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Angiotensin II-induced 
Hypertension is Reduced 
by Deficiency of P-selectin 
Glycoprotein Ligand-1
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Identification of inflammatory mediators that regulate the vascular response to vasopressor molecules 
may aid in the development of novel therapeutic agents to treat or prevent hypertensive vascular 
diseases. Leukocytes have recently been shown to be capable of modifying blood pressure responses 
to vasopressor molecules. The purpose of this study was to test the hypothesis that deficiency of the 
leukocyte ligand, Psgl-1, would reduce the pressor response to angiotensin II (Ang II). Mice deficient 
in Psgl-1 (Psgl-1−/−) along with wild-type (WT) controls were treated for 2 weeks with a continuous 
infusion of Ang II. No differences in blood pressure between the groups were noted at baseline, however 
after 5 days of Ang II infusion, systolic blood pressures were higher in WT compared to Psgl-1−/−  
mice. The pressor response to acute administration of high dose Ang II was also attenuated in Psgl-1−/−  
compared to WT mice. Chimeric mice with hematopoietic deficiency of Psgl-1 similarly showed a 
reduced pressor response to Ang II. This effect was associated with reduced plasma interleukin-17 
(IL-17) levels in Psgl-1−/− mice and the reduced pressor response was restored by administration 
of recombinant IL-17. In conclusion, hematopoietic deficiency of Psgl-1 attenuates Ang II-induced 
hypertension, an effect that may be mediated by reduced IL-17.

Hypertension is associated with biomarkers of inflammation in humans1 and preclinical studies have demon-
strated a causal role for both innate and adaptive immune responses towards blood pressure regulation2. Mice 
deficient in both T and B lymphocytes demonstrate an attenuated pressor response to angiotensin II (Ang II), an 
effect that is restored with reconstitution of T cells3. T cell production of interleukin-17 (IL-17) appears to be a 
significant mediator of this effect4. IL-17 has also been shown to enhance leukocyte chemotactic responses5,6 and 
to enhance cellular responses to other inflammatory cytokines7.

P-selectin glycoprotein ligand-1 (Psgl-1) is a leukocyte ligand that binds to selectins and mediates tissue 
recruitment of leukocytes and platelets8. Psgl-1 is required for sequential recruitment and generation of Th17 
T cells in some models of inflammation9 suggesting Psgl-1 could contribute to regulation of vascular tone. 
Deficiency of Psgl-1 has previously been shown to lead to endothelial cytokine resistance due to attenuation 
of endothelial NF-κB activation10. Since Ang II has also been shown to signal through NF-κB11, we tested the 
hypothesis that deficiency of Psgl-1 would attenuate the pressor response to Ang II.

Methods
Animals. Male C57BL6/J and Psgl-1−/− mice were originally purchased from the Jackson Laboratory (Bar 
Harbor, Maine). Psgl-1−/− mice were backcrossed to the C57BL6/J strain >16 generations before use in these 
experiments. Mice were housed under specific pathogen-free conditions in static microisolator cages and fed 
with standard laboratory rodent diet (No. 5001, TestDiet, Richmond, IN) and tap water ad libitum in a tempera-
ture-controlled room with a 12:12-hour light/dark cycle. All animal use protocols complied with the Principles of 
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Laboratory and Animal Care established by the National Society for Medical Research and were approved by the 
University of Michigan Committee on Use and Care of Animals.

Ang II-induced hypertension model. After baseline blood pressure recordings, mice were anesthetized 
and underwent subcutaneous implantation of osmotic minipumps (model 2004, Alzet, Cupertino, CA). Saline 
or Ang II (Sigma, St. Louis, MO) was continuously delivered at an infusion rate of 500 ng/kg/min for two weeks. 
Blood pressures were measured in non-anesthetized mice by tail plethysmography using the BP-2000 Blood 
Pressure Analysis System (Visitech System, Apex, NC) every day for two weeks. To get reliable and stable pressure 
measurements, mice were trained for seven consecutive days before implantation of minipumps. All blood pres-
sure measurements were consistently performed in the morning.

Blood pressure was also measured invasively via carotid arterial catheterization as previously described12. Briefly 
animals were anesthetized with urethane (1.0 g/kg, intraperitoneally) while body temperature was maintained at 
37 °C on a controlled heating pad. After clearing surrounding tissue from the right common carotid artery, an arte-
riotomy was performed using fine scissors. A 1.4 F micro-tip catheter sensor (model SPR-671, Millar Instruments 
InC., Houston, TX) was inserted into the carotid artery toward the heart and blood pressure was equilibrated for 
10 minutes to reach a steady state. Then cumulative doses of Ang II (0.2–200 μg/kg) were administrated via the jug-
ular vein by a GENIE Plus Infusion Syringe Pump (Kent Scientific, Torrington, CT). Blood pressure was recorded 
using a data acquisition system powerlab 8/30 and chart software (AdInstruments, Colorado Springs, CO).

Psgl-1 neutralizing antibody experiments. For Psgl-1 antibody experiments, a rat anti-mouse Psgl-1 
antibody (4RA10)13 or isotype control rat IgG1 k (100 µg in 200 µl PBS) (BD Biosciences, San Jose, CA) was 
injected into 8-week-old WT mice intraperitoneally. 16 hours following injection, the pressor response to Ang II 
was determined via invasive carotid artery blood pressure monitoring.

IL-17 treatment. For IL-17 replacement experiments, recombinant murine IL-17 (1000 ng in 200 µl PBS) 
(PeproTech, Rocky Hill, NJ) or PBS was injected into 8-week-old Psgl-1−/− mice. 5 hours later, the pressor 
response to Ang II was determined via invasive carotid artery blood pressure monitoring. Dosing was based on 
a previous study14.

Bone marrow transplantation (BMT). To determine the contribution of hematopoietic Psgl-1 towards 
blood pressure regulation, mice chimeric for Psgl-1 were generated by BMT15. Briefly, WT mice were placed 
on acid water 2 weeks prior to BMT and then used as recipients for WT or Psgl-1−/− donors. Bone marrow 
was harvested from donor mice by flushing femurs and tibias with RPMI 1640 medium containing 2% fetal 
bovine serum. Cells were then centrifuged at 300 g and resuspended in phosphate-buffered saline before injection. 
Recipient mice were irradiated (2 × 650 rad [0.02 × 6.5 Gy]) and then injected with 4 × 106 bone marrow cells 
from WT or Psgl-1−/− mice via the tail vein. 8 weeks after BMT, the mice were used for blood pressure monitoring 
via carotid artery catheterization.

Enzyme-linked immunosorbent assay (ELISA). Plasma samples were collected via ventricular punc-
ture at the time of euthanasia for measurement of sP-sel, sE-sel, and IL-17 using commercially available murine 
ELISA kits (R&D Systems, Minneapolis, MN) according to manufacturers’ instructions.

Statistical analysis. All data are presented as mean ± standard error. Statistical analysis was performed 
using GraphPad Prism. Results were analyzed using unpaired t test for comparison between 2 groups. For multi-
ple comparisons, results were analyzed using 1-way ANOVA followed by Tukey post-test analysis. P values < 0.05 
were considered statistically significant.

Results
Blood pressure response to Ang II is attenuated in Psgl-1 deficient mice. To test the hypothesis 
that deficiency of Psgl-1 would reduce Ang II-induced hypertension, saline or Ang II was chronically adminis-
trated via osmotic minipumps into C57BL6/J (wild-type, WT) or Psgl-1−/− mice for 2 weeks. At baseline and with 
infusion of only saline, blood pressure was similar between WT and Psgl-1−/− mice. Systemic infusion of Ang II 
increased blood pressure as measured by tail-cuff plethysmography and carotid artery catheterization in both WT 
and Psgl-1−/− mice compared with saline-infused control mice. However, by infusion day 4 the increase in blood 
pressure was significantly attenuated in Psgl-1−/− mice compared to WT mice (Fig. 1A and B). To determine 
whether this was due to acute or chronic effects of Ang II on the vasculature, the acute effect of high dose Ang 
II on blood pressure was assessed. For these experiments the pressor response to Ang II was measured in anes-
thetized mice by invasive blood pressure recording using carotid artery catheterization. Cumulative Ang II (0.2, 
2, 20, 200 μg/kg) was administrated via the jugular vein with a 5 minute interval between increasing doses. The 
systolic and diastolic blood pressures were then recorded in response to the varying doses of Ang II. In Psgl-1−/−  
mice, the response to Ang II on systolic and diastolic blood pressure was significantly reduced compared to WT 
mice (Fig. 1C and D) indicating Psgl-1 deficiency attenuates both chronic and acute effects of Ang II.

Circulating biomarkers are reduced in Psgl-1 deficient mice following Ang II challenge. To 
determine the effect of Psgl-1 deficiency on a group of relevant circulating biomarkers, the plasma levels of soluble 
P-selectin (sP-sel), soluble E-selectin (sE-sel), and IL-17 were measured in WT and Psgl-1−/− mice before and after 
Ang II administration. After infusion of the consecutive doses of intravenous Ang II infusions and blood pressure 
measurements, plasma samples were collected and assayed for sP-sel, sE-sel and IL-17. These molecules are all prod-
ucts of NFκB target genes16–19. Consistent with our hypothesis, each of these proteins was lower in Psgl-1−/− com-
pared to WT mice (Fig. 2A,B,C), consistent with reduced NFκB signaling in the setting of Psgl-1 deficiency.
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Hematopoietic Psgl-1 pool mediates effects of Psgl-1 deficiency towards blood pressure. In 
addition to leukocytes, Psgl-1 may also be expressed on endothelial cells20. To determine the relevant Psgl-1 cellu-
lar pool responsible for the protective effects mediated by Psgl-1 deficiency, bone marrow transplantation (BMT) 
was performed from Psgl-1−/− and WT donors to WT recipients. 8 weeks after BMT, cumulative Ang II (0.2, 2, 20, 
200 μg/kg) was then administrated via the jugular vein with 5 minutes intervals. As measured by carotid artery 
catheterization, the pressor response to Ang II was significantly reduced in WT mice receiving Psgl-1−/− bone 
marrow compared to WT mice receiving WT bone marrow (Fig. 3A). The levels of sP-sel, sE-sel, and IL-17 were 
also significantly lower in WT mice receiving Psgl-1−/− bone marrow (Fig. 4A,B and C) compared to correspond-
ing control WT mice receiving WT marrow. These findings indicate that hematopoietic Psgl-1 deficiency leads to 
attenuation of the pressor responses to Ang II.

Therapeutic targeting of Psgl-1 with antibody. To directly test a therapeutic strategy of Psgl-1 blockade, 
an IgG control or neutralizing anti- Psgl-1 antibody was injected into WT mice intraperitoneally. 16 hours later, 
blood pressure response to acute Ang II infusion was evaluated as before in the common carotid artery. The pressor 
responses to Ang II were significantly reduced in WT mice receiving the Psgl-1 antibody compared to WT mice 
receiving the control antibody (Fig. 3B). The levels of sP-sel, sE-sel, and IL-17 were also significantly lower in WT 
mice receiving the anti-Psgl-1 antibody compared to mice receiving the control antibody (Fig. 4D,E, and F).

IL-17 replacement restores effect of Psgl-1 on blood pressure. IL-17 deficiency states have been 
shown to attenuate the pressor effect of Ang II4. To determine if reduced IL-17 is involved in the protection 
conferred by Psgl-1 deficiency on Ang II-induced blood pressure elevation, IL-17 or PBS was administered to 
Psgl-1−/− mice. 5 hours later, the pressor response to acute infusion of Ang II was recorded via carotid artery cath-
eterization. Levels of the systolic, diastolic and mean arterial pressure were significantly higher in Psgl-1−/− mice 
injected with IL-17 compared to PBS treatment (Fig. 5A,B and C), supporting a causal role for IL-17 towards 
these effects.

Discussion
Hypertension is a common, highly complex condition that promotes risk for many other diseases of the vascu-
lature21. Although the underlying cause of most cases of hypertension are unknown and likely multifactorial22, 

Figure 1. Effect of Psgl-1 deficiency on Ang II-induced hypertension. (A) Tail-cuff measurement of systolic 
blood pressure of WT and Psgl-1−/− mice in response to chronic infusion of saline or Ang II administered via 
osmotic minipumps (n = 10 mice per group). (B) Systolic blood pressure measured following catheterization of 
the carotid artery in response to chronic infusion of saline or Ang II (n = 5 mice per group). (C) Systolic blood 
pressure response to acute infusion of Ang II in WT and Psgl-1−/− mice (n = 5 mice per group). (D) Diastolic 
blood pressure response to acute infusion of Ang II in WT and Psgl-1−/− mice. *P < 0.05.
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therapies targeting RAAS are highly effect in reducing elevated blood pressure and each of the RAAS components 
can promote inflammatory signaling pathways although the degree to which inflammatory pathways contrib-
ute to hypertension is unclear23. Circulating biomarkers are associated with elevated blood pressure24, however, 
whether they mediate or represent biomarkers of RAAS activation is unknown.

Ang II is commonly used to induce hypertension in preclinical models25. Biomarkers of inflammation are 
associated with Ang II and inflammatory pathways are activated in multiple cell types26. A role for leukocytes in 
the regulation of blood pressure following angiotensin II administration has been demonstrated. Mice deficient 
in various leukocyte subsets have been shown to be resistant to the pressor effects of Ang II. For example, mice 
deficient in T and B cells due to genetic RAG-1 deficiency are resistant to hypertension induced by angiotensin 

Figure 2. Levels of plasma factors before and after cumulative infusion of Ang II in WT and Psgl-1−/− mice 
(n = 5 mice per group). (A) Levels of soluble P-selectin (sP-sel). (B) Levels of soluble E-selectin (sE-sel). (C) 
Levels of interleukin-17 (IL-17). *P < 0.05. **P < 0.01.

Figure 3. Pressor responses to acute infusion of Ang II after bone marrow transplantation or Psgl-1 antibody 
treatment (n = 5 mice per group). (A) Pooled data of systolic blood pressure response to Ang II in WT mice 
receiving WT bone marrow (BM) and WT mice receiving Psgl-1−/− BM. (B) Pooled data of systolic blood 
pressure response to Ang II in WT mice receiving control antibody (Ab) and WT mice receiving anti-Psgl-1 Ab. 
*P < 0.05.
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II as well as other hypertension triggers3,27. T cells seem to be at least partially responsible for this phenotype as 
adoptive reconstitution of T-cells but not B-cells restores the hypertensive effect3. Howerver, macrophage deple-
tion has also been shown to blunt Ang II-induced hypertension and this effect is restored with macrophage 
reconstitution28. Taken together, these finding suggest potential cross talk between macrophages and lymphocytes 
in mediating the effects of angiotensin II. Multiple mediators may contribute to these effects of Ang II including 
the NFκB signaling pathway11,29,30, interleukin-631, tumor necrosis factor-α32, macrophage colony-stimulating 
factor33 and IL-174.

Figure 4. Levels of plasma factors after cumulative infusion of Ang II after bone marrow transplantation or 
Psgl-1 antibody treatment (n = 5 mice per group). (A,B,C) Levels of sP-sel (A), sE-sel (B), and IL-17 (C) in WT 
mice receiving WT bone marrow (BM) and WT mice receiving Psgl-1−/− BM. (D,E,F) Levels of sP-sel (D), sE-
sel (E), and IL-17(F) in WT mice receiving control Ab and WT mice receiving Psgl-1 Ab. *P < 0.05. **P < 0.01.

Figure 5. The effect of IL-17 treatment on pressor responses to Ang II in Psgl-1−/− mice (n = 5 mice per group). 
Pooled data of systolic blood pressure (A), diastolic blood pressure (B), and mean arterial pressure response (C) 
to acute infusion of Ang II after PBS or IL-17 treatment in Psgl-1−/− mice. *P < 0.05.
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Since deficiency of Psgl-1 has been shown to dampen endothelial responses to cytokines via reduced activa-
tion of NFκB10 and to protect against obesity-induced endothelial dysfunction13, we therefore sought to deter-
mine whether Psgl-1 deficiency could attenuate the pressor effect of Ang II since Ang II can also activate NFκB 
pathway via angiotensin-type 1 receptor (AT1R) signaling. sP-sel and sE-sel were also measured as it has been 
previously demonstrated that they are sensitive endothelial biomarkers of Psgl-1 activity10. Consistent with our 
hypothesis, the pressor response to angiotensin II was reduced in the setting of Psgl-1 deficiency and bone mar-
row transplantation experiments demonstrated this effect was mediated by the hematopoietic pool of Psgl-1. This 
effect was associated with reduced levels of inflammatory biomarkers supporting the link between inflammation 
and blood pressure elevation. While we suspect this effect is attributed to the leukocytes, we cannot rule out a 
contribution of platelets as Psgl-1 has been shown to be expressed by platelets34 and angiotensin receptor blockers 
have been shown to reduce platelet aggregation in hypertensive patients35. A neutralizing anti-Psgl-1 antibody 
was similarly effective in reducing the blood pressure response to Ang II highlighting a potential therapeutic 
application. While many mediators downstream of NFκB could contribute to these effects, IL-17 replacement 
was tested for its capacity to restore the hemodynamic response given previous studies implicating this cytokine 
as a link between AngII and inflammation-related pressor responses4. In support of this hypothesis, IL-17 was 
sufficient to restore the hemodynamic response to Ang II.

In conclusion, hematopoietic Psgl-1 regulates endothelial activation and IL-17 production in response to Ang 
II. These effects are associated with reduced acute and chronic pressor responses to Ang II that are restored by 
replacement of IL-17. Therapeutic targeting of Psgl-1 or downstream effectors such as IL-17 may be beneficial in 
certain subgroups of patients with hypertension.

References
 1. Chae, C. U., Lee, R. T., Rifai, N. & Ridker, P. M. Blood pressure and inflammation in apparently healthy men. Hypertension 38, 

399–403 (2001).
 2. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and 

humoral responses. Immunity 17, 375–387 (2002).
 3. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204, 

2449–2460 (2007).
 4. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 

500–507 (2010).
 5. Shahrara, S., Pickens, S. R., Dorfleutner, A. & Pope, R. M. IL-17 induces monocyte migration in rheumatoid arthritis. J Immunol 

182, 3884–3891 (2009).
 6. Zhang, Z. et al. Interleukin-17 causes neutrophil mediated inflammation in ovalbumin-induced uveitis in DO11.10 mice. Cytokine 

46, 79–91 (2009).
 7. Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/

enhancer-binding protein family members. J Biol Chem 279, 2559–2567 (2004).
 8. McEver, R. P. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb 

Haemost 86, 746–756 (2001).
 9. Brown, J. B. et al. P-selectin glycoprotein ligand-1 is needed for sequential recruitment of T-helper 1 (Th1) and local generation of 

Th17 T cells in dextran sodium sulfate (DSS) colitis. Inflammatory bowel diseases 18, 323–332 (2012).
 10. Russo, H. M. et al. P-selectin glycoprotein ligand-1 regulates adhesive properties of the endothelium and leukocyte trafficking into 

adipose tissue. Circ Res 107, 388–397 (2010).
 11. Brasier, A. R., Jamaluddin, M., Han, Y., Patterson, C. & Runge, M. S. Angiotensin II induces gene transcription through cell-type-

dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Molecular and cellular biochemistry 212, 155–169 
(2000).

 12. Wang, H. et al. Renal denervation attenuates progression of atherosclerosis in apolipoprotein E-deficient mice independent of blood 
pressure lowering. Hypertension 65, 758–765 (2015).

 13. Wang, H. et al. Obesity-induced endothelial dysfunction is prevented by deficiency of P-selectin glycoprotein ligand-1. Diabetes 61, 
3219–3227 (2012).

 14. Nguyen, H. et al. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovascular research 97, 
696–704 (2013).

 15. Bodary, P. F., Westrick, R. J., Wickenheiser, K. J., Shen, Y. & Eitzman, D. T. Effect of leptin on arterial thrombosis following vascular 
injury in mice. JAMA 287, 1706–1709 (2002).

 16. Pan, J. & McEver, R. P. Regulation of the human P-selectin promoter by Bcl-3 and specific homodimeric members of the NF-kappa 
B/Rel family. J Biol Chem 270, 23077–23083 (1995).

 17. Morel, J. C., Park, C. C., Woods, J. M. & Koch, A. E. A novel role for interleukin-18 in adhesion molecule induction through NF 
kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J Biol Chem 276, 37069–37075 (2001).

 18. Powolny-Budnicka, I. et al. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent 
interleukin-17 production in gammadelta T cells. Immunity 34, 364–374 (2011).

 19. Ma, H. Y. et al. The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in Alcoholic Liver Disease. 
Curr Pathobiol Rep 4, 27–35 (2016).

 20. da Costa Martins, P. et al. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to 
activated endothelium. Arterioscler Thromb Vasc Biol 27, 1023–1029 (2007).

 21. Forouzanfar, M. H. et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. 
JAMA 317, 165–182 (2017).

 22. Dominiczak, A. F. et al. Genes and hypertension: from gene mapping in experimental models to vascular gene transfer strategies. 
Hypertension 35, 164–172 (2000).

 23. Luft, F. C. Angiotensin, inflammation, hypertension, and cardiovascular disease. Current hypertension reports 3, 61–67 (2001).
 24. Blake, G. J., Rifai, N., Buring, J. E. & Ridker, P. M. Blood pressure, C-reactive protein, and risk of future cardiovascular events. 

Circulation 108, 2993–2999 (2003).
 25. Lohmeier, T. E. Angiotensin II infusion model of hypertension: is there an important sympathetic component? Hypertension 59, 

539–541 (2012).
 26. Dinh, Q. N., Drummond, G. R., Sobey, C. G. & Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in 

hypertension. BioMed research international 2014, 406960 (2014).
 27. Marvar, P. J. et al. T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biological psychiatry 71, 

774–782 (2012).



www.nature.com/scientificreports/

7SCIEnTIFIC RepoRtS |  (2018) 8:3223  | DOI:10.1038/s41598-018-21588-3

 28. Wenzel, P. et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. 
Circulation 124, 1370–1381 (2011).

 29. Ruiz-Ortega, M., Lorenzo, O., Ruperez, M., Suzuki, Y. & Egido, J. Angiotensin II activates nuclear transcription factor-kappaB in 
aorta of normal rats and in vascular smooth muscle cells of AT1 knockout mice. Nephrology, dialysis, transplantation: official 
publication of the European Dialysis and Transplant Association - European Renal Association 16(Suppl 1), 27–33 (2001).

 30. Rodriguez-Iturbe, B. et al. Early and sustained inhibition of nuclear factor-kappaB prevents hypertension in spontaneously 
hypertensive rats. The Journal of pharmacology and experimental therapeutics 315, 51–57 (2005).

 31. Zhang, W. et al. Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension 59, 136–144 
(2012).

 32. Sriramula, S., Haque, M., Majid, D. S. & Francis, J. Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on 
salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51, 1345–1351 (2008).

 33. De Ciuceis, C. et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin 
II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced 
vascular injury. Arterioscler Thromb Vasc Biol 25, 2106–2113 (2005).

 34. Frenette, P. S. et al. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial 
interactions in vivo. J Exp Med 191, 1413–1422 (2000).

 35. Suresh, A. et al. A Pilot Study on the Effect of Angiotensin Receptor Blockers on Platelet Aggregation in Hypertensive Patients- A 
Prospective Observational Study. Journal of clinical and diagnostic research: JCDR 10, FC14–FC16 (2016).

Acknowledgements
This work was supported by the National Institutes of Health (HL088419 to D.T.E.) and a VA Merit Award 
(BX000353 to D.T.E.).

Author Contributions
Q.W. and H.W. contributed to study design, manuscript writing, data acquisition, and analysis. J.W., J.V., K.K., 
C.G., and Y.S. contributed to data acquisition. D.T.E. contributed to study conception, design, manuscript writing, 
and final approval of submitted version. D.T.E. is the guarantor of this work, had full access to all the data, and 
takes full responsibility for the integrity of data and the accuracy of data analysis. All authors reviewed the 
manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Angiotensin II-induced Hypertension is Reduced by Deficiency of P-selectin Glycoprotein Ligand-1
	Methods
	Animals. 
	Ang II-induced hypertension model. 
	Psgl-1 neutralizing antibody experiments. 
	IL-17 treatment. 
	Bone marrow transplantation (BMT). 
	Enzyme-linked immunosorbent assay (ELISA). 
	Statistical analysis. 

	Results
	Blood pressure response to Ang II is attenuated in Psgl-1 deficient mice. 
	Circulating biomarkers are reduced in Psgl-1 deficient mice following Ang II challenge. 
	Hematopoietic Psgl-1 pool mediates effects of Psgl-1 deficiency towards blood pressure. 
	Therapeutic targeting of Psgl-1 with antibody. 
	IL-17 replacement restores effect of Psgl-1 on blood pressure. 

	Discussion
	Acknowledgements
	Figure 1 Effect of Psgl-1 deficiency on Ang II-induced hypertension.
	Figure 2 Levels of plasma factors before and after cumulative infusion of Ang II in WT and Psgl-1−/− mice (n = 5 mice per group).
	Figure 3 Pressor responses to acute infusion of Ang II after bone marrow transplantation or Psgl-1 antibody treatment (n = 5 mice per group).
	Figure 4 Levels of plasma factors after cumulative infusion of Ang II after bone marrow transplantation or Psgl-1 antibody treatment (n = 5 mice per group).
	Figure 5 The effect of IL-17 treatment on pressor responses to Ang II in Psgl-1−/− mice (n = 5 mice per group).




