars have designed gaze-independent and space-independent spelling systems. However, this 
system still cannot achieve a satisfactory information transfer rate (ITR). In this paper, we propose a 
novel triple RSVP speller with gaze-independent and space-independent characteristics and higher ITR. 
The triple RSVP speller uses rapid serial visual presentation (RSVP) paradigm, each time presents three 
different characters, and each character is presented three times to increase the ITR. The results of the 
experiments show the triple RSVP speller online average accuracy of 0.790 and average online ITR of 
20.259 bit/min, where the system spelled at a speed of 10 s per character, and the stimulus presentation 
interface is a 90 × 195 pixel rectangle. Thus, the triple RSVP speller can be integrated into mobile smart 
devices (such as smartphones, smart watches, and others).

A brain-computer interface (BCI) system based on electroencephalography (EEG) is a popular research direction 
in the field of human-computer interaction. The system can provide a direct communication channel to connect 
the human brain and computer. An EEG speller system is a typical brain-computer interface system. The speller 
system uses a clever paradigm to induce specific event-related potential (ERP) components (for example, P300 
component). Then, according to the ERP components, a symbol of the expected subjects can be determined. The 
EEG speller system can re-establish the disabled communication, and normal people can use the technology 
to obtain convenient interactive methods1–6. At present, most EEG speller systems are based on modified P300 
speller. The P300 component is a common ERP component, which shows a peak when small probability events 
are observed after approximately 300–500 ms7–10. The P300 component also exhibits significant waveform charac-
teristics in the time domain11. A P300 detection algorithm is essential because it determines the accuracy and reli-
ability of BCI systems. Thus, some scholars have attempted and proposed many P300 detection algorithms such as 
independent component analysis (ICA)12, common spatial pattern (CSP)13, xDawn14,15, hierarchical discriminant 
component analysis (HDCA)16–19, sliding HDCA (sHDCA)20,21, and convolutional neural network (CNN)22. On 
this basis, many BCI system performances were improved significantly.

Farwell and Donchin first proposed P300 alphabet speller system (FD speller)23. The system is a 6 × 6 matrix, 
and each element is a specified character. The system has a total of 36 characters (26 letters and other control 
characters) and uses a stepwise linear discriminant analysis (SWLDA) algorithm to detect P300 components. 
Krusienski et al.24 compared the performances of various P300 detection algorithms and concluded that SWLDA 
and Fisher’s linear discriminant (FDA) are suitable for the P300 Speller system. In the FD speller, the matrix 
rows or columns blink randomly, and when the locked symbol is hit by rows or columns (probability is 1/6), it 
induces a P300 component. The FD speller determines the expected symbol position using the detected P300 
component. Cuntai Guan et al.25 believed that if the probability of a character being hit is small, then the P300 
component induced is evident and detection is easier. Thus, Guan et al. proposed a single-character display ran-
dom flashing speller system (SC speller) based on the FD speller (the probability that the character was hit was 
1/36). Furthermore, Townsend et al.26 proposed a checkerboard paradigm speller system, that is, a random flash 
hits multiple characters, and then a special coding is employed to confirm the anticipant character of the subject. 
This method can achieve higher accuracy and mean bit rate. Brian Roark et al.27,28 proposed Huffman scanning, 
which uses Huffman coding to select the symbols to highlight, based on the FD speller. Qi LI et al.29 proposed 
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a familiar face (FF) spelling paradigm, which introduces a familiar face to improve recognition accuracy based 
on the FD speller. They further proposed a green familiar face (GFF) paradigm30. Dewen Hu et al.31 proposed a 
hybrid BCI speller that fuses P300 with steady-state visual evoked potential (SSVEP) and introduced an SSVEP 
feature on P300-row and P300-column feature. Chen et al.32,33 used the SSVEP feature and introduced the phase 
feature to build a high-speed speller to achieve the highest information transfer rate (approximately one character 
per second). These speller systems are matrix-based spellers.

In the last two decades, research on the EEG speller has shown exciting achievements, but many problems 
remain unsolved. Brunner et al.34 showed that FD speller-based recognition accuracy is more dependent on 
the gaze of the subject; it requires the user to not move his eyes, and then often cannot achieve the desired 
accuracy. Therefore, the matrix-based speller has a gaze-dependent feature. This condition limits the use of the 
matrix-based speller in some patients with severe neuromuscular disability. Brendan et al.35 showed that the 
larger the matrix, the better the performance. Salvaris et al.36 demonstrated that when the character is small, 
the performance is worse. Therefore, the matrix-based speller has a space-dependent feature. The matrix-based 
speller cannot easily produce sufficiently small results that people between the mild disabled and normal cannot 
easily spread.

To solve these problems, many scholars have proposed non-matrix structure speller paradigm. Gabriel et 
al.37 proposed a GIBS block speller that effectively overcomes the problem of the matrix-based speller. Treder et 
al.38 proposed an ERP Hex-o-Spell paradigm, a two-level speller consisting of six discs arranged on an invisible 
hexagon. The method can achieve higher accuracy than the FD speller when eye movements are not permitted. 
Fabio Aloise et al.39 proposed a Geometric Speller to optimize the design of Hex-o-Spell. Treder et al.40 compared 
the Hex-o-Spell, Cake Speller, and Center Speller. The three different variants of a two-stage visual speller are 
based on covert spatial attention and non-spatial feature attention. The results show that they can achieve higher 
accuracy and independent of eye gaze. However, this method is still not sufficiently convenient. Orhan et al.41–43 
proposed RSVP keyboard, using rapid serial visual presentation (RSVP) paradigm for spelling. In the RSVP 
paradigm, each candidate letter is shown at the same place on the screen in a temporally ordered sequence at a 
comfortably high presentation rate. Chennu et al.44, Moghadamfalahi et al.45, and Acqualagna et al.46,47 showed 
that the EEG classifiability with the RSVP speller was as good as that with the FD speller, and the RSVP speller 
has gaze-independent and space-independent characteristics. Therefore, the RSVP speller can be used by persons 
with sight disabilities, and the design of the interface can be extremely small. The RSVP speller has a tempting 
potential to be integrated into small intelligent devices (such as smartphones, augmented reality devices, and 
virtual reality devices). However, relative to most matrix-based spellers, the RSVP Speller information transfer 
rate (ITR) is not satisfactory. Literature44,45 indicates that the RSVP speller (which contains 28 characters) has 
only one-third of the ITR of the Matrix speller (which contains 36 characters). Therefore, improving the ITR 
of the RSVP speller system under the condition of ensuring RSVP speller recognition accuracy is an extremely 
meaningful subject of study.

The typical RSVP speller presents a scene (a character) at a time. If we present multiple characters at a time, 
then we can effectively shorten the time to display all characters, and then enhance the ITR. We propose a 
triple-RSVP speller. The system uses the RSVP paradigm and shows three different characters, with each char-
acter appearing three times. We asked the subjects to observe the three characters at the same time. Finally, 
we group average the corresponding EEG signal for each character, and determine the P300 component and 
expected characters of the subject.

Results
Visual stimuli and procedure.  The triple-RSVP speller presentation interface is shown in Fig. 1(A). The 
three symbol presentation areas are rectangles with size of 60.00 × 65.00 pixels, parallel arranged, and the middle 
symbol presentation area is offset down by 30 pixels to ensure that subjects can view three characters at the same 
time, in a short time. We use a 17.3-inch mobile workstation screen with a screen resolution of 1920 × 1080 pixels. 
Every 250 ms (4Hz), the three symbols in presentation areas refresh once at the same time. The new symbol is 
presented in three presentation areas. The symbol group presentation order is determined by the symbol group 
sequence, such as block 1, block 2, and block 3. Each block contains 36 characters, each three characters make up 
a symbol group, and each symbol group appears in three symbol presentation areas. Thus, each block contains 12 
symbol groups (36 characters make up 12 symbol groups and each symbol group contains 3 characters). The three 
blocks are different, and the symbol group and positions of the different blocks are specially designed to ensure 
that the position of each character appears unique in different blocks. The subjects must watch three blocks to 
identify an expected character. During this period, the expected character appears three times in different symbol 
groups of different blocks. We average the EEG to correspond to the each character, determine the P300 compo-
nent, and identify the expected symbol, as shown in Fig. 2.

As shown in Fig. 2, the subject looks at the symbol group sequence that consists of three blocks, each block 
consists of 12 symbol groups (12 trials), each trial shows three characters, and each character appears three times. 
For example, when the target character is “B,” the subjects notice three symbol groups: “BDF” in block 1, “BEH” 
in block 2, and “BNZ” in block 3. Each symbol group has a corresponding EEG signal; thus, the character of the 
same symbol group corresponds to the same EEG signal. Therefore, we designed unique symbol groups in three 
blocks. When we group average the EEG signals of a character, the P300 component of the target character can 
be easily detected. For example, in Fig. 2, we group average the EEG signal of symbol group ”BDF”, ”BEH”, and 
”BNZ” as the group average signal of character “B”. Similarly, the group average signal of non-target character is 
composed of the EEG of all symbol groups that contain the non-target character, and the target adjoint character 
is also true. The symbol groups of the target adjoint character contain the target character; thus, the group average 
EEG of the target adjoint character contains some of the P300 component. For example, the group average EEG 
of character “D” consists of “BDF,” “ADG”, and “DP2”, where “BDF” contains the target character B. Thus, a trial 
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P300 component is introduced during the mean processing of the letter “D” to allow the classifier score of the 
target adjoint character to be closer to the target character score. The design details of the symbol group sequence 
are in the Methods section.

Event-related responses.  We calculate the mean of the signal corresponding to the target character, tar-
get adjoint character, and non-target character, as shown in Fig. 3(A,B and C), respectively. An evident peak is 

Figure 1.  Stimulus presentation interface of triple RSVP speller.

Figure 2.  Triple RSVP speller system overview. The subject looks at the symbol group sequence consisting of 
three blocks, and focus on the specific character, for example “B”. In the triple RSVP speller, each trial shows 
three characters, and each character appears three times. The EEG signal that corresponds to each character is 
group averaged, and the score is calculated by a trained P300 classifier. Finally, the highest score of all symbols is 
identified as the target character for the subjects.



www.nature.com/scientificreports/

4SCIENTIfIC Reports |  (2018) 8:3350  | DOI:10.1038/s41598-018-21717-y

observed in the mean signal corresponding to the target character in Fig. 3(A), between 400 and 600 ms. The 
target adjoint character has an undetectable peak between 400 and 600 ms because the three symbol groups that 
correspond to the target adjoint character contain a target character. Therefore, the P300 component is included 
in the corresponding EEG signal of a symbol group, resulting in the target adjoint character mean EEG signal 
containing some of the P300 components. In addition, the P300 component is not included in the signal of a 
non-target character. All categories of the signals contain 4 Hz harmonic components because of the symbol 
group presentation speed of 4 per second.

Triple-RSVP speller performance.  This study tested the triple RSVP speller using a copy spelling task. 
Table 1 lists the selected accuracy and ITR for all subjects. The triple RSVP speller offline average accuracy is 
0.780, and the average ITR is 19.876 bit/min. The online average accuracy is 0.790, and the average ITR is 20.259 
bit/min. The system spelled at a speed of 10 s per character, and the stimulus presentation interface is a 90 × 195 
pixel rectangle.

Figure 3.  EEG signals of different categories (target, target adjoint, and non-target symbol), measured by 
electrode Pz. (A) The target character corresponds to the mean of the EEG signal. Each line represents the 
group average of the EEG signals of the target character (three symbol groups, each symbol group has a trial 
EEG, and the signal of the target character is the mean of the three symbol group), and the color indicates the 
signal amplitude value. Similarly, (B) and (C) indicate the cases of target adjoint symbol and non-target symbol, 
respectively. (D) indicates the averages across all signals of (A). (E) indicates the averages across all signals of 
(B). (F) indicates the averages across all signals of (C).

Subject

Accuracy, % ITR, bit/min

Training 
(offline)

Testing 
(online)

Training 
(offline)

Testing 
(online)

sub1 0.742 0.732 18.137 17.740

sub2 0.812 0.831 21.050 21.886

sub3 0.663 0.702 15.117 16.575

sub4 0.663 0.732 15.117 17.740

sub5 0.756 0.783 18.701 19.813

sub6 0.951 0.922 27.819 26.248

sub7 0.733 0.716 17.780 17.114

sub8 0.821 0.883 21.443 24.295

sub9 0.779 0.785 19.646 19.897

sub10 0.828 0.814 21.753 21.137

sub11 0.776 0.753 19.521 18.579

sub12 0.715 0.741 17.075 18.097

sub13 0.902 0.882 25.228 24.247

Mean 0.780 0.790 19.876 20.259

SD 0.084 0.071 3.665 3.101

Table 1.  Classification accuracy (%) and ITR (bit/min) in triple RSVP speller.
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Discussion
We propose a novel triple RSVP speller with two notable features as follows: gaze-independent and 
space-independent features. The current mainstream BCI speller system is often based on the matrix structure. 
This structure of the speller system can achieve a higher information transfer rate. However, two major prob-
lems are not resolved, namely, gaze-dependent and space-dependent problems. The gaze-dependent problem 
refers to the subjects that must look at specific clues when spelling a character. Thus, when spelling a character 
in a covert attention approach, satisfactory select accuracy and information transfer rate are often not achieved. 
The space-dependent problem refers to the stimulation presentation interface that requires a large screen. Some 
studies have shown that in the matrix-based speller, when the matrix achieved is large, the performance is better; 
when the character is small, the performance is worse. Thus, the matrix-based speller cannot use a smaller screen 
(for example, a mobile phone screen) to ensure a certain accuracy and information transfer rate conditions; it is 
detrimental to BCI speller spread among normal people.

In the face of gaze dependent issue, many scholars have proposed covert attention speller systems such as the 
GIBS block speller37, Hex-o-spell38, Geometric Speller39, and RSVP speller42,43,48. However, these methods cannot 
achieve a satisfactory information transfer rate. The GIBS block speller, Hex-o-spell, and Geometric Speller in 
the design cannot solve the problem of space dependency. Compared with these speller systems, we designed the 
triple RSVP speller system that can achieve a higher information transmission rate.

As shown in Fig. 4, we compared the triple RSVP speller with the mainstream gaze-independent spell system 
(the RSVP speller, Geometric speller, and GIBS block speller, and the data are derived from references44,39, and37, 
respectively) and the matrix-based P300 speller (data are derived from literature31) information transfer rate.

The RSVP keyboard was proposed by Orhan et al.41–43, using rapid serial visual presentation (RSVP) paradigm 
for spelling. In the RSVP paradigm, each candidate letter is shown at the same place on the screen in a temporally 
ordered sequence at a high presentation rate, however, the ITR of this method is not satisfactory. The Geometric 
Speller was proposed by Aloise et al.39, a total of N2 characters are grouped into 2N sets of N characters (anal-
ogous to rows and columns of the FD speller). In this arrangement, each character belongs to exactly two sets. 
In the visual layout of each set, characters are displayed at the vertices of a regular geometric figure. During the 
presentation, each set of characters is displayed transiently on the screen. The GIBS block speller was proposed by 
Gabriel et al.37, the symbols are grouped into four blocks following an alphabetical order. This layout is composed 
by a group of 9 symbols in the center and 3 lateral small blocks with the remaining symbols. To select a symbol, 
the user has first to select the small block where it belongs. When the respective block is selected, the symbols of 
that block move to the center and the respective small block disappears. The Geometric speller and GIBS block 
speller have higher ITRs, but require larger screen space. The matrix-based P300 speller is a classic BCI system, 
but the gaze-dependent and space-dependent problems cause it cannot be widely used in severe neuromuscular 
disability and normal people.

In this paper, the proposed triple RSVP speller proposed has space-independent features. Compared to the 
matrix-based BCI speller, the triple RSVP speller can be integrated in a small screen. In this experiment, we 
reduced the stimulus presentation interface to a size of 195 * 90 pixels. Compared to that of the matrix-based 
spelling system, the RSVP sequence is less demanding to stimulate size and spatial location requirements. Thus, 
the proposed triple RSVP speller can be embedded in the vast majority of portable smart devices (such as smart-
phones, smart watches, and others). The speller is useful for the BCI technology spread in daily life, and disabled 
persons can conveniently use it.

Figure 4.  Information transfer rates for different speller systems. The RSVP speller, Geometric speller, GIBS 
block speller, and triple RSVP speller are gaze-independent spelling system. The matrix-based P300 speller 
refers to the current typical P300 spelling system to achieve the ITR level.
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We propose the triple RSVP speller with gaze-independent and space-independent characteristics. Compared 
to the traditional gaze-independent spelling system, the triple RSVP speller can achieve higher letter spelling 
speed on a smaller screen. However, compared to the matrix-based spelling system, the triple RSVP speller ITR 
is still relatively low. Our goal is to improve the triple RSVP speller ITR.

Methods
Symbol group sequence.  The design of the symbol group sequence in the proposed triple RSVP speller is 
crucial. Our design criteria are as follows. First, each symbol must be presented again at a longer time interval. 
Thus, we designed three blocks, and each block contains the same 36 characters. Second, the symbol group of 
each character is different in different blocks to avoid confusion with the target character and the target adjoint 
character when distinguishing the classifier score. We designed the symbol group sequence as shown in Table 2 
and Fig. 5.

Participants.  A total of 13 subjects (11 males and 2 females, average age of 22.1 ± 1.5 years, and right-handed) 
participated in the experiment. All subjects were students of Zhengzhou University and did not have any pre-
vious training in the task. The subjects exhibited normal or corrected-to-normal vision with no neurological 
problems and were financially compensated for their participation. This study was conducted after we obtained 
informed consent and Ethics Committee approval of China National Digital Switching System Engineering and 
Technological Research Center, and was carried out in accordance with the approved guidelines. All of the partic-
ipants provided their written informed consent to participate in this study.

EEG acquisition.  EEG data were acquired by a g.USBamp system (G.Tec), using 16 electrodes distributed in 
accordance with the international 10–20 system. The electrooculographic (EOG) activity were recorded by two 
electrodes positioned above and below the left eye. We collected a group of EOC samples before the experiment 
and implemented the EOC artifact removal by using the method proposed by Chi Zhang49,50.

The EEG data were sampled at 2400 Hz using 200 Hz low-pass and 50 Hz notch filters. Prior to scoring the 
images, we pre-processed the EEG data through the following steps: downsampling to 600 Hz, band-pass filter-
ing (0.1–60 Hz), and baseline correction. Zero- delay filtering was implemented using the filtfilt() function in 
MATLAB. Then, the EEG data were divided into epochs. Each epoch consisted of 1000 ms of EEG data after the 
stimulus onset.

Index 1 2 3 4 5 6 7 8 9 10 11 12

block1 ACE GIK MOQ SUW Y13 579 BDF HJL NPR TVX Z24 68-

Index 13 14 15 16 17 18 19 20 21 22 23 24

block2 ADG JMP SVY 258 BEH KNQ TWZ 369 CFI LOR UX1 47-

Index 25 26 27 28 29 30 31 32 33 34 35 36

block3 AMY BNZ CO1 DP2 EQ3 FR4 GS5 HT6 IU7 JV8 KW9 LX-

Table 2.  Symbol group sequence.

Figure 5.  Rule of symbol group sequence. The abscissa represents 36 characters, and the ordinate represents 
the order in which the characters are presented, where 1 to 12 are block 1, 13 to 24 are block 2, and 25 to 36 are 
block 3. The symbol group presented in different trials is composed of white-marked characters.
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EEG data analysis.  Analysis of the ERP using HDCA algorithm was performed as described by Parra et 
al.16,17,51. The HDCA algorithm can be divided into two layers. First, the HDCA algorithm was employed to obtain 
the average data and divide the original EEG data by time window size. The weight of each channel was then 
calculated in each time window to maximize the differences between the target and non-target classes. The time 
window size cannot be determined in advance. Thus, we selected 25 ms as the time window size after numerous 
experimental repetitions. The weight of each channel in each time window was calculated by Fisher linear dis-
criminant (FLD). In each time window, the EEG signal was reduced to one dimension, such as in Equation (1), 
as follows:

∑∑=






 − +y

N
w x1 ,

(1)k
n i

ki i k N n[( 1) ]

where − +xi k N n[( 1) ] represents the kth separate time-window value from the single-trial data. The variable corre-
sponds to the EEG activity at the data sample point n measured by electrode i. w is a set of spatial weights. Weight 
vector wki is identified for the kth window and i electrode following each image presentation (T is the temporal 
resolution of the time window, which is 0.025 in this paper, N is the sampling time point of the time window, FS is 
the sampling rate, K is the number of time windows, and = = ×n N N T F1, 2, , , S, ≤ ≤k K0 ). yk is the 
signal after reduced dimension in kth separate time-window. The time window size cannot be determined in 
advance. Thus, we selected 25 ms as the time window size after numerous experimental repetitions. The weight of 
each channel in each time window was calculated by Fisher linear discriminant (FLD).

∑=y v y ,
(2)IS

k
k k

The results for the separate time windows (yk) were then combined in a weighted yk average to provide a final 
interest score (yIS) for each image. FLD analysis was used to calculate the spatial coefficient wki, and logistic regres-
sion was adopted to calculate the temporal coefficient vk, such as in (2).

The time window size is 25 ms, k = 40.

Evaluation of triple RSVP speller performance.  To evaluate the performance of our triple RSVP speller, 
we computed the classification accuracy and ITR, which is widely used in the BCI speller community52. The ITR 
is given by

=
+ + − −

−( )
ITR

N P P P

Time

log log (1 )log
, (3)

P
N2 2 2
1

1

where Time is the time interval per selection. In this paper, we designed the triple RSVP speller to select a charac-
ter that takes 10 seconds. N is the number of possible choices, and P is the probability that the desired choice will 
be selected in a process called target identification accuracy or classifier accuracy.

In the performance evaluation stage, we calculated the precision accuracy and information transfer rate of all 
subjects in the offline and online environments, respectively. In the training phase, we asked the subjects to focus 
on specific characters and collected EEG data for offline analysis and P300 classifier training. Then, we asked the 
subjects to spell a series of specific characters in the copy mode to calculate the online accuracy and ITR.
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