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Mapping the dispersion of water 
wave channels
David J. Apigo1, Alokik Kanwal1, John Palmieri2,3, Kyle F. Dobiszewski3, Reginald C. Farrow   1, 
Gordon A. Thomas1, Emil V. Prodan4 & Camelia Prodan1

Large classes of electronic, photonic, and acoustic crystals and quasi-crystals have been predicted 
to support topological wave-modes. Some of these modes are stabilized by certain symmetries but 
others occur as pure wave phenomena, hence they can be observed in many other media that support 
wave propagation. Surface water-waves are mechanical in nature but very different from the elastic 
waves, hence they can provide a new platform for studying topological wave-modes. Motivated by this 
perspective, we report theoretical and experimental characterizations of water-wave crystals obtained 
by periodic patterning of the water surface. In particular, we demonstrate the band structure of the 
spectra and existence of spectral gaps.

Wave behavior in photonic, phononic, and acoustic systems has been previously studied theoretically1–5 and 
experimentally4,6–11. In a study by Man et al. the band structures for a 3-dimensional (3D) quasicrystal (QC) and a 
3D diamond structure were acquired by measuring the transmission of microwaves across the system6. This novel 
method provided a photonic way of imaging the Brillouin zone for both lattices and demonstrated properties of 
a well-behaved system (the diamond structure) and one in which a gap is present (the quasicrystal). In an acous-
tic topological case, He et al.7 demonstrate an acoustic topological insulator by measuring the propagation of 
sound across a system composed of an ordinary phononic crystal and a topological phononic crystal. In separate 
experiments, Xiao et al. and Peng et al. demonstrated wave behavior and topological states in periodic acoustic 
systems. Kraus et al. demonstrated photonic wave behavior in QCs5. Nash et al. performed a study by utilizing a 
lattice of spinning gyroscopes and demonstrated robust topological properties by measuring the rotations of the 
gyroscopes due to bursts of air10.

This paper reports a platform for quantitatively studying one-dimensional (1D) mechanical waves in fluids. 
The platform consists of an experimental part designed to map the phonon spectrum and visualising the wave 
patterns, and a theory that bridges shallow and deep water conditions. For exemplification we use flat-walled 
channels and periodically patterned channels. The proposed system is significantly different from previously 
reported photonic and acoustic systems and presents, to our knowledge, for the first time a physical way to map 
the phonon spectrum of water-wave crystals in various types of channels. Resonant modes can be determined 
by scanning a wide frequency range and taking images or measuring the amount of light attenuated across the 
system utilizing laser/photodiode pairs. Unlike Chladni plates, which provide beautiful visualizations of resonant 
patterns and are useful in measuring modal frequencies in solids12, this apparatus provides quantitative data 
pertaining to fluids.

The flexibility of this system makes it extremely useful for future studies of other types of waveguides, in par-
ticular QCs. This paper reports findings on the phonon spectrum of fluids in flat-walled and periodic waveguides; 
however, this apparatus is not limited to these designs. While here we demonstrate control with periodic pater-
nings, particularly that we can map bulk spectra and open spectral gaps, the platform can be used effectively for 
studying quasi-periodic or quasi-crystalline patterns displaying topological edge modes.

Surface water-waves: A theoretical account
The propagation of ripples on the surface of water is a common example of wave propagation. However, deter-
mining the speed of this propagation is not as simple as it might seem13–17. Indeed, the standard hydrodynamic 
equations lead to two non-linear boundary equations [17, p. 5] that are responsible for the wave phenomena at the 
surface of a body of water. There are three important length scales in this problem: (1) the amplitude of the wave 
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A, (2) the wavelength λ, and (3) the water depth h. Asymptotic expansions of the non-linear equations can be 
carried in the limits of small Ursell parameter15:
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leading to linearized wave-equations. Different expansions are used14,15, depending on the range of values of the 
parameters A/λ, A/h and λ/h, such as: (1) the shallow water characterized by small A/h, (2) deep water charac-
terized by small A/h and small λ/h and (3) the intermediate regime characterized by small Ursell parameter. A 
unified treatment of these regimes is provided in16.

In the following section we provide a unifying theory of the standing wave-modes in the limit of small 
amplitudes. It parallels the plasmon hybridization theory18,19, where the solutions of the coupled hydro- and 
electro-dynamic equations are expanded in elementary modes and an effective Lagrangian is constructed for the 
amplitudes of these modes. Using specific examples, we show that the method reproduces the traditional treat-
ments of water-wave phenomena.

Theory of standing water-waves.  We consider the liquid to be confined in a tank with flat bottom and 
with vertical walls but otherwise of arbitrary shape. Vertical pillars of arbitrary sections can be also incorporated. 
The working assumptions are that the wave amplitudes are small, the liquid is incompressible and the velocity 
field is irrotational (i.e. no vortices are present). A schematic of a rectangularly-shaped water tank is shown in 
Fig. 1, which will be used to introduce our notation. The density distribution of the fluid at the equilibrium con-
figuration is denoted by ρ . It is given by:
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Throughout, ρ0 represents the density of water. The density of the fluid in a dynamical configuration is denoted 
by ρ(x, y, z; t), which in the notations of Fig. 1 is given by:
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The mass current-density is, by definition, the flux of mass per unit area and it can be expressed as j = ρ0v in 
terms of the average velocity of water molecules. It has to obey the continuity equation and the irrotational con-
dition (i.e. absence of vortices):

ρ ∇ ∇∂
∂

+ = × = .j j
t

0 & 0 (4)

Inside the liquid and away from the surface, ρ = ρ0, hence:

Figure 1.  A rectangular water tank with water (a) at equilibrium and (b) in a dynamical state. The figure 
introduces various elements and notations used throughout the proceeding sections: a system of coordinates 
such that the (x, y) plane coincide with the equilibrium surface of water; the equation of the free surface is 
encoded in height ζ(x, y; t); two additional horizontal planes which are always above/below the free surface; an 
elementary volume δV of horizontal section δS.
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∇ ∇= × = .j j0 & 0 (5)

The common solution of these two equations can be written as j = ∇η, where η is a scalar field satisfying 
the Laplace equation ∇2η = 0. At the interface with the fixed walls, the velocity field must be tangent hence the 
Laplace equation needs to be complemented with the boundary condition w · ∇η = 0 along the fixed walls, where 
w is the normal vector to the walls. Since the lateral walls of the container and the pillars are vertical, the elemen-
tary solutions of the Laplace equation can be obtain by separation of variables η(x, y, z) = φ(x, y)χ(z), which leads 
to the equation:
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In other words, Λ must be among the discrete set of (positive!) eigenvalues Λ ∈{ }n n  of the 2-dimensional 
Laplace operator with von Neumann boundary conditions and φ must be a corresponding (normalized) 
eigenvector:
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The corresponding χ must satisfy the equation:
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whose unique solution (up to a constant) is:

χ = + Λ .z A z h( ) cosh(( ) ) (9)n n

At this point, let us define the constants:
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which will play an important role in the following. The conclusion so far is that the scalar field η can be always 
decomposed in elementary modes as:

∑η φ χ= .x y z t A t x y z( , , ; ) ( ) ( , ) ( )
(11)n

n n n

The amplitudes An play now the role of effective degrees of freedom for the system.
Our next task is to derive the Lagrangian and the equation of motion for these degrees of freedom. Near the 

moving surface of the liquid, there will be a non-zero density difference ρ ρ− , and in the limit of small ampli-
tudes, we can define a superficial mass density:

∫σ ρ ρ= −
δ δ δ→
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which can take positive and negative values. Here, δV is a volume element centered around the equilibrium sur-
face and whose width is larger than the amplitudes of the waves, hence the free surface of the liquid never inter-
sects the upper and the bottom facets of δV (see Fig. 1). If ζ(x, y; t) represents the height of the column of fluid at 
point (x, y) and moment of time t, then:
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The relation between σ and the scalar function η can be derived from the continuity equation:
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written over volume δV. It can be transformed into:
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which in the limit δS → 0 becomes:
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where we took into account that, in the limit of small wave amplitudes, the width of δV is infinitesimally small 
hence there is no flux of matter through the lateral sides. Also, the upper side of δV was chosen in such a way that 
it doesn’t touches the fluid, hence the only flux of matter is through the bottom facet of ΔV. The conclusion is:
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We now start the construction of the Lagrangian. The kinetic energy of the fluid is:
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Note that only the free surface needs to be considered in the above integral because along the fixed walls ∇η 
· dS = 0. Hence:

∫ρ
η

η
=

∂
∂

.T x y t
z

x y t S1
2

( , , 0; ) ( , ,0; )d
(19)0

The gravitational potential energy of the fluid, relative to its equilibrium configuration, is:
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The conclusion at this step is that the Lagrangian L = T − U of the full body of fluid can be written entirely in 
terms of a surface integrals:
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The set of solutions φ ∈{ }n n  is a complete orthonormal set of functions, hence we can expand:
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Due to relation (17), the coefficients An in (11) and Cn from above are related as:
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Plugging these expansions into (23) and using the orthonormality of φn’s:
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The Euler-Lagrange equations of motions are:

κ= −̈C t g C t( ) ( ), (28)n n n

leading to the frequency of the resonant modes:
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The resonant standing wave pattern corresponding to this frequency is φn, defined by the eigenvalue equation (7).
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Example: The rectangular tank.  We consider the case of a rectangular tank of length L and width W. In this case 
the solutions of (7) are given by:

φ = Λ = = +x y A k x k y k k k( , ) cos( ) cos( ), , (30)k kx y x y
2 2 2

where k = (kx, ky) is a two component vector which takes the quantized values:
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In the infinite volume limit L, W → ∞ and for kh << 1, ≈kh khtanh( )  and the pulsation of the modes 
become ω = gh kk . This is a linear dispersion law which gives a constant speed of waves:

ω
= =c

k
ghd

d
, (shallow water limit), (33)

k

in full agreement with the shallow water theory [14, p. 27]. Furthermore, in the limit h → ∞, ≈khtanh( ) 1) and 
the pulsation of the modes becomes ω = gkk , hence a non-linear dispersion law, leading to an anomalous 
wavelength:

λ π
π

= =
k

g
f

2
2

, (deep water limit),
(34)2

in full agreement with the deep water theory [14, p. 39]. For a narrow channel W << L along the x-axis, the lower 
part of the spectrum is characterized by:
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2

Experimental Investigations
Results: Dispersion for narrow wave-channels.  The experiments for flat-walled channels utilized a 
channel of width, W = 2 cm and two varying lengths (L = 19.75 cm and L = 26.5 cm). Utilizing the 650 nm laser 
diodes positioned incident to the water allowed the user to acquire quantitative data pertaining to the amplitude 
of the resonant modes. Channels were filled with 1.4 cm of water and actuated between frequencies of 0.01 and 
15 Hz in 0.01 Hz steps. The RMS signal for a 19.75 cm long flat-walled channel over three separate experiments is 
shown in Fig. 2. A comparison of the signals for the two different length flat-walled channels is shown in Fig. 3. 
As shown, the resonant frequencies change according to Equation (32).

Figure 2.  Quantitative data acquired for a 19.75 cm long flat-walled channel filled with 1.4 cm H2O 
demonstrating repeatability. Slight variations in resonant frequencies are observable, but can be explained by 
variations in water height within the channel.
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In order to verify that the frequencies at which peaks appear in the acquired signal are resonant modes, they 
were manually inputted into the function generator to actuate the system. It was then possible to observe (either 
via imaging to a screen or directly viewing the water) that these frequencies were indeed resonant modes.

A comparison between the theory and experiment for the two channels is shown in Fig. 4. The data in Fig. 4a 
was acquired using a channel of length, L = 19.75 cm, and height of water, h = 1.4 cm. The black, square data 
points correspond to the theory and the red, circular points correspond to the experiment. The experimental 
points correspond to the lower x-axis only, while the theoretical points correspond solely to the upper x-axis. 
Both share a common y-axis. As shown, at frequencies where resonant modes exist, a signal with higher intensity 
is acquired by the photodiode. Figure 4b demonstrates a typical phonon spectrum for water waves in a flat-walled 
waveguide. In anticipation of the periodic modulations introduced next, the data is shown as function of the wav-
enumber k · a, with a the periodicity of the modulations. The wavenumber axis is folded into the interval [−π, π]  
but only the positive part is shown. Figure 4c demonstrates the theory and experimental data for a flat-walled 
channel of L = 26.5 cm, and height of water, h = 1.4 cm. The black, square points correspond to the theory and 
the upper-x axis only, while the red, circular points show the experimental data and correspond to the lower 
x-axis. The phonon spectrum for the longer channel is demonstrated in Fig. 4d. The spectra for both lengths are 
missing some experimental data points, particularly at higher frequencies. This can be explained as a consequence 
of the measuring system’s resolution. Due to the length limitations of the waveguide, higher resonant modes are 
difficult to distinguish because the distance between nodes decreases. As this occurs, it becomes harder for the 
laser (with a set spot size) to distinguish a clear resonance.

Periodically patterned wave-channel.  A periodically patterned water wave guide was designed by 3D 
printing a channel with teeth spaced 1.12 cm apart. In order to study the properties of water within the wave 
guide, two channels of length, L = 19.75 cm and L = 26.5 cm were fabricated. The channels were filled to a height 
of water, h = 1.4 cm and excited over frequencies of 0.01 Hz and 15 Hz with 0.01 Hz step sizes. The measured 
signals for a 26.5 cm long periodic channel over three separate trials are shown in Fig. 5. Slight shifts in resonant 
frequencies are visible between the trials. A comparison of periodically patterned channels of two lengths is 
shown in Fig. 6. The red circle points correspond to a channel with, L = 19.75 cm and the black square points to 
L = 26.5 cm.

A comparison of the experimental resonant frequencies of a 26.5 cm long periodically patterned channel and 
theoretical values (Eq. (35)) is show in Fig. 7. When the water is in resonance, the amplitude of the signal is greater 
and a peak appears. This behavior is similar to that of the flat-walled channel experiments. The experimental data 
corresponds to the lower x-axis and y-axis, while the theoretical points correspond to the upper x-axis and y-axis. 
Gray dashed lines have been added to demonstrate where expected resonances should occur. Figure 7b shows the 
phonon spectrum of the periodic channel with the wavenumber axis folded as previously explained.

Discussion
In all reported experiments, the resonant modes are dependent on the height of the water within the channel as 
governed by Eq. (32). Maintaining the height of the water is extremely important. Due to the small step size in 
frequency (0.01 Hz), the experiments took approximately 5 hours to perform. Throughout the duration of that 
time, it is possible that some of the water in the channel evaporated. As a result, it is possible that a measurable 
shift in resonant frequencies occurred. However, it is believed that throughout the course of the reported exper-
iment significant evaporation did not occur. The repeatability of the experiment for a 19.75 cm long flat-walled 
channel is show in Fig. 2. The data suggests that the experiment is repeatable with small deviations between trials. 

Figure 3.  Experimental data comparing measured signal of transmitted light of flat-walled channels with 
lengths, L = 19.75 cm and L = 26.5 cm.
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This behavior can be accounted for by considering the inaccuracy in the height of the water in the waveguide. 
Since the channels are filled by volume, if slightly off, the resonant frequencies will be different. In addition, if any 
evaporation occurs, shifts in resonant frequencies are possible. Also, the signal is highly dependent on the initial 
intensity of the transmitted light; therefore, if any change in it occurs, the overall amplitude varies. At higher res-
onant modes (>7), the intensity of the transmitted signal is greater. This can be explained by the Beer-Lambert 
law, which states that as the height of the fluid in the channel decreases, the intensity of the transmitted signal 
increases. Thus, as higher resonant modes form and the peaks for the waves are not as high as at lower ones, the 
height of the fluid, is smaller. Thus, the intensity of the transmitted signal is larger and an increase is reflected in 
the acquired data.

Similarly, Fig. 2 demonstrates the repeatability of a 26.5 cm longer periodically patterned waveguide. Once 
again, the data suggests the experiment is repeatable with small deviations between trials. The same reasons 
the variability exists in the flat-walled channels can be applied to the periodic channels. A comparison of two 
different lengths of periodic waveguides is shown in Fig. 6. As in the case of the flat-walled channel, the signal is 
clearly different between the two lengths. A difference in signal is expected since length is one of the main factors 
that governs the resonant frequencies of the water within the channels. For periodic systems, spectral gaps are 
expected. It is difficult to identify the location of said gaps solely from the RMS signal, but they can be seen when 
plotted against the theoretical values.

The comparison of experimental and theoretical data for a flat-walled channel shown in Fig. 4 is a repre-
sentative plot that demonstrates how the theory aligns with the experiment for two different lengths. Raw data 
compared with theory is show in (a) and (c). On the right, (b) and (d) demonstrate the spectrum where the x-axis 
corresponds to the situation when the k vector is modified. For a flat-walled channel, we assume no gaps open and 

Figure 4.  (a) Data comparing theoretical and experimental resonant frequencies for a 19.75 cm long, 2 cm wide, 
flat-walled channel filled with 1.4 cm high water. Black squares correspond to theory and red dots correspond 
to experimental data. Theory points correspond to upper x-axis, while experimental points correspond to lower 
x-axis. (b) Comparison of the phonon spectrum for 19.75 cm long flat-walled channel. (c) Data comparing 
theoretical and experimental resonant frequencies for a 26.5 cm long, 2 cm wide, flat-walled channel filled with 
1.4 cm high water. Black squares correspond to theory and red dots correspond to experimental data. Theory 
points correspond to upper x-axis, while experimental points correspond to lower x-axis. (d) Comparison of the 
phonon spectrum for a 26.5 cm long flat-walled channel.
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resonant frequencies are present in the system. However, for a periodically patterned channel, gaps should open 
up where the spectrum winds back in the zig-zag fashion. A comparison of the experimental and theoretical data 
for a periodic channel is show in Fig. 7. The data suggests that a resonance is not measured at every theoretical 
point, particularly those where the spectrum winds back on itself. This behavior can be explained by the presence 
of gaps due to the periodic spacing of the teeth.

Methods
The experimental apparatus.  Flat-walled and periodic channels were 3D printed using acrylonitrile buta-
diene styrene (ABS) shown in Fig. 8. At frequencies much higher than those actuated in the present experiments, 
harder materials should be used for the walls. The waveguides were positioned atop an acrylic sheet suspended by 
20 cm long pendulum rods to maintain small oscillations (that is, θ < 5°). In order to prevent leakage of fluid, a 
seal was created using silicone caulk between the channel and the acrylic. Adafruit Industries 5 mW 650 nm laser 
diodes were positioned above the channel and permitted to emit light through the water and acrylic onto an Opto 
Diode Corp 9.91 mm × 4.28 mm photodiode positioned underneath. The experimental apparatus can be seen in 
Fig. 9 (the channel can be interchanged depending on geometry of interest). The system was actuated by using 
an HP 33120A function generator connected to a Brüel & Kjær Power Amplifier Type 2718 which drove a Brüel 
& Kjær 4810 Mini-shaker. The actuator was attached to the acrylic sheet using two bolts. The function generator 
was computer-controlled by a previously reported20 custom LabVIEW program via a USB GPIB cable and a signal 

Figure 5.  Data demonstrating the repeatability of the measurement for a 26.5 cm long periodic channel.

Figure 6.  Comparison of 2 different lengths of periodic channels.
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Figure 7.  Data for a 26.5 cm long, periodic channel filled with 1.4 cm high water. Black squares correspond to 
theory and red dots correspond to experimental data. (a) Comparison of theory and experimental resonant 
frequencies. Theory points correspond to upper x-axis, while experimental points correspond to lower x-axis. 
(b) Comparison of the phonon spectrum for a periodic channel.

Figure 8.  Various 3D printed channels utilized for experimental testing. (a) Flat-walled channel, L = 19.75 cm, 
W = 2 cm. (b) Periodic channel, L = 19.75 cm, Wa = 2 cm, Wb = 1.2 cm. (c) Flat-walled channel, L = 26.5 cm, 
W = 2 cm. (d) Periodic channel, L = 26.5 cm, Wa = 2 cm, Wb = 1.2 cm.

Figure 9.  Image of the experimental apparatus. The mini-shaker drives the system while the laser/photodiode 
pairs are the sensing mechanism. (a) Side-view of the experimental apparatus (function generator, power 
amplifier, laser power supply, and USB GPIB box not shown). The red and black wires on the lasers attach to 
the rods, which act as conduits to bring power to the laser diodes. The red and black wires attached the the 
photodiodes lead to the GPIB box and ultimately the computer for data collection. (b) Angled view of the 
apparatus to demonstrate how wires are attached and show a L = 19.75 cm periodic channel attached to the 
system. The acrylic/channel can be swapped out depending on the geometry of choice.
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was transmitted to scan over frequencies of 0.01 Hz to 15 Hz in 0.01 Hz steps. The actuator excited the system in 
one direction.

This system made it possible to take a measurement of the intensity of transmitted light utilizing laser/pho-
todiode pairs, which identified resonant frequencies of the fluid within the channel. As the water approached a 
resonant frequency, the intensity of the transmitted light increased. This behavior occurs because when the fluid 
is off-resonance, the turbulent nature of the water refracts the light away from the photodiode, and decreases the 
intensity of the attenuated light. As the system becomes resonant, the light is allowed to focus on the photodiode 
and the highest intensity of the light is transmitted. The intensity of the transmitted signal is measured by the 
Beer-Lambert Law21:

= α−I
I

e ,
(36)

h

0

Where I is the intensity of the signal, I0 is the intensity of the signal with no fluid present, α is the absorption 
coefficient, and h is the height of the fluid in the channel. Therefore, as the height of the water in the channel 
changes, the intensity of the signal varies. Recalling Eq. (32), it is clear that the resonant modes also depend on 
the height of the water in the channel. The experiments reported in this paper were performed with a height of 
water of h = 1.4 cm.

Previous methods.  Prior to finalizing the above-mentioned suspended design of the actuating system, various 
methods were tested and deemed inadequate for testing. The first design utilized a circular tank of water which 
rested on a raised sheet of Poly(methyl methacrylate) (PMMA). The fluid was actuated by a cylindrical pin posi-
tioned off-center. In this configuration, waves propagated quite well at higher frequencies (>20 Hz), but poorly at 
lower ones. Resonant modes were determined by observation of the water within the system and images could be 
acquired on a screen positioned underneath the raised PMMA sheet. Standing waves formed at resonant modes 
and were relatively easy to observe. While this approach worked quite well with higher frequencies, below 20 Hz 
it was extremely difficult to distinguish resonant modes by eye.

In order to measure the resonant modes at lower frequencies, the same apparatus was utilized, but a laser was 
positioned at a 45° angle such that the light hit the water at the center of the circular tank. A detector was placed 
opposite it to detect the reflected light from the surface of the water. Due to the multiple-interface system, it was 
extremely difficult to isolate the reflected laser light from the surface of the water onto the detector. The data was 
inconclusive at low frequencies and a new method was pursued. In addition, the circular tanks were replaced with 
flat-walled rectangular ones of varying lengths.

The second design used a glass tank of water 2.54 cm tall in which the rectangular channels were positioned. 
The fluid was actuated utilizing the same cylindrical pin as previously described. For the flat-walled circular tanks 
this method of actuating the fluid proved quite successful. However, upon switching to non-circular tanks, the 
waves did not propagate throughout the system as expected due to an inefficient amount of energy required to 
excite the wave across the full length of the channel. It was hypothesized that switching the small-tipped cylinder 
with a wider paddle would produce enough energy to excite the system. A tip was still desired, so the geometry 
was changed by angling the walls varying degrees. Paddles of various sizes were used, but proved inefficient at 

Figure 10.  Resonant modes in a 19.75 cm flat-walled channel demonstrated by bright lines between channel 
walls. (a) 5 resonant modes with λ = 5.7 cm, (b) 6 resonant modes with λ = 5.0 cm, (c) 7 resonant modes with 
λ = 4.5 cm, and (d) 9 resonant modes with λ = 3.1 cm.
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exciting the water. It was found that a paddle with angled walls of 45° could sufficiently excite the water across the 
channel length. This paddle was capable of exciting the water throughout the system for flat-walled rectangular 
tanks; however, could not do so for channels with periodicity. Therefore, a new method of exciting the water was 
pursued.

The next design utilized a glass sheet atop an actuator, similar to a Chladni plate. The channels were placed 
and sealed on the plate for excitation. A stroboscope was designed using a red LED that flashed at the same fre-
quency of the excitation. A switch was incorporated to allow the user to select the strobe light or steady light for 
imaging. This method of excitation worked rather well, and resonant modes at low frequencies were acquired 
(see Fig. 10).

While this method of water excitation proved quite successful, it was not without flaw. Determination of 
the resonant modes solely relied on observation of the modes in the channel. Videos and images were acquired 
demonstrating these observations. For flat-walled channels, this method seemed adequate. Once a periodic 
channel was installed, this method no longer was viable since resonant modes were not as clearly defined. 
It became apparent that observing resonant modes in channels with periodicity would not be possible. In 
order to determine what was happening in said channels, the laser/photodiode apparatus described earlier 
was adapted.

Conclusions
This paper presents a unifying theory for shallow and deep water wave behavior which provides a math-
ematical way to predict resonant modes in various fluid waveguides. In addition, we have provided an 
experimental platform capable of acquiring data demonstrating the phononic spectra for flat-walled and 
periodically-patterned channels. Actuating a suspended system and utilizing the laser/photodiode pairs, it 
was shown that spectral gaps are absent for flat-walled channels, but exist in the periodically-patterned ones. 
This unifying theory and experimental platform provides a flexible system that is useful for future studies of 
various waveguides.
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