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Identification and Documentation 
of Auricle Defects using Three-
dimensional Optical Measurements
Guomin Zhan   1, Liya Han1, Zhongwei Li1, Zilong Liu2, Jiaqi Fu2 & Kai Zhong1

Auricle defects are important and common occurrences in forensic medicine. The accurate measurement 
and assessment of auricle defects is key to identifying and evaluating injury, and the currently available 
methods are known to be labor intensive and inaccurate. In this paper, we introduce an identification 
and documentation of auricle defects solution, which consists of an optical three-dimensional (3D) 
method and an effective algorithm to calculate the maximum projection area and identify auricle 
defects. In this study, three separate examiners measured 40 auricles of 20 adults using 3D optical 
measurement and two other commonly used methods to investigate the validity and representative 
reliability of 3D optical measurement for auricle defect identification. Based on the statistical analysis, 
the 3D measurement method is valid and showed a better reliability than the reference methods. 
We also present a representative auricle defect identification case using the proposed 3D optical 
measurement method. The study concludes that the optical 3D measurement method is a reliable and 
effective tool for auricle defect identification.

Auricle defects caused by trauma, burns, freezing, piercing, or infection are important and common cases in 
clinical forensic medicine practice. The World Health Organization and the laws of many countries use defect 
percentiles as the standard for functioning and disability classification1. In order to identify the auricle defects, 
the literature often use the maximum projection ratio of the defective to heathy auricle areas to estimate the per-
centage of defects2.

To get the maximum projection ratio of the defective to heathy auricle areas, several feasible techniques 
have been proposed recently, such as Radiological Body Volume Documentation (Computed Tomography and 
Magnetic Resonance Imaging)2–4, and the two other planimetry methods (tracing planimetry and digital camera 
photogrammetry planimetry)5–10. Some papers reported the auricle 3d reconstruction by CT2–4, but due to a lim-
ited radiation exposure of living persons, scans in the clinical environment are normally not of such a high slice 
resolution11 (Typical value: CT 1.25 mm; MRI 4 mm). Because of the irregular shape of auricle, the low resolution 
would cause the results in a low accuracy. In the meanwhile, radiological imaging technologies are usually expen-
sive, poor portability and exist radioactive. The planimetry methods are commonly used in forensic practices. 
Tracing planimetry consists of manually tracing the auricle on transparent grid paper5,6 and summing over all 
the traced grids. The second method is digital camera photogrammetry planimetry, in which an auricle is man-
ually photographed and transferred into image-processing software to determine the defect profile and calculate 
the areas based on standard fixed area grid paper for scale7–10. Tracing the auricle onto a transparent sheet may 
be subject to difficulty in fixating the sheet and determining the irregular boundaries of the auricle through the 
transparent sheet. Furthermore, digital camera photogrammetry is not accurate enough for auricle defect meas-
urement, because the viewing angle of the image taken by each rater is not exactly the same and lens nonlinear 
distortion also causes errors12. While the two reference methods have obvious shortcomings as mentioned above, 
they are still widely used because of their high practicality in forensic investigations.

In this paper, we propose 3D optical measurement method to solve these problems, this method acquire 
3D information from a set of image pairs, which contain the illumination of phase shifting pattern modulated 
by measured object. Optical measurement method has a high measure accuracy of 0.02 mm and a high spatial 
resolution of 0.1 mm in all directions. This method is non-contact, non-radiative, low-cost and friendly to the 
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patients. According to these aspects, we think the 3D optical method have the potential to identify the auricle 
defects.

As optical 3D measurement methods have developed gradually, they have increasingly been applied in foren-
sic medicine13, especially for bite mark analysis14,15 and traffic accident analysis16. The article11,16 have reported the 
combination application of optical body surface and radiological CT/MRI internal body scanning. These appli-
cations also show the great potential and advantages of optical 3D measurement methods in forensic medicine. 
To the best of our knowledge, existing optical 3D measurement technologies have never been directly applied to 
auricle defect measurement because: (1) In practical forensic medicine, patients cannot keep absolutely still dur-
ing the measurement. Hence, we need to implement a high-speed and highly accurate optical 3D measurement 
method for auricle defects. (2) After the 3D measurement data have been acquired, it is hard to determine the 
projection plane that obtains the maximum projection area. Manual operations are not accurate enough and are 
time consuming. Hence, we need an automatic and accurate algorithm to determine the maximum projection 
area.

In the present study, we apply multi-view phase shifting principle to 3D surface scanning, making the meas-
urement complete in 0.1 s. A reliable and efficient algorithm is proposed to calculate the maximum projection 
areas of point clouds (massive 3D coordinates of surface points). The auricle surface areas can be calculated as a 
reference in the process. We measured 40 auricles of 20 adults using 3D optical measurement and the other two 
previously mentioned planimetry methods, and all measurements were repeated after several days by three addi-
tional examiners to investigate the validity and representative reliability of 3D optical measurement for auricle 
defect identification. We also present a representative auricle defect identification case using the proposed 3D 
optical measurement method.

Materials and Methods
For the study, the normal auricles of 20 adults were measured to determine the auricle maximum projection areas 
using the three methods by three examiners at different times. The subjects were all Chinese, and consisted of 
nine female and 11 male individuals. The average age of the female subjects was 26.1 years (SD = 1.6), and that 
of the male subjects was 25.9 years (SD = 1.7). The auricle of each subject was digitized by the optical 3D meas-
urement method to obtain point cloud data. We then reconstructed the surface (via triangulation) in Geomagic 
Studio (www.geomagic.com), and calculated the surface area. We also found the maximum projection area using 
an algorithm from the Point Cloud Library (PCL) (www.pointclouds.org, PCL 1.7). The other reference methods 
are detailed in the following sections.

The study protocol was approved by the Ethics Committee of Tongji Medical College, Huazhong University 
of Science and Technology (IORG No: IORG0003571). All experiments were performed in accordance with 
ICH-GCP, GCP in China and the Declaration of Helsinki. Informed consent was obtained from the participants 
after they had been given an explanation of the study. The manuscript reporting a participant’s details state that 
consent to publication was obtained from the patient.

3D surface scanning.  The 3D measurement of the auricle was performed using our structured light system, 
a complete description and validation of which was presented in18. Figure 1 shows the general framework of our 
3D optical measurement system. Briefly, phase shifting images (I I I, ,p p p

0 1 2 ) are projected sequentially at 30 
frames/s from a DLP projector (DLP LightCrafter 4500, TI, Dallas, Texas, USA) onto an object to produce sinu-
soidal fringe patterns, which are recorded by two CCD cameras (acA1300-30gm; Basler, Ahrensburg, Germany) 
mounted on both sides of the projector.

Common 3D surface scanners are usually used for examination of industrial products, it takes several seconds 
for a single measurement. It works well with static objects but faces difficulties when applied in measurement of 
human body part. The slight movements of body would bring much noise in measurement results. The measure-
ment speed need to be improved to satisfy the requirements of auricle defects measurement. In the current study, 
the multi-view phase shifting 3D measurement principle we proposed in18 was applied. This principle reduces 
the number of projected patterns to three. Meanwhile, to improve the transmission speed of the camera data, we 
divide the interframe time into two equal periods. In each period, only one camera occupies the bandwidth of 
the cable, which makes the transmission more reliable and reaches a higher frame rate. In this condition, a single 
measurement was completed within 0.1 s. Each measurement can calculate the high-precision 3D coordinates of 
up to a million surface points, the calculation time is about 1.5 s at the computer platform (Intel Core i7-4770K 
CPU, and 8 GB DDR3 1600 SDRAM, Opencv 2.4.2). The system has been calibrated by the method of Zhang12, 
the precision of this system is 0.02 mm, which was evaluated according to the Optical 3D Measuring Systems 
Standard (VDI/VDE 2634,19).

As seen in Fig. 2a, the subject sits in front of the scanner at a distance of about 0.5 m, keeping the body 
still during the single scanning process. To scan the auricle in this study, the system scan range was adjusted to 
200 × 160 mm2 with a resulting point spacing of 0.15 mm.

The auricle of the subject is measured from different directions to obtain the complete 3D auricle data. The 
point clouds from different directions are registered together based on the feature points of the auricle. The regis-
tration result is shown in Fig. 2b (Fig. S1).

Our application uses a semi-automatic process for auricle edge identification. We defined a line Fig. 2b from 
point a (the crus of the helix) to point b (the bottom of the auricle lobule) as the boundary between the auricle and 
face. Finally, we obtain the entire auricle point cloud Fig. 2c to use for the following processing and calculations.

Data process and calculation.  Surface reconstruction and surface area calculation.  After obtaining the 
point cloud of the entire auricle, we reconstruct the surface (via triangulation) in Geomagic Studio using greedy 
projection20, which creates polygon meshes. For the occlusion caused by the complex structure of the auricle, 
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some areas are invisible for the scanning system (shown as blank spots in Fig. 2(b)). And we noticed that these 
blind spots are distributed within the central area of the auricle, which has little influence on the maximum pro-
jected area calculation processes. Hence, we used the hole filling method21 to make the surface a closed region. 
The surface area is the sum of all the triangular areas, and is also calculated in Geomagic Studio.

Maximum projection area solution.  The maximum projection area problem is not defined in the area processes 
for industrial purpose, so we developed a maximum projection area solution. With this solution, the point cloud 
of the auricle can also be used to calculate the maximum projection area. As Fig. 3 shows, if the point cloud and 
its position are fixed, we can calculate the projection area using the following steps: (1) Project the point cloud 
onto the XOY plane (Fig. 3a,b). (2) Create a concave hull representation of the projected inliers using the PCL 
(Fig. 3c). (3) Calculate the concave polygon area (Fig. 3d). We can calculate the concave polygon area according 
to the following equation (1)22.

∑= − + −
=

. + . . + . . . . .S p p p p p p p p( ) ( )
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Figure 1.  3D optical measurement method.

Figure 2.  The work flow of 3D surface scanning. (a) Measurement scene. (b) Registration result and segment 
edge. (c) 3D surface scanning result.
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where N is the number of outer boundary points, pi,x pi,y are the coordinates of the i th point, and Sp is the area of 
the concave polygon.

To determine the maximum projection area, the variables are X-rotation (ϕ, pitch angle) and Y-rotation (θ, 
yaw angle). Optimization of both variables and maximization of the projection area can be efficiently expressed 
in the standard mathematical format as follows:

Find: ϕ, θ
Maximize: Sp = (ϕ,θ)
Within variable ranges: ϕ θ− < ≤ − < ≤π π π π,

2 2 2 2

To solve the maximization problem in equation (1), an effective genetic algorithm (GA) was developed and 
used in this study23. The critical parameters of a GA are the size of the population, mutation rate, and the number 
of iterations (i.e., generations). In this study, we employed a population size of 50, crossover rate of 0.8, mutation 
rate of 0.05, bit number for each variable of 16, and 100 generations. The value of the maximum projection area 
for each iteration is shown in Fig. 4. Because GA converges to an optimum after about 90 iterations, the optimi-
zation history of 100 iterations is illustrated. The reference projection area value is calculated manually, and the 
pitch and yaw angle are determined in Geomagic Studio. The GA values were close to the reference value and 
improved over generations, as shown in Fig. 4. These results show that the GA solution is reliable and close to the 
maximum projection area. This method is calculated by computer and is more reliable and accurate than manual 
operation.

Reference methods.  To verify the performance of our system, we used two projection area measurement 
methods for reference as mentioned above (Fig. S3). Method 1 is photogrammetric planimetry and method 2 is 
the transparent grid paper method. Photogrammetric planimetry is where the auricle plane is fixed with a 1 cm2 

Figure 3.  Projection area solution based on point cloud. (a) The point cloud of auricle. (b) The point cloud 
project to XOY plane. (c) The outer boundary points of projected points. (d) Concave polygon created by 
boundary points.

Figure 4.  Maximization history with iterations for projection area.
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grid paper for scale, then a photo is taken with the camera directly facing the auricle. Finally, based on the ratio of 
grid paper and auricle pixels shown in image-editing software (Adobe Photoshop CS5; Adobe Systems Inc., San 
Jose, CA, USA) we calculate the auricle projection area. The transparent grid paper method uses transparent grid 
paper or transparent paper (redrawn onto grid paper) to cover the auricular plane. We then outline the auricle 
and achieve the projection area.

Statistical analysis.  The 3D optical method was compared with the two reference methods using the 
paired Student’s t test, after a Kolmogorov–Smirnov test determined that the data was normally distributed. 
Measurement error was calculated and presented using Bland and Altman plots24. To assess the inter-rater relia-
bility, the interclass correlation coefficient (ICC) with a 95% confidence interval was calculated using R (version 
2.12.2). For the ICC calculations, a two-way random effect model was selected and calculated for absolute agree-
ment of the scores, where a value of ‘1’ represented perfect agreement, and ‘0’ was interpreted as a lack of any 
agreement.

Results
Validity and reliability of measurement.  A comparison of the auricle projection area data derived by the 
three methods is shown in Fig. 5 (Table S2). Using the paired Student’s t test method, the P values between the 3D 
optical method and methods 1 and 2 are 0.39 and 0.09, respectively. A Bland and Altman plot comparing the 3D 
optical method with each reference method is shown in Fig. 6. No significant difference was detected between the 
3D optical method and method 1. However, the P value between the 3D optical method and method 2 is lower 
than it is for method 1, mainly because of the lower accuracy and reliability of method 217.

All data on inter-rater reliability together with confidence intervals and P values are presented in Table 1 (fur-
ther details are given in Table S3). The 3D optical method showed a good reliability ( = . < .r P0 97, 0 001), and 
is clearly better than the two reference methods. The reliability of the two reference methods also match the con-
clusions of17. The 95% confidence intervals are presented in Table 1.

Typical case with auricle defect.  We present a typical example case identified by our 3D method. The 
subject is Chinese, male, 17 years old, with right auricle defects caused by trauma. Figure 7 shows the point cloud 
result of the maximum projection area solved using the GA method, more details were shown in Fig. S3. The 

Figure 5.  Projection area results of the 3D optical method versus methods 1 and 2 (sample size: 40).

Figure 6.  Bland and Altman comparing the 3D optical method with each reference method (sample size: 40). 
(a) 3D optical method versus method 1. (b) 3D optical method versus method 2.
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measurement result is listed in Table 2. The data were validated using methods 1 and 2. Based on the result, a 
forensic analysis concludes that the auricle defect of the participant is 13.5%, and identifies it as a slight wound.

Discussion
The above experiment results provide evidence that the 3D optical measurement method is a viable technique for 
the reliable identification of auricle defects and more repeatable than common used methods, and the automat-
ically data process improve the accuracy of projection area. So the proposed method makes a better inter-rater 
reliability, and the above example case shows this system is suitable for daily medicolegal investigations.

The results of this study shows that 3D optical surface scanning is a suitable method for the documentation 
of auricle defects. The 3D models of the scanned auricle display high resolution and accuracy, including all fine 
detail. The acquisition and the electronic storage of the full-scale surface of the auricle allows for examination at 
any time. Data exchange between investigating forensics at national and international levels can be effected easily 
with electronic data carriers. The 3D models would provide great help during auricle reconstruction treatment. 
The 3D model data can be used to generate ear prostheses using a rapid prototyping machine and CAD/CAM 
technology25,26. Auricle surface areas can also determine the amount of grafted skin or expansion skin required 
for reconstruction27. Furthermore, this study would be also useful for other areas of forensic medicine16,28,29, such 
as the surface area determination of wounds and scars17.

There are several aspects that need to be further improved in the proposed measurement system. First, when 
we measured the normal auricles of 20 people, the results showed that the auricles on both sides of the head are 
not exactly the same in size (Tables S2 and S3). The mean deviation value of these samples is 4.9% (SD = 2.7%). A 
problem could be found in some cases, where the two ears of a person have obviously different projection areas. 
As a result, using the defective auricle and heathy auricle maximum projection area ratio to estimate the per-
centage of the defect might not be accurate enough. It would be better if the healthy auricle could be flipped and 
scaled to the same size as the defective auricle based on the feature points of both auricles, so that more accurate 
auricle defects could be identified in all situations. Second, as mentioned in Section 2 the whole processes cannot 
be completed automatically. Testers still need to segment the auricular edge manually, and this could introduce 
errors. The point cloud segmentation method for automatic auricular data extraction would be adopt to this 
system in the future.

This study showed that our 3D optical measurement solution is suitable for the identification of auricle defects. 
Most processes are completed by computer, and hence it is efficient and convenient for the documentation of 
identification results. Furthermore, our method is more efficient than existing methods because most of the data 
processing is completed automatically. We applied this system to a medicolegal investigation and obtained a 
favorable result for auricle defect identification.

Our method Method 1 Method 2

ICC 0.97 0.85 0.70

95% CI 0.95–0.98*** 0.61–0.93*** 0.49–0.83***

Table 1.  Inter-rater reliability of three raters by ICC for auricle projection area measurement by 3D optical 
method and two reference methods (sample size: 40). CI = confidence interval. ***P < 0.001.

Figure 7.  Example of an auricle defect identification and measurement case. (a) Photos of both ears of the 
participant from the side; (b) Point cloud result of the maximum projection area solved using the GA method

Measure Position

Maximum projection area & Defected percentage (mm2) Surface 
area(mm2)3D method Method 2

Defected auricle 1588.944 (86.5%) 1545 (87.1%) 1839 (86.7%) 3656.384

Healthy auricle 1836.157 (100%) 1774 (100%) 2120 (100%) 2915.675

Table 2.  The measurement results of Auricle defect case.
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