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A fuzzy feature fusion method for 
auto-segmentation of gliomas 
with multi-modality diffusion and 
perfusion magnetic resonance 
images in radiotherapy
Lu Guo1, Ping Wang2, Ranran Sun1, Chengwen Yang1,2, Ning Zhang1, Yu Guo1 &  
Yuanming Feng1,2,3

The diffusion and perfusion magnetic resonance (MR) images can provide functional information about 
tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature 
fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric 
functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and 
relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model 
was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result 
of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated 
automatically. The auto-segmentations of tumour in structural MR images were added in final auto-
segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for 
nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs 
showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice’s similarity coefficient 
(DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) 
and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, 
which shows potential of utilizing functional multi-parametric MR images for target definition in 
precision radiation treatment planning for patients with gliomas.

To avoid missing target and spare critical healthy brain tissue around the target volume in radiotherapy treatment 
planning of gliomas, cancerous tissue involvement must be correctly defined in the gross tumour volume (GTV) 
delineation. Conventional T1-weighted contrast-enhanced (T1C) and T2-weighted (T2) magnetic resonance 
imaging (MRI) reveal soft tissue with high contrast and could help improve the accuracy of tumour volume 
definition1. However, conventional MRI does not accurately show the actual tumour borders of glial neoplasms 
because it reflects only anatomic rather than functional properties of the tumour2. And tumour cells could be 
found in serial biopsies beyond signal intensity changes on T2 MRIs3. In contrast, advanced imaging techniques, 
such as diffusion and perfusion MRI, provide functional information about the tumour microenvironment and 
enable more sensitive detection of the tumour extent. For instance, the parameter of apparent diffusion coeffi-
cient (ADC) is derived from diffusion-weighted imaging (DWI) and is proved to be correlated reciprocally with 
tumour cellularity4. Another useful parameter of fractional anisotropy (FA) is calculated from diffusion tensor 
imaging (DTI) and is sensitive to the changes in fibre bundles. Furthermore, dynamic-susceptibility contrast 
(DSC) and its derived parameter of relative cerebral blood volume (rCBV) can be used to assess the tumour 
vascularity.

Those diffusion and perfusion parameters have been investigated to define accurate tumour extent and delin-
eate target volume in radiation treatment planning. For instance, DTI-derived FA values was used to detect 
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white-matter abnormalities resulting from tumour infiltration and reduce the size of the planning-target volume 
(PTV), resulting in escalated doses without an increase in normal tissue complication probability (NTCP) in 
radiotherapy treatment planning for patients with high-grade gliomas5. Additionally, FA values was also used 
to identify tumour cell infiltration along white matter tracts in high-grade gliomas in order to preserve coverage 
of the likely routes of dissemination and spare uninvolved brain, generating a better radiotherapy target volume 
delineation6. Furthermore, the integration of ADC, rCBV and metabolic information of proton MR spectroscopic 
imaging (1H-MRSI) is able to discriminate infiltrating tumour from surrounding vasogenic oedema or normal 
tissues for improving the evaluation of glioblastoma extent7,8.

As the types of MR modalities involved in studies increase, accurate manual delineation of GTV in radiother-
apy treatment planning becomes highly time-consuming and complicated for radiation oncologists, which may 
lead to intra- and inter-observer variability9–11. The application of automatic segmentation methods might be 
helpful to solve this problem. Recently, most of the automatic segmentation methods using information integra-
tion of multimodal MR images of patients with gliomas focus on deformable models and clustering techniques12. 
Although methods based on deformable models allow for real-time applications with high computational effi-
ciency, they are sensitive to the initial condition and local functional minimum, which may limit the applications 
in MR images with inherent noise and vague tumour border13–15. Compared with deformable models, clustering 
techniques such as K-mean and Fuzzy C-means (FCM) algorithms treat structures in medical images as patterns 
and use techniques from pattern recognition fields to perform segmentation13. Thus, clustering techniques have 
more applications for the medical images where the boundaries of structures or areas of interest are often poorly 
defined. In a recent study, spatial FCM algorithm was used to improve the accuracy in segmentation of differ-
ent pathogenic region of glioblastoma multiforme (GBM) in multi-parametric (ADC, rCBV, T2-weighted) MRI 
fusion framework16.

Nevertheless, accurate automatic segmentation of gliomas in multimodal MR images remains a challenging 
issue for three main reasons: (1) the tumour heterogeneous nature and the difference in image acquisition method 
make one tumour shows different shape, size and location in different image modality (Fig. 1); (2) the ambiguous 
tumour border may deteriorate in the image with decreased resolution, especially in diffusion and perfusion 
parameter image such as ADC, FA and rCBV; (3) the partial volume effects and the inherent noise in imaging 
system could produce negative influence to the segmentation results9.

To explore solutions for the problems mentioned above, a fuzzy feature fusion method using multi-modality 
diffusion and perfusion MR images (ADC/FA/rCBV) is presented in this study for automatic segmentation of 
gliomas in radiation treatment planning. The new method provides each voxel with a possibility value belonging 
to the tumour which helps in preventing missing high risk regions in GTV definition in radiation treatment 
planning.

Figure 1. Multimodal images of a patient with glioblastoma multiforme (GBM). (a) T1-weighted contrast-
enhanced image, (b) T2-weighted image, (c) apparent diffusion coefficient (ADC) map, (d) fractional 
anisotropy (FA) map, (e) relative cerebral blood volume (rCBV) map. The appearances of tumor in anatomical 
and functional images are different from each other.
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Methods and Material
In this study, all methods were carried out in accordance with relevant guidelines and regulations. All images were 
collected and used with the approval of the Ethics Committee of Tianjin University Biomedical Engineering and 
patients’ written consents. And informed consents were obtained from all of the patients.

Fuzzy feature fusion method. In assessing gliomas with functional multi-parametric images, commonly 
used descriptions about the appearance of gliomas in images by clinical radiation oncologists were considered. In 
ADC maps, the majority of image intensity attributable to tumour, necrosis and oedema in peritumoral area are 
higher than normal-appearing white matter17. And the FA values would decrease in case of tumour infiltration 
because the reduction of the directional order of axonal tracts18. For rCBV values, they would increase in regions 
adjacent to the tumour because the tumour growth and invasion is dependent on developing blood supply19. 
Therefore, a glial tumour often presents as a relative bright region (hyper-signal) in ADC and rCBV map, while 
a dark region (hypo-signal) in FA map. However, these descriptions are very fuzzy and there is no commonly 
accepted threshold standard of these parametric values for precisely defining the tumour border. Thus, we consid-
ered transforming these fuzzy linguistic descriptions into mathematics fuzzy models and treating the definition 
of tumour extent as fuzzy image processing which understands and represents image features as fuzzy set20. For 
each modality (ADC/FA/rCBV), we created one mathematics fuzzy model that transforms the image volume into 
fuzzy feature space in which the fuzzy feature represents the possibility belonging to tumour9. Based on the fuzzy 
fusion result of the three fuzzy feature spaces, the auto-segmentation was conducted to generate the final result 
on functional multi-parametric image data.

Additionally, conventional anatomical MRI image data (T1C and T2) was also included to improve the accu-
racy and reliability of final segmentation. FCM algorithm was used in the tumour segmentation in anatomical 
MRI image data.

The framework of fuzzy fusion and tumour segmentation is shown in Fig. 2. In this framework, functional 
multi-parametric images and anatomical images are processed separately, and the final segmentation result is the 
combination of segmentation derived from functional and anatomical parts.

Tumour extent definition in functional multi-parametric images. Fuzzy feature extraction: In the application of 
fuzzy set theory, estimation of membership functions from image data is an important step21. In this study, the 
membership functions for each parametric value are fuzzy models for extracting fuzzy feature that represents 
the possibility of each voxel belonging to tumour. There are many methods for generating membership func-
tions such as perception-based method22, heuristic methods23 and histogram-based methods24. For taking full 
advantage of the statistical probability distributions of multi-parametric values of tumour in functional maps, one 
histogram-based method was developed in the generation of membership functions which consists of following 
two steps.

Sample collection. In order to avoid bias in sample collection conducted by a single institution, paramet-
ric values of tumour from our clinical multi-parametric MRI datasets and related research articles published 
by different institution were treated as samples for each modality. The clinical image datasets were obtained 
from 4 patients with biopsy-confirmed gliomas including 2 low-grade and 2 high-grade astrocytomas. Each 
patient underwent DWI, DTI and DSC imaging, the ADC, FA, rCBV maps were calculated respectively. The 
ADC values in hyperintense region such as solid enhancing tumour mass, tumour margin, infiltrating tumour, 
tumour-infiltrated oedema and infiltrated tissue are considered as reasonable representation of tumour. 16 sam-
ples (ADC mean value ± standard deviation) were generated from the 4 clinical image datasets (ADC maps) in 
which the ADC values were calculated in regions of interest (ROIs) with size of 25 pixels placed in non-cystic 
mass, tumour margins, areas of abnormal MR signal surrounding the enhancing tumours. In addition, 16 ADC 
values from 5 published articles7,8,25–27 were added as samples, making that the total sample size for ADC values 
32. The FA values in hypointense region such as solid enhancing tumour mass and tumour-infiltrated tissue 
can be used to generate samples of tumour18. On FA maps in our clinical datasets of 4 patients, 16 FA values 
(mean value ± standard deviation) were measured by placing ROIs of 25 pixels in enhancing tumour and regions 
adjacent to enhancing tumour. Additionally, 5 FA values were generated in similar locations from 3 published 
articles25,26,28, resulting in that the total sample size for FA values 21. Because the rCBV values in and adjacent to 
tumour are often higher than in the corresponding contralateral areas, rCBV ratio values = rCBV [tumour]/rCBV 
[contralateral normal white matter] is usually used in evaluation8. 12 rCBV ratio values (mean value ± standard 
deviation) were generated from our clinical datasets of 3 patients, in which the rCBV values were calculated in 
ROIs placed in solid enhancing tumour, hyperintense non-enhancing peritumoral area and contralateral normal 
white matter. Moreover, 20 rCBV ratio values were measured in similar locations on rCBV maps from 5 published 
articles7,8,26,27,29. Thus, the sample size for rCBV ratio value was 32.

Fuzzy model creation. Fuzzy statistics method was used to calculate the tumour membership frequency 
of parametric values using the samples of each modality as mentioned above30. The tumour membership fre-
quency of each fuzzy interval of parametric value was represented using histograms and treated as probability 
distributions of membership functions for parametric values. Then, the histograms were modelled with a mixture 
of parameterized functions to generate the membership function. Curve fitting was applied in the definition of 
the most suitable mixture format of parameterized functions with low fitting error. The membership functions 
corresponding to ADC, FA and rCBV values are defined with following equations:
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where νADC, FAν  and νCBV  represents the parametric value of voxel in ADC, FA and rCBV map respectively and 
MF ( )ADC ADCν , νMF ( )FA FA  and MF ( )CBV CBVν  represents the membership function corresponding to ADC, FA and 
rCBV ratio values respectively. The proposed membership functions of the tumorous tissue in multi-parametric 
MRI images are shown in Fig. 3. A membership function maps each voxel of image volume to a membership 
value between 0 and 1 that represents the possibility belonging to tumour. Thus, the membership functions, 

νMF ( )ADC ADC , νMF ( )FA FA  and MF ( )CBV CBVν , are fuzzy models that transform the three parametric MRI image 
volumes into three fuzzy feature spaces, noted as FSADC, FSFA and FSCBV , in which the voxel values represent the 
possibility belonging to tumour (Fig. 4).

Fuzzy fusion of three fuzzy feature spaces: Isolated diffusion/perfusion parameters only reveal partial infor-
mation about brain-tumour microenvironments and are insufficient to enable clinicians make crucial decisions 
throughout the whole treatment. To take advantage of multimodal fuzzy information and compromise the three 
memberships, the geometric mean operator was used in this study for fuzzy fusion of the three fuzzy feature 
spaces9. The fusion process was conducted on voxel level to generate each voxel value in fused fuzzy feature vol-
ume noted as FSF sionu  which is defined as following:

FS v FS v FS v FS v( ) ( ) ( ) ( ) (4)F sion ADC FA CBVu 3=

Figure 2. Framework of fuzzy fusion and tumor segmentation using multi-modality diffusion and perfusion 
MRI images. The original input images are noted MRI sequences of T1-weighted contrast-enhanced images 
(T1C), T2-weighted images (T2), and parameter maps of apparent diffusion coefficient (ADC), fractional 
anisotropy (FA) and relative cerebral blood volume (rCBV). Final tumor extent is the combination of 
segmentation results derived from functional and anatomical parts as shown in the left and right columns.
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where v represents the voxel in fused fuzzy feature volume, and FS v( )ADC , FS v( )FA  and FS v( )CBV  represents the 
membership value of the corresponding voxel in fuzzy feature space of ADC, FA and rCBV ratio values 
respectively.

Segmentation after fusion: To extract a region containing voxels with high possibility belonging to tumour, 
segmentation was applied on FSF sionu . As shown in Fig. 5, the regions that consist of voxels with membership 
FS v( )F sionu  ≥ 0.6 cover most of the abnormal area in FSF sionu  as compared with the contralateral normal area. 
However, there are still some normal voxels that are included in the regions with membership FS v( )F sionu  ≥ 0.6. 
Thus, one clinical radiation oncologist evaluated the FSF sionu  images and manually limited the range of threshold-
ing segmentation the area with high possibility belonging to tumour. The region with membership FS v( )F sionu  ≥ 0.6 
was extracted in the limited area. Subsequently, a group of morphology operators were applied to each image slice 
in this region as following: filling holes with two-dimensional four-connected neighbourhood, eroding with a flat 
disk-shaped structuring element with radius of 3-pixels twice, dilating twice with the same structuring element as 
eroding, generating the maximum region with 8-connectivity. The generated region after morphology operators 
served as the tumour volume that was segmented in multi-parametric functional data sets and was noted as 
Functionauto.

Tumour extent definition in anatomical MR images. FCM algorithm was applied for segmenting tumour in T1C 
and T2 MRI image data. The gliomas often show a contrast-enhanced region in T1C image which is much bright 
than normal-appearing peritumoral white matter and other brain tissues such as grey matter and cerebrospinal 
fluid (CSF). Thus, T1C images were classified into three clusters, including solid enhancing tumour, normal brain 
tissues and non-brain image pixels. In T2 images, the hyperintense area often reveals tumour existence because 
of the tumour-infiltrated oedema of gliomas. This area is bright than normal peritumoral brain tissues. Therefore, 
three clusters were classified in T2 images which include tumour region, normal brain tissues and non-brain 
image pixels.

Some morphological processing operators were used to fill small holes and disconnect the tumour region with 
normal tissues in the same cluster. Afterwards, to merge adjacent pixels belonging to the tumour cluster, the 

Figure 3. The membership functions of the tumorous tissue in multi-parametric MRI images. (a) Membership 
function in apparent diffusion coefficient map (ADC) noted as νMF ( )ADC ADC , (b) membership function in 
fractional anisotropy map (FA) noted as MF ( )FA FAν , (c) membership function in relative cerebral blood volume 
map (rCBV) noted as νMF ( )CBV CBV .
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region growing algorithm was applied with manually selected seed in the centre of tumour area. The union of 
region growing results in T1C and T2 images was used as the tumour extent definition in anatomical MR images 
and noted as Anatomyauto.

Combination of anatomical and functional information. The auto-segmentation results from anatomical and 
functional image data were used to generate the final auto-segmentation result of tumour volume which was 
formulated as following:

∪=GTV Anatomy Function (5)auto auto auto

where GTVauto represents the final auto-segmented gross tumour volume which is the union of Anatomyauto and 
Functionauto.

Evaluation. Imaging and preprocessing: Images for evaluation were acquired from 9 patients who were histo-
pathologically diagnosed with gliomas (6 high-grade and 3 low-grade). The MR images were acquired for each 
patient on a 1.5 T MR scanner (GE Signa Excite), including T1C, T2, DWI, DTI and perfusion weighted (PWI) 
images. Whole-brain axial T2 images were acquired using fast spin echo sequence with TR/TE = 3900/92 ms, 
image matrix = 512 × 512, field of view = 240 × 240 mm2 and slice thickness = 5 mm; DWI images were 
acquired using spin-echo echo-planar sequence with TR/TE = 4900/85 ms, image matrix = 256 × 256, field 
of view = 240 × 240 mm2, slice thickness = 6 mm, number of slices = 30 and b-values of 0 and 1000 s/mm2 

Figure 4. One slice of three parametric MRI image volumes and the corresponding three fuzzy feature spaces, 
in which voxel values represent the probability belonging to tumour. (a) Fractional anisotropy map (FA), (b) 
apparent diffusion coefficient map (ADC), (c) relative cerebral blood volume map (rCBV), (d) fuzzy feature 
space of FA map noted as FSFA, (e) fuzzy feature space of ADC map noted as FSADC, (f) fuzzy feature space of 
rCBV map noted as FSCBV .

Figure 5. The fused fuzzy feature volume (a) and regions with different memberships. (b) ≥0.6, (c) ≥0.7, (d) 
≥0.8.
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in three orthogonal directions; DTI images were acquired using spin-echo echo-planar sequence with TR/
TE = 6000/85 ms, image matrix = 256 × 256, field of view = 240 × 240 mm2, slice thickness = 6 mm, number 
of slices = 19, diffusion-sensitizing gradient encoding applied in 25 directions with b value of 1000 s/mm2, and 
one image set acquired without diffusion-sensitizing gradients; PWI images were acquired by a gradient-echo 
echo-planar imaging sequence with TR/TE = 2000/40 ms, flip angle = 90°, image matrix = 128 × 128, field of 
view = 240 × 240 mm2, slice thickness = 6 mm, number of measurements = 60 and number of slices = 17. After 
the first 10 acquisitions, a bolus of gadopentetate dimeglumine (0.2 mmol/kg) was injected as the contrast agent 
with a flow rate of 3 ml/s, followed by a 20 ml saline flush. Finally an axial T1C imaging sequence was acquired 
using spin echo sequence with TR/TE = 520/14 ms, image matrix = 512 × 512, field of view = 240 × 240 mm2 and 
slice thickness = 5 mm.

Multi-parametric images were generated in a GE medical imaging workstation (FuncTool 9.4.05a, GE Signa 
Excite) by analysing the original DWI, DTI and PWI image sets. The ADC and FA maps were generated from 
DWI and DTI images on a voxel-level basis respectively after calculating the eigenvalues of diffusion tensor in 
each voxel. According to the indicator dilution theory for intravascular tracers, voxel-based rCBV maps were 
created by integrating the area under the concentration-time curve of the contrast agent with the measurement of 
arterial input function (AIF) to position the ROI on the most visible large contralateral arterial vessel.

The 3D dual-modality rigid-body registrations were completed using the automatic image registration tool of 
MIM 5.2 (MIM Software Inc., Cleveland, OH). Based on the mutual information measure, the software mapped 
the secondary image sets of T2, ADC, FA and rCBV to the primary image set of T1C respectively.

Delineation of ground truth. For evaluating the performance of the proposed framework based on fuzzy 
feature fusion method for auto-segmentation of gliomas, the GTV delineation on the same MR images was per-
formed by one experienced radiation oncologist who was blinded to the auto-segmentation results. All GTV 
delineation results were reviewed and validated by another experienced radiation oncologist to minimize uncer-
tainty and assure accuracy of the delineation. For each patient, GTVs were contoured on anatomical and func-
tional multi-parametric MR image data respectively and combined to generate final result. On T1C and T2 
images, the contrast-enhanced and hyperintense region was outlined and noted as T C1 manual and T2manual respec-
tively31. The combination result of the two regions was used as GTV on anatomical MR images and noted as 
Anatomy T C T1 2manual manual manual∪= . According to the ADC values of tumour-infiltrated oedema and tumour 
margin shown in a published article, the hyperintense regions with ADC value higher than 1.24 × 10−3 mm2/s 
and 1.11 × 10−3 mm2/s were delineated for high-grade and low-grade gliomas respectively and noted as 
ADCmanual

31. The delineation process was applied by comparing with contralateral normal brain tissue, and 
excluding the normal hyperintense region in ADC map such as CSF. For FA maps, compared with the contralat-
eral normal white matter, the hypointense regions with FA value lower than 0.286 and 0.17 were contoured for 
high-grade and low-grade gliomas respectively and noted as FAmanual. The thresholding FA values used for 
tumour-infiltrated oedema and intratumoral region were the same as in a published article32. Before delineation 
on rCBV maps, rCBV ratio values = rCBV[tumour]/rCBV[contralateral normal white matter] were calculated for 
each voxel in and surrounding the contrast-enhanced tumour area shown in T1C and T2 images. The rCBV[con-
tralateral normal white matter] was obtained by calculating the mean rCBV value in a ROI of 25 pixels placed in 
the contralateral and symmetrical normal white matter. Subsequently, in accordance with the rCBV ratio values 
of tumour mass shown in a published study, hyperintense regions with rCBV ratio higher than 5.18 and 2.32 were 
delineated for high-grade and low-grade gliomas respectively and noted as CBVmanual

33. The necrosis, cystic mass, 
large vessels and haemorrhage were excluded by referring to the T1C and T2 images. Based on the clinical expe-
rience of the observer, the GTV on functional multi-parametric MR image was obtained by integrating the three 
regions and noted as =Function combination ADC FA CBV( , , )manual manual manual manual . Finally, the manually 
delineated GTV was generated by the union of anatomical and functional results and noted as 

∪=GTV Anatomy Functionmanual manual manual.

Quantitative evaluation. The manual delineation results were used as the ground truth. Then, the quanti-
tatively comparisons between manually delineated GTV (GTVmanual) and automatically segmented GTV (GTVauto) 
in terms of volume and shape were assessed for each patient11. Additionally, sensitivity and specificity were calcu-
lated to evaluate the performance of auto-segmentation.

The volume difference between GTVauto and GTVmanual was calculated as following11:

∆ =
| − |

×V V V
V

(%) 100
(6)

auto manual

manual

where Vauto is the volume of GTVauto and Vmanual is the volume of GTVmanual. For comparison of the shape of two 
volumes, Dice’s similarity coefficient (DSC) was used to evaluate the concordance between GTVauto and GTVmanual, 
which is described as34:

∩=
+

DSC GTV GTV
GTV GTV

2( )
( ) (7)

auto manual

auto manual

Apparently, DSC values range from 0 to 1, in which 0 means total disunity of two volumes and 1 means the 
two volumes are equal and total unity in shape. The evaluations of sensitivity and specificity were conducted as 
following:
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=
+
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V

V V (8)
ture positive

ture positive fasle negative

=
+

Specificity
V

V V (9)
ture negative

ture negative false positive

where the Vture positive was the intersection of GTVauto and GTVmanual, Vfasle negative was the volume in GTVmanual but 
not included in GTVauto, Vture negative was the volume not included in both of GTVauto and GTVmanual and Vfalse positive 
was the over-segmented volume in GTVauto but not included in GTVmanual

11.

Result
The comparison of volumes between manually delineated GTV and automatically segmented GTV is summa-
rized in Table 1. It can be seen that the volumes of GTVs defined by automatic segmentation differs from the 
volumes of GTVs defined by manual delineation on each patient. ∆V  ranges from 1.66% (patient No. 9) to 
19.59% (patient No. 1) with the mean value of 8.69% (±5.62%).

Table 2 shows the evaluation results of DSC, sensitivity and specificity. For all 9 cases, DSC values are higher 
than 0.80, ranging from 0.84 to 0.92. The mean DSC value is 0.88 (±0.02), revealing that there is a high concord-
ance between GTVauto and GTVmanual in volume and shape. The sensitivity of auto-segmentation is over 0.80 in all 
patients, ranging from 0.81 to 0.92 with mean value of 0.87 (±0.04). And the specificity is higher than 0.95 in all 
cases and its mean value is 0.98 (±0.01) with the highest value of 0.99 (patient No. 2, 5, 7, 8 and 9). The high sen-
sitivity and specificity values demonstrate that the auto-segmentation based on the fuzzy feature fusion method 
shows good performance compared with the manually defined ground truth.

High concordances between the contours of GTVauto and GTVmanual are also observed on axial slices of T2 
images for all 9 patients as shown in Fig. 6. In spite of the variance of tumour in size, location, shape for different 
patient, the contours of GTVauto cover most tumour area and match to GTVmanual at a large degree.

Discussion
Our study has shown that the new fuzzy feature fusion method provides an effective and reliable way to use 
multi-modality diffusion and perfusion MR images in radiotherapy treatment planning of gliomas. The volumes 
and shape of GTV defined with this new method are satisfying for all 9 patients compared with the ground truth. 

Patient GTVmanual (cm3) GTVauto (cm3) V %( )∆

1 196.20 234.63 19.59

2 37.59 33.51 10.85

3 199.33 216.71 8.72

4 131.40 140.70 7.08

5 157.12 134.47 14.42

6 194.37 189.01 2.76

7 119.63 111.62 6.70

8 155.97 145.91 6.45

9 145.98 143.55 1.66

Table 1. Comparison of GTV volumes defined by manual delineation (GTVmanual) and automatic segmentation 
based on fuzzy feature fusion method (GTVauto). GTV = gross tumour volume; ∆V  = volume difference 
between GTVauto and GTVmanual.

Patient DSC Sensitivity Specificity

1 0.84 0.92 0.95

2 0.87 0.82 0.99

3 0.87 0.91 0.97

4 0.87 0.90 0.98

5 0.87 0.81 0.99

6 0.89 0.88 0.98

7 0.87 0.84 0.99

8 0.90 0.87 0.99

9 0.92 0.91 0.99

Mean ± SD 0.88 ± 0.02 0.87 ± 0.04 0.98 ± 0.01

Table 2. Evaluation of the auto-segmentation results in terms of DSC, sensitivity and specificity for each 
patient. DSC = Dice’s similarity coefficient; SD = standard deviation.
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Moreover, the mean sensitivity and specificity of the auto-segmentation is 0.87 and 0.98 respectively, revealing 
the high efficiency and reliability of the auto-segmentation frame work based on the new fuzzy feature fusion 
method.

In the fuzzy feature extraction process, membership functions corresponding to ADC, FA and rCBV values 
were defined with mixed sample values from low-grade and high-grade gliomas, instead of generating member-
ship functions for low-grade and high-grade gliomas respectively. Because isolated diffusion/perfusion parame-
ters only reveal partial information about brain-tumour microenvironments and are insufficient to differentiate 
low-grade from high-grade gliomas. For example, ADC values provide only information about the movement of 
water molecules and may also be affected by various factors such as the density and composition of tumour cells, 
oedema, tumour necrosis, etc., which might result in inability to discriminate gliomas accurately35. Furthermore, 
FA values do not carry sufficient information for differential diagnosis of low-grade and high-grade gliomas 
because there may be tumours that have a higher growth potential but still do not disrupt the organization 
of white matter fibres in the process of their local invasion, leading to no detectable reduction in FA values36. 
For rCBV value, it is just a single parameter of tumour behaviour. In addition to tumour vascularity, criteria 
such as mitotic activity, necrosis and nuclear pleomorphism are important in histological grading of gliomas37. 
Thus, there is not sufficient theoretical support from reported studies for constructing membership function for 
low-grade and high-grade gliomas respectively. For each modality, the fuzzy model created in this study can be 
used to define regions with high possibility belonging to tumour and differentiate tumour region from normal 
tissue.

Figure 6. Comparison between manually delineated gross tumour volume (GTV) and automatically 
segmented GTV on axial slices of T2-weighted MRI images for 9 patients. (a–i) Represent patient No. 1~9 
respectively.
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Several auto-segmentation methods based on fuzzy theory are proposed to employ multi-modality MR images 
for the tumour extent definition of gliomas. Based on knowledge-based technique and fuzzy segmentation, Dou 
et al. presented a fuzzy information fusion frame work and an average probability of correct detection 96% and an 
average probability of false detection 5% were obtained through studies of T1-weighted, T2-weighted and proton 
density images of four patients9. This perception-based method can generate fuzzy membership function with 
the prior knowledge about tumours described by experts, but lacks a general principle such as maximum likeli-
hood to estimate probability density of input features21. Compared with this perception-based method, our study 
explored a histogram-based method to the generation of membership functions, which can provide information 
regarding the probability distribution of parametric values. Furthermore, the fusion method proposed by Dou 
et al. aimed at combination of structural MR images, which may not be suitable for functional multi-parametric 
MR images. Recently, FCM algorithm was used in the semi-automatic segmentation method to detect different 
regions of glioblastoma with the combination of information provided by T2 images, ADC and rCBV maps in 
a study proposed by Fathi Kazerooni et al.16. The results show over 80% sensitivity, specificity and dice score in 
the differentiation of various tumorous regions. However, the shapes of the fuzzy membership functions would 
be affected by the presence of noise in parametric MR maps21. Thus, pre-processing is an important step to deal 
with image noise before segmentation because the parametric maps are often with low resolution and high noise 
due to the long-time acquisition and calculation process. Different from this study, our new fuzzy fusion method 
employs membership functions to interpret parametric values with possibility belonging to tumour, instead of 
just treating them as image intensity and segmenting into separate clusters. As the results of evaluation indicate, 
the proposed method yields more than 0.85 of mean DSC, sensitivity and specificity in segmentation of gliomas, 
which is higher than the study mentioned above.

Conclusions
High accuracy in automatic delineation can be achieved with the proposed method which shows promising 
potential of utilizing functional multi-parametric images for GTV definition in precision radiation treatment 
planning of gliomas.

References
 1. Datta, N., David, R., Gupta, R. & Lal, P. Implications of contrast-enhanced CT-based and MRI-based target volume delineations in 

radiotherapy treatment planning for brain tumors. J. Cancer Res. Ther. 4, 9–13, https://doi.org/10.4103/0973-1482.39598 (2008).
 2. Tsien, C. I., Cao, Y. & Lawrence, T. S. Functional and Metabolic Magnetic Resonance Imaging and Positron Emission Tomography 

for Tumor Volume Definition in High-Grade Gliomas. Semin. Radiat. Oncol. 19, 155–162, https://doi.org/10.1016/j.
semradonc.2009.02.002 (2009).

 3. Kelly, P. J. et al. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J. Neurosurg. 66, 865–874, https://
doi.org/10.3171/jns.1987.66.6.0865 (1987).

 4.  Weber, M., Giesel, F. & Stieltjes, B. MRI for identification of progression in brain tumors: from morphology to function. Expert Rev. 
Neurother. 8, https://doi.org/10.1586/14737175.8.10.1507 (2008).

 5. Jena, R. et al. Diffusion Tensor Imaging: Possible Implications for Radiotherapy Treatment Planning of Patients with High-grade 
Glioma. Clin. Oncol. 17, 581–590, https://doi.org/10.1016/j.clon.2005.04.012 (2005).

 6. Berberat, J., McNamara, J., Remonda, L., Bodis, S. & Rogers, S. Diffusion tensor imaging for target volume definition in glioblastoma 
multiforme. Strahlenther. Onkol. 190, 939–943, https://doi.org/10.1007/s00066-014-0676-3 (2014).

 7. Di Costanzo, A. et al. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. 
Neuroradiology 48, 622–631, https://doi.org/10.1007/s00234-006-0102-3 (2006).

 8. Di Costanzo, A. et al. Spectroscopic, diffusion and perfusion magnetic resonance imaging at 3.0 Tesla in the delineation of 
glioblastomas: preliminary results. J. Exp. Clin. Cancer Res. 25, 383–390 (2006).

 9. Dou, W., Ruan, S., Chen, Y., Bloyet, D. & Constans, J.-M. A framework of fuzzy information fusion for the segmentation of brain 
tumor tissues on MR images. Image and Vision Computing 25, 164–171, https://doi.org/10.1016/j.imavis.2006.01.025 (2007).

 10. Bauer, S., Wiest, R., Nolte, L.-P. & Reyes, M. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 
58, R97–129, https://doi.org/10.1088/0031-9155/58/13/r97 (2013).

 11. Isambert, A. et al. Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a 
radiation therapy clinical context. Radiother. Oncol. 87, 93–99 (2008).

 12. Menze, B. H. et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 34, 
1993–2024, https://doi.org/10.1109/tmi.2014.2377694 (2015).

 13. Ma, Z., Tavares, J. M. R. S., Jorge, R. N. & Mascarenhas, T. A review of algorithms for medical image segmentation and their 
applications to the female pelvic cavity. Computer Methods in Biomechanics and Biomedical Engineering 13, 235–246, https://doi.
org/10.1080/10255840903131878 (2009).

 14. Wasserman, R., Acharya, R., Sibata, C. & Shin, K. H. A data fusion approach to tumor delineation. in Image Processing, 1995. 
Proceedings., International Conference on. 476-479 (IEEE).

 15. El Naqa, I. et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med. Phys. 
34, 4738–4749, https://doi.org/10.1118/1.2799886 (2007).

 16. Fathi Kazerooni, A., Mohseni, M., Rezaei, S., Bakhshandehpour, G. & Saligheh Rad, H. Multi-parametric (ADC/PWI/T2-w) image 
fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magnetic Resonance 
Materials in Physics, Biology and Medicine 28, 13–22, https://doi.org/10.1007/s10334-014-0442-7 (2015).

 17. Nelson, S. J. Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI. 
NMR Biomed. 24, 734–749 (2011).

 18. Weber, M., Giesel, F. & Stieltjes, B. MRI for identification of progression in brain tumors: from morphology to function. Expert Rev. 
Neurother. 8, 1507–1525 (2008).

 19. Price, S. J. & Gillard, J. H. Imaging biomarkers of brain tumour margin and tumour invasion. Brit. J. Radiol. 84, S159–S167, https://
doi.org/10.1259/bjr/26838774 (2011).

 20. Fazel Zarandi, M. H., Zarinbal, M. & Izadi, M. Systematic image processing for diagnosing brain tumors: A Type-II fuzzy expert 
system approach. Applied Soft Computing 11, 285–294, https://doi.org/10.1016/j.asoc.2009.11.019 (2011).

 21. Medasani, S., Kim, J. & Krishnapuram, R. An overview of membership function generation techniques for pattern recognition. 
International Journal of Approximate Reasoning 19, 391–417, https://doi.org/10.1016/S0888-613X(98)10017-8 (1998).

 22. Norwich, A. M. & Turksen, I. B. A model for the measurement of membership and the consequences of its empirical implementation. 
Fuzzy Sets and Systems 12, 1–25, https://doi.org/10.1016/0165-0114(84)90047-2 (1984).

http://dx.doi.org/10.4103/0973-1482.39598
http://dx.doi.org/10.1016/j.semradonc.2009.02.002
http://dx.doi.org/10.1016/j.semradonc.2009.02.002
http://dx.doi.org/10.3171/jns.1987.66.6.0865
http://dx.doi.org/10.3171/jns.1987.66.6.0865
http://dx.doi.org/10.1586/14737175.8.10.1507
http://dx.doi.org/10.1016/j.clon.2005.04.012
http://dx.doi.org/10.1007/s00066-014-0676-3
http://dx.doi.org/10.1007/s00234-006-0102-3
http://dx.doi.org/10.1016/j.imavis.2006.01.025
http://dx.doi.org/10.1088/0031-9155/58/13/r97
http://dx.doi.org/10.1109/tmi.2014.2377694
http://dx.doi.org/10.1080/10255840903131878
http://dx.doi.org/10.1080/10255840903131878
http://dx.doi.org/10.1118/1.2799886
http://dx.doi.org/10.1007/s10334-014-0442-7
http://dx.doi.org/10.1259/bjr/26838774
http://dx.doi.org/10.1259/bjr/26838774
http://dx.doi.org/10.1016/j.asoc.2009.11.019
http://dx.doi.org/10.1016/S0888-613X(98)10017-8
http://dx.doi.org/10.1016/0165-0114(84)90047-2


www.nature.com/scientificreports/

1 1Scientific REPORtS |  (2018) 8:3231  | DOI:10.1038/s41598-018-21678-2

 23. Bloch, I. Fuzzy relative position between objects in images: a morphological approach. in Image Processing, 1996. Proceedings., 
International Conference on. 987–990 (IEEE).

 24. Zadeh, L. A. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems 1, 3–28 (1978).
 25. Provenzale, J. M., McGraw, P., Mhatre, P., Guo, A. C. & Delong, D. Peritumoral Brain Regions in Gliomas and Meningiomas: 

Investigation with Isotropic Diffusion-weighted MR Imaging and Diffusion-Tensor MR Imaging 1. Radiology 232, 451–460 (2004).
 26. Stecco, A. et al. DTI and PWI analysis of peri-enhancing tumoral brain tissue in patients treated for glioblastoma. J. Neurooncol. 102, 

261–271, https://doi.org/10.1007/s11060-010-0310-x (2011).
 27. Rollin, N. et al. Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. 

Neuroradiology 48, 150–159 (2006).
 28. Yen, P. S. et al. White matter tract involvement in brain tumors: a diffusion tensor imaging analysis. Surg. Neurol. 72, 464–469, 

https://doi.org/10.1016/j.surneu.2009.05.008 (2009).
 29. Grams, A. E. et al. Multimodal Imaging to Delineate Tumor Heterogeneity in Cerebral Gliomas. Open. J. Radiol. 4, 182–189, https://

doi.org/10.4236/ojrad.2014.42024 (2014).
 30. Wu, B. & Sun, C.-M. Fuzzy statistics and computation on the lexical semantics. Language 337, 346 (1996).
 31. Whitfield, G. A., Kennedy, S. R., Djoukhadar, I. K. & Jackson, A. Imaging and Target Volume Delineation in Glioma. Clin. Oncol. 26, 

364–376, https://doi.org/10.1016/j.clon.2014.04.026 (2014).
 32. Svolos, P. et al. Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition 

techniques. Magn. Reson. Imaging 31, 1567–1577, https://doi.org/10.1016/j.mri.2013.06.010 (2013).
 33. Law, M. et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic 

imaging compared with conventional MR imaging. AJNR. American journal of neuroradiology 24, 1989–1998 (2003).
 34. Hanna, G. G., Hounsell, A. R. & O’Sullivan, J. M. Geometrical Analysis of Radiotherapy Target Volume Delineation: a Systematic 

Review of Reported Comparison Methods. Clin. Oncol. 22, 515–525, https://doi.org/10.1016/j.clon.2010.05.006 (2010).
 35. Ma, L. & Song, Z. J. Differentiation between low-grade and high-grade glioma using combined diffusion tensor imaging metrics. 

Clin. Neurol. Neurosurg. 115, 2489–2495, https://doi.org/10.1016/j.clineuro.2013.10.003 (2013).
 36. Ferda, J. et al. Diffusion tensor magnetic resonance imaging of glial brain tumors. Eur. J. Radiol. 74, 428–436, https://doi.

org/10.1016/j.ejrad.2009.03.030 (2010).
 37. Law, M. et al. Conventional MR imaging with simultaneous measurements of cerebral blood volume and vascular permeability in 

ganglioglioma. Magn. Reson. Imaging 22, 599–606, https://doi.org/10.1016/j.mri.2004.01.031 (2004).

Author Contributions
L.G., P.W., Y.G., Y.F. designed the study. L.G., Y.G., Y.F. contributed to writing the manuscript. L.G., P.W., R.S., C.Y. 
performed experimental study. L.G., P.W., N.Z., Y.F. conducted data analysis. All of the authors read and approved 
the final manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1007/s11060-010-0310-x
http://dx.doi.org/10.1016/j.surneu.2009.05.008
http://dx.doi.org/10.4236/ojrad.2014.42024
http://dx.doi.org/10.4236/ojrad.2014.42024
http://dx.doi.org/10.1016/j.clon.2014.04.026
http://dx.doi.org/10.1016/j.mri.2013.06.010
http://dx.doi.org/10.1016/j.clon.2010.05.006
http://dx.doi.org/10.1016/j.clineuro.2013.10.003
http://dx.doi.org/10.1016/j.ejrad.2009.03.030
http://dx.doi.org/10.1016/j.ejrad.2009.03.030
http://dx.doi.org/10.1016/j.mri.2004.01.031
http://creativecommons.org/licenses/by/4.0/

	A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonan ...
	Methods and Material

	Fuzzy feature fusion method. 
	Tumour extent definition in functional multi-parametric images. 

	Sample collection. 
	Fuzzy model creation. 
	Tumour extent definition in anatomical MR images. 
	Combination of anatomical and functional information. 
	Evaluation. 

	Delineation of ground truth. 
	Quantitative evaluation. 

	Result

	Discussion

	Conclusions

	Figure 1 Multimodal images of a patient with glioblastoma multiforme (GBM).
	Figure 2 Framework of fuzzy fusion and tumor segmentation using multi-modality diffusion and perfusion MRI images.
	Figure 3 The membership functions of the tumorous tissue in multi-parametric MRI images.
	Figure 4 One slice of three parametric MRI image volumes and the corresponding three fuzzy feature spaces, in which voxel values represent the probability belonging to tumour.
	Figure 5 The fused fuzzy feature volume (a) and regions with different memberships.
	Figure 6 Comparison between manually delineated gross tumour volume (GTV) and automatically segmented GTV on axial slices of T2-weighted MRI images for 9 patients.
	Table 1 Comparison of GTV volumes defined by manual delineation () and automatic segmentation based on fuzzy feature fusion method ().
	Table 2 Evaluation of the auto-segmentation results in terms of DSC, sensitivity and specificity for each patient.




