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Functional Variants Identified 
Efficiently through an Integrated 
Transcriptome and Epigenome 
Analysis
Fanlin Meng1, Guohong Yuan2, Xiurui Zhu1, Yiming Zhou3, Dong Wang4 & Yong Guo1

Although genome-wide association studies (GWAS) have identified numerous genetic loci associated 
with complex diseases, the underlying molecular mechanisms of how these loci contribute to disease 
pathogenesis remain largely unknown, due to the lack of an efficient strategy to identify these risk 
variants. Here, we proposed a new strategy termed integrated transcriptome and epigenome analysis 
(iTEA) to identify functional genetic variants in non-coding elements. We considered type 2 diabetes 
mellitus as a model and identified a well-known diabetic risk variant rs35767 using iTEA. Furthermore, 
we discovered a new functional SNP, rs815815, involved in glucose metabolism. Our study provides an 
approach to directly and quickly identify functional genetic variants in type 2 diabetes mellitus, and this 
approach can be extended to study other complex diseases.

Complex diseases such as cancers, coronary heart disease, hypertension, Alzheimer’s disease, Parkinson’s disease, 
and diabetes have a major impact on the health of human populations. They are caused by a combination of 
environmental and genetic factors, most of which have not yet been fully identified. The contribution of genetics, 
particularly the links between genetic variations and traits is a long-standing question in the study of complex dis-
eases. Genome-wide association studies (GWAS), a powerful and popular approach to study disease-associated 
single nucleotide polymorphisms (SNP), have revealed a large number of genetic sites linked to disease suscepti-
bility in complex human diseases1. The vast majority of significantly associated genetic variants identified through 
GWAS fall outside of coding regions2,3, complicating our understanding of how the specific SNPs increase disease 
susceptibility. Thus, our understanding of the role of genetic variations in disease remains limited, and it is critical 
to further determine their biological functions4.

Current strategies to screen and determine the causal risk of numerous non-coding loci have mainly utilized 
multi-step experimental approaches, such as identifying allelic differences in both transcriptional activity and 
protein-DNA binding. The allelic differences in transcriptional activity can be evaluated using luciferase reporter 
assays5. Further allelic differences in protein binding can then be analysed by electrophoretic mobility shift assay 
and ChIP to identify upstream transcriptional regulators6,7. To establish the function of a specific variant, genome 
editing techniques such as CRISPR-Cas9 can be applied, followed by an assessment of gene expression and cel-
lular phenotypes8. In a carefully controlled experimental system, phenotypes can be compared between non-risk 
and risk alleles. These research strategies are widely used and have resulted in great progress towards determining 
the functionality of SNP candidates. However, these methods are low-throughput, slow and costly. As numerous 
and complex disease-associated SNPs are identified in a large number of GWAS, it is important to develop rapid, 
high-throughput data-driven methods to identify functional candidates for the pathogenesis of  complex diseases.

Here, we explored the involvement of various SNPs in type 2 diabetes mellitus (T2DM), for which large GWAS 
datasets were available. T2DM is a metabolic disease characterized by high blood glucose over a prolonged 
period. T2DM affects an ever-increasing proportion of the world’s population; the most recent data from the 
International Diabetes Federation estimates the number of people with diabetes as 415 million and the number 
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of deaths from diabetes-related causes as ~5 million in 2015, and one in ten of the world’s population will have 
diabetes by 20409. In China, rapid economic change has driven a dramatic shift in diets and life style, result-
ing in a large number of patients with diabetes10,11. Several risk factors for T2DM have been identified such as 
age, sex, body shape, physical activity and diet, as well as environmental and genetic factors12,13. Several studies 
have identified causal risk variants in the T2DM pathogenesis. Grant et al. found that carriers of a microsatellite 
within intron 3 of TCF7L2 have a higher diabetes risk than non-carriers14. Claussnitzer et al. demonstrated that 
rs1421085 in intron 1 of FTO affects obesity risk by regulating adipocyte thermogenesis8. Musunuru et al. discov-
ered that rs12740374 creates a specific transcription factor binding site, thereby altering hepatic expression of the 
SORT1 gene15. Studies of these regulatory variants could deepen our understanding of the complex pathogenic 
process; however, a large number of SNP candidates remain to be studied. A new method to efficiently identify 
functional candidates is needed.

Alterations in regulatory regions are a main driver of changes in gene expression, and the mutations in a gene’s 
regulatory elements could have critical impacts on cellular function16. Furthermore, genetic variants can also 
modulate the histone modifications directly or indirectly17. Kasowski et al. identified genetic variants affecting 
histone modifications in human cells by incorporating sites of transcription factor (TF) binding and histone mod-
ification18. The regulatory motifs typically have location preferences, such as at the centre of H3K27ac (Histone 
H3 acetyl Lys27) peak19. The alterations in expression level of the affected genes could be measured by RNA-seq, 
and the regulatory regions could be identified using ChIP-seq.

With the above biological background, here we proposed a procedure called iTEA (integrated transcriptome 
and epigenome analysis) to identify a functional SNP candidate, by combining genetic evidence from GWAS with 
genome-wide maps of chromatin features (from ChIP-seq data) and gene transcription (from RNA-seq data) in 
T2DM, and the results were further validated using a literature search and wet experiments.

Results
The pipeline of integrated transcriptome and epigenome analysis (iTEA) using ChIP-seq, GWAS,  
and RNA-seq data. The regulatory regions are capable of modulating gene activity by increasing or decreas-
ing the expression of specific genes. This study is based on two biological hypotheses. First, disrupting a gene’s 
regulatory elements could have a critical impact on cellular function16,20. Motifs in regulatory regions exhibit a 
location preference, including at the center of H3K27ac peak19. Here, we chose H3K27ac for ChIP-seq analysis. 
Second, most genes are regulated by genetic variation near to the affected genes5. We used RNA-seq data to pro-
vide the expression of affected genes. With the above biological background, we proposed the iTEA procedure to 
identify a functional SNP candidate.

To describe iTEA’s procedure, we used T2DM as an example of GWAS phenotype. (a) A list of 356 
T2DM-associated SNPs was obtained from the GWAS Catalog. (b) We used histone modification to identify 
regulatory regions in human tissues relevant to T2DM, including adipose, liver, muscle, and pancreas tissues. 
The Roadmap Project is a resource for ChIP-seq data. Peak calling and motif discovery were performed using 
HOMER to identify regulatory regions and motifs representative of DNA binding events. We mapped 356 
T2DM-associated SNPs to the regulatory regions, and the overlapping SNPs with predicted DNA binding sites 
were reserved for the subsequent steps. (c) To validate the allele-specific expression, we required the genes flank-
ing the overlapping SNPs to have an FPKM of at least 10. Finally, we applied iTEA to T2DM to identify regulatory 
variants and screened nine potential functional SNPs, of which one was further validated by luciferase assay. The 
processing pipeline is outlined in Fig. 1.

The identification of functional genetic variant candidates using iTEA. It has been assumed that 
the functional SNPs fall within gene regulatory regions and that the nearby gene is expressed. Thus, any functional 
SNP candidate must meet the following two criteria (Fig. 2). (1) Its genomic position coincides with a regulatory 
region (i.e. promoter or enhancer). This is supported by the notion that SNP loci may alter the binding of TFs 
and induce further alterations in gene expression. There exist local, proximal, or distal genetic variation-driven 
TF-DNA binding events21. ChIP-seq data is useful for identifying regulatory regions. (2) Its flanking genes are 
expressed in at least two of the following tissues related to T2DM pathogenesis: adipose, liver, muscle and pan-
creas tissues, since that most genes are regulated by genetic variation near to the affected genes5. To enable dis-
covery of genes subject to proximal regulation, we captured the genes located within the region surrounding each 
SNP locus. RNA-seq data is then used to determine the expression levels of these flanking genes.

We compiled a list of 356 T2DM-associated SNPs as risk variant candidates. The statistical significance of P 
was set to less than 1 × 10−5 (Supplementary Table S1). To clearly show the location and P of each SNP, all 356 
T2DM-associated SNPs were further analysed and displayed in a circos plot, please see Figure S1.

To identify DNA regulatory regions, we used ChIP-seq data from the Roadmap Epigenomics Projects and 
searched for histone modification H3K27ac signals, which marks active DNA regulatory regions, including pro-
moters and enhancers22,23. For the H3K27ac ChIP-seq data for each sample, H3K27ac peaks were initially iden-
tified based on read density. We then recognized the DNA regulatory regions by identifying areas in the genome 
with more sequencing reads than we would expect to see by chance. Thus, putative peaks (i.e., non-random tag 
clusters of a given size) were called from the H3K27ac signals. False positive regions were removed by comparing 
the H3K27ac ChIP-seq signal strength in the putative peak regions with the input control signal strength. After 
this filtering step, proximal putative peaks were merged into final H3K27ac peaks. The filtered, merged, putative 
peaks indicated active DNA regulatory regions, including the binding sites of transcription factors. To determine 
which transcriptional factors bind at these sites, we performed motif discovery using the program HOMER24. 
Each motif enriched in these DNA regulatory regions was given a score and P value using the hypergeometric 
test. HOMER screened and returned enriched motifs with a P less than 0.05. The 1000 bp-window surround-
ing the peaks (±1000 bp from the centre of each H3K27ac peak) was used for motif discovery, allowing the 
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identification of DNA motifs at high stringency. In addition, a 2000 bp-window surrounding the peaks was used 
for the identification of DNA motifs at moderate stringency.

To further confirm that these functional SNP candidates could regulate transcription, we investigated whether 
the expression levels of flanking genes were higher in at least two diabetes-related tissues (adipose, liver, muscle 
and pancreas tissues). Because T2DM affects multiple organs, gene expression in at least two of these tissues 
should improve confidence in the putative involvement of the SNPs. The flanking genes were selected as the near-
est genes upstream and downstream relative to the transcriptional start site (TSS). If the FPKM of the  flanking 
genes of the functional SNP candidates is higher than 10, we considered the gene to be expressed in the corre-
sponding tissues. This provided evidence that the functional SNP candidate may regulate transcription.

The identification of functional genetic variant candidates at high and moderate stringency.  
Genic annotation of the 356 T2DM-associated variants was performed. We found that intronic and intergenic 
variants were the two major types (Table 1). These results are consistent with the notion that ~90% of causal var-
iants are non-coding, as reported in an investigation of autoimmune disease25.

Using iTEA at high stringency, we narrowed the list of T2DM-associated variants to two possible functional 
genetic variants, rs35767 and rs815815 (Table 2). SNP rs35767 is an intergenic SNP and rs815815 is an intronic 
SNP, and both located in non-coding regions. At moderate stringency, we identified rs35767, rs815815 and seven 

Figure 1. Overview of the integrated transcriptome and epigenome analysis (iTEA) for functional DNA variant 
identification. The pipeline of iTEA consisted of SNP collection, chromatin state characterization (ChIP-seq) 
and gene expression quantification (RNA-seq). To characterize the chromatin state, peak calling and motif 
finding were used. Then, genetic and epigenetic mapping of diabetic risk loci was implemented to prioritize and 
search for SNP candidates. Firstly, obtaining the T2DM SNP candidates from NHGRI GWAS catalog. Secondly, 
calling peaks and discovered motifs in ChIP-seq data, and aligning the motifs with SNPs to confirm whether the 
SNP was located in the regulatory region. Third, mapping the SNPs and assembling transcripts using FPKM for 
RNA-seq data to further confirm the location of functional SNP candidates, as the functional SNP can regulate 
the gene expression.

Figure 2. Principle of functional SNP candidates identified by iTEA using integrative  strategy. SNP3 is a 
functional SNP candidate, as it affects the expression of a flanking gene at the transcriptional level, and it is 
located in a DNA regulatory region. SNP1 and SNP2 are discarded due to lack of one of the criteria.
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additional functional genetic variants (rs1107366, rs10946398, rs2074356, rs2796441, rs6930576, rs4607517, and 
rs6937795) as candidates (Table 2).

To determine the regulatory effects of the 9 candidates on predicted transcription factor binding sites, 
we used the R package ‘motifbreakR’26 and HOMER to identify the response elements broken by these SNP 
alleles. We found that there were 58 relationships between the nine candidates and the unique predicted motifs 
(Supplementary Table S4). Strong disruption of these nine candidates supported their functionality.

A well-known diabetic risk variant (rs35767) identified by iTEA at high stringency. To determine 
whether SNP rs35767 is a functional genetic variant that regulates gene expression, we aligned the integrative 
transcriptomic and epigenomic maps for the region surrounding SNP rs35767 across multiple samples (i.e., adi-
pose, liver, muscle and pancreas tissues). Mapping of SNP rs35767 suggested that it is located within the active 
promoters in three tissue types adipose, liver, and muscle (Fig. 3a–c), but not in pancreas, as the pancreas sample 
yielded low signal (Fig. 3d). Transcription signals were detected in adipose, liver and muscle samples, which was 
consistent with the chromatin signal. The motif in which rs35767 is located is shown in Fig. 4a. Based on the map 
of genomic loci, we found that SNP rs35767 is located 1191 bp upstream of the TSS of the insulin-like growth 
factor 1 (IGF1) gene, as shown in Fig. 4b. Our iTEA suggested that SNP rs35767 is a functional variant and may 
regulate IGF1 expression by altering the regulatory regions. The regulatory effect of rs35767 on IGF1 expression 
suggested by our strategy is consistent with previous results obtained by wet experiments27,28. This result demon-
strates the feasibility of using iTEA to identify functional variants.

A new functional SNP involved in glucose metabolism identified by iTEA at high stringency.  
The other functional SNP identified by iTEA at high stringency was SNP rs815815. Figure 5a–d illustrates the 
systematic chromatin and transcriptome profiling of adipose, liver, muscle and pancreas tissues, respectively. 
Figure 5a shows that the SNP rs815815 was in the promoter region in the adipose tissue. In the other tissues, 
SNP rs815815 is located in both strong and weak enhancer elements (Fig. 5b–d). The localization of rs815815 
within active DNA regulatory regions suggests that it potentially affects gene expression. SNP rs815815 is 
flanked by the CALM2 gene (coding calmodulin), which is transcribed in all four tissues sampled (Fig. 5a–d). 
The localization of rs815815 within active DNA regulatory regions was further validated using the ChIP-seq 
data from the ENCODE project29. Both the Roadmap and ENCODE datasets indicated that rs815815 is a strong 
candidate as a functional SNP.

To further assess the regulatory effect of rs815815 on CALM2 transcription, we constructed a point mutation 
in the intronic region between exons 2 and 3 of the CALM2 gene. We created allele-specific luciferase reporter 
constructs and measured enhancer activity in two cell lines, HeLa and HEK293. Allelic differences in enhancer 
activity were observed in both cell lines. The A allele resulted in significantly higher enhancer activity than the 
G allele (HeLa P = 4.89 × 10−4; HEK293 P = 6.90 × 10−5). Changes in allele-specific expression translated to a 
1.98-fold increase in CALM2 expression in HeLa cells and a 2.04-fold increase in HEK293 cells (Fig. 6a). Thus, the 
luciferase assay suggested that the risk allele (A allele) promoted the transcription of CALM2.

Genic region Number of SNPs Proportions

intergenic 151 42.42%

intronic 150 42.13%

ncRNA_intronic 19 5.34%

exonic 13 3.65%

UTR3 9 2.53%

downstream 6 1.69%

upstream 3 0.84%

UTR5 3 0.84%

fncRNA_exonic 2 0.56%

Table 1. Statistics of genetic annotations of 356 T2DM-assocated SNPs.

SNPID Stringency Genic region

rs35767 High Intergenic

rs815815 High Intronic

rs1107366 Moderate ncRNA_intronic

rs10946398 Moderate Intronic

rs2074356 Moderate Intronic

rs2796441 Moderate ncRNA_intronic

rs6930576 Moderate Intronic

rs4607517 Moderate Intergenic

rs6937795 Moderate intergenic

Table 2. Functional genetic variant candidates provided by iTEA.
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Next we sought to determine the molecular mechanism by which rs815815 and CALM2 expression are associ-
ated with T2DM. CALM2 is a central element in the adenosine monophosphate-activated protein kinase (AMPK) 
signaling pathway, which stimulates glucose metabolism by promoting the translocation of glucose transporter 
4 (GLUT4)30. We performed a correlation analysis on the expression of calmodulin family genes and AMPK 

Figure 3. Genetic and epigenetic fine mapping of a well-known diabetic risk variant (rs35767) using iTEA. 
Panels a,b,c, and d show the genetic and epigenetic fine mapping of the diabetic risk SNP rs35767 in four tissue 
types: adipose (a), liver (b), muscle (c), and pancreas (d). We created four annotation tracks across ‘omic’ 
information for each tissue. The first track is a chromatin state track based on ChIP-seq data. The second is 
an SNP track; rs35767 is marked with a star. The third is a transcription track based on RNA-seq data. IGF1 
transcript is shown for specific genomic region along with the RNA-seq and ChIP-seq signal. The diabetic risk 
SNP rs35767 is located in active IGF1 promoter regions in adipose, liver and muscle samples. In accordance 
with the active chromatin signal, transcription is active in adipose, liver and muscle samples. Panel (e) is the 
legend for panels a-d. Light violet indicates active promoter regions; blue indicates the inactive promoters; 
yellow and green indicate the strong and weak enhancers, respectively; purple, dark pink, and cyan indicate 
the transcriptional transition, elongation and repression, respectively; dark cyan indicates the low-signal 
regions. The eight colours correspond to eight diverse chromatin states (active promoter, inactive promoter, 
transcriptional transition, transcription elongation, strong enhancer, weak enhancer, transcriptional repression, 
and heterochromatin) as defined by ChromHMM59 using 7 histone modification marks (H3K4me1, H3K4me3, 
H3K9ac, H3K9me3, H3K27ac, H3K27me3, and H3K36me3). In this study, we used H3K27ac to indicate 
enhancers and only assessed the influence of this histone modification across the reference transcriptome.
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family genes. The correlation analysis between the expression level of APMK family and calmodulin was moti-
vated by exploring the potential effects of rs815815. Calmodulin family genes and AMPK family genes included 
in the analysis are shown in Fig. 6c, d, respectively. We found that the expression levels of almost all AMPK and 
calmodulin family members were negatively correlated (Pearson’s correlation, [−0.6, 0.15], in contrast to the 
positive correlations observed within each gene family (Fig. 6d). It is known that AMPK signaling is activated 
in response to a variety of stimuli, including cellular stress, exercise, and a wide range of hormones. Genetic and 
pharmacological studies demonstrate that AMPK is required for maintaining glucose homeostasis, acting as a 
master regulator of metabolic homeostasis31. The luciferase reporter assay (Fig. 6a) and bioinformatics correlation 
analysis (Fig. 6d) suggested that when the intronic SNP rs815815 enhances CALM2 transcription signals, AMPK 
signalling is reduced. As a consequence, GLUT4-mediated glucose transport is impaired, resulting in reduced 
glucose metabolism.

Additional functional genetic variant candidates associated with type 2 diabetes mellitus iden-
tified at moderate stringency. To identify additional putative functional genetic variants, we reanalyzed 
the 356 T2DM-associated SNPs using iTEA at moderate stringency. Seven additional functional genetic variant 
candidates (rs1107366, rs10946398, rs2074356, rs2796441, rs6930576, rs4607517 and rs6937795) were identified. 
Their genetic and epigenetic fine mapping is shown in Fig. 7. We further characterized the seven SNPs using a 
literature search in PubMed, two of the seven SNPs, rs10946398 and rs4607517, have been reported to function 
in T2DM.

SNP rs10946398 was identified as a candidate based on pancreatic-specific ChIP-seq peaks (Figure S2). 
According to our mapping results, it is located within the motif sequence AGCTGTCA (chr6: 20661034–
20661042, P = 1 × 10−200). Chistiakov et al. showed that the minor allele (allele C) of rs10946398 (Odds 
Ratio = 1.21, 95% CI = 1.04–1.4, P = 1.6 × 10−2) is associated with high diabetes risk via its effect on the CDKAL1 
locus32. CDKAL1 is involved in T2DM pathogenesis through impaired beta-cell function33 and this involvement 
is independent of gender, age, and body mass index34. He et al. also indicated that the genomic regions containing 
rs10946398 could interact with CDKAL135.

SNP rs4607517 was also identified based on pancreatic-specific ChIP-seq peaks (Figure S3). This SNP is 
located within the motif sequence YSTGACAGCT (chr7: 44235667 44235677, P = 1 × 10−230). The region 
near rs4607517 contains the genes GCK, AEBP1 and PGAM2. GCK encodes glucokinase, which is required 
for glucose-stimulated insulin secretion and proper glucose metabolism36. The genomic region containing 
rs4607517 has been shown to regulate AEBP1 and PGAM2 in IMR90 cells37. AEBP1 expression was downregu-
lated during adipogenesis38. PGAM2 encodes the enzyme phosphoglycerate mutase, which is involved in a critical 
energy-producing process known as glycolysis. Attenuated expression of PGAM2 led to the formation of thinner 
muscles in Drosophila embryos39.

The comparison of iTEA, Haploreg and RegulomeDB. Haploreg and RegulomeDB are previously 
published methods to identify functional variants. HaploReg explores and visualizes the chromatin states, con-
servation, and regulatory motif alterations within sets of genetically linked variants40. RegulomeDB provides a 
comprehensive interface to access and visualize high-throughput, experimental data sets, as well as computational 
predictions and manual annotations in genome29.

To further validate the capability of iTEA, a set of 11 literature-validated SNPs were used as a reference set to 
compare the results analyzed by iTEA, Haploreg and RegulomeDB. A search of the PubMed database revealed 
1942 studies involving the keywords “diabetes” and each SNP of the 356 identified in dbSNP (https://www.ncbi.
nlm.nih.gov/projects/SNP/). Among them, only 449 articles mentioned at least one SNP from our list of 356 SNPs 
in the abstract section. We then manually catalogued 449 studies that investigated the functional or regulatory 

Figure 4. The motif structure of rs35767. Panel (a) illustrates the disruption of the transcription factor-binding 
motif by SNP rs35767. The proportions of all alternative bases are shown as relative heights of individual letters. 
Y-axis means bits of information content from one observation of a base at this position in a sequence, which 
is an indicator for the frequency of a certain base. We also show the corrsponding reference base. Panel (b) is 
the genomic structure of IGF1 and the location of rs35767. SNP rs35767 is located 1191 bp upstream of the 
transcription start site of IGF1. CDS indicates coding sequence. UTR means untranslated region. The gray and 
white rectangles indicate exons and introns, respectively.

https://www.ncbi.nlm.nih.gov/projects/SNP/
https://www.ncbi.nlm.nih.gov/projects/SNP/
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mechanisms of these SNPs. In total, we extracted 11 functional or regulatory SNPs that have been experimentally 
validated. The Table S2 and Figure S4a presented the results of the comparison between the three methods based 
on this list of 11 SNPs. For Haploreg, we considered SNPs that changed more than four motifs to be functional. 
For RegulomeDB, we chose SNPs with a score of less than four to be functional. By comparing the output from 
iTEA, Haploreg and RegulomeDB, we observed the overlaps and differences among the three methods. This 
result showed that iTEA was at the same level compared with the existing methods of Haploreg and RegulomeDB. 
This result also suggested that the existing software or bioinformatics tools could not perfectly identify func-
tional SNPs, and it is worthwhile to complement them with new approaches. Furthermore, we used Haploreg and 
RegulomeDB to further analyze the nine functional candidates from iTEA. We found that six of nine functional 
SNPs were validated in Haploreg and five of nine functional SNPs were validated in RegulomeDB (Figure S4b, 
Table S3). This result further confirmed that the functional SNPs identified by using iTEA were valuable.

Discussion
GWAS have identified numerous genetic variants associated with complex diseases, but the functions of most loci 
remain poorly understood. The importance of understanding the functional contributions of specific risk variants 
to disease pathogenesis is widely recognized. In studies of T2DM, up to 80% of the T2DM-associated loci were 
found to be non-protein altering variants41. Thus, studying the function of SNPs located in non-coding elements 
is important for understanding T2DM pathogenesis. Current experimental strategies for screening and iden-
tifying causal non-coding loci require multiple steps, including determining the effects of allelic differences in 
transcriptional activity and protein-DNA binding. Recently, a novel strategy to functionally dissect the cis-acting 

Figure 5. Genetic and epigenetic fine mapping of a newly characterized functional SNP rs815815 involved in 
glucose metabolism identified by iTEA. Figure 5–d show the genetic and epigenetic fine mapping of a newly 
characterized diabetic risk SNP rs815815 corresponding to four tissue types, adipose (a), liver (b), muscle (c), 
and pancreas (d). We created four annotation tracks across ‘omic’ information for each tissue. The first track 
is a chromatin state track based on ChIP-seq data. The second is an SNP track; SNP rs815815 is marked with a 
star. The third is a transcription track based on RNA-seq data. The diabetic risk variant rs815815 is located in 
CALM2 enhancer regions in liver, muscle and pancreas samples. In accordance with the active chromatin signal, 
transcription is active in all samples. Panel (e) in Fig. 3e is also the legend for panels a-d in Fig. 4. Light violet 
indicates active promoter regions; yellow and green indicate strong and weak enhancers, respectively.
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effect of genetic risk variants located within regulatory elements using CRISPR/Cas9 genome editing in human 
pluripotent stem cells has been described42. One post-GWAS challenge is to develop a strategy to efficiently and 
rapidly identity functional variants43.

Here, we described a data-driven bioinformatics approach to efficiently identify functional variants associated 
with disease risk. Compared with previous experimental strategies of studying non-coding genetic variants, iTEA 
can be used to directly and quickly screen genetic variants identified through GWAS. To provide more support 
of our findings, we further validated the iTEA results using a literature search and wet experiments. Wet experi-
ments are essential for validating the mechanisms of selected SNPs. Nevertheless, the iTEA approach provides an 
efficient platform for narrowing down the list of candidate SNPs prior to functional studies.

We also extended the application of iTEA, which can be customized for the study of a specific disease by 
following three steps. Step (1): If GWA data is available, researchers can obtain candidate disease-associated 
SNPs depending on the disease of interest. The GWAS Catalog is another comprehensive resource that collects 
disease-associated SNPs using GWAS dating from 2008 to the present, including the majority of diseases or traits. 
Step (2): The regulatory regions which are necessary for regulating the expression of specific genes are required. 
Since that only a small percentage of the genome is responsible for coding proteins; ~98% of the genome is 
thought to be non-coding and is likely to have a regulatory function44. The regulatory regions could be identified 
using ChIP-seq, such as choosing H3K27ac for ChIP-seq analysis. A large amount of ChIP-seq data has been gen-
erated to provide a better annotation of the regulatory regions of the genome. Such efforts include the Roadmap 
Project45 and the ENCODE Project46. Individual labs are also generating ChIP-seq data increasingly47. Step (3): 
Transcriptomic data are required to measure the changes in gene expression. GTEx is a comprehensive resource 
that annotates the expression of transcripts (https://www.gtexportal.org/home/). GEO is an accessible resource 
to provide gene expression profiles generated via microarray or sequencing (https://www.ncbi.nlm.nih.gov/geo/).

Our iTEA approach successfully identified rs35767, a diabetic risk variant. This result was consistent with a 
meta-analysis of 21 GWAS, which suggested that rs35767 is a common variant strongly associated with glycaemic 
traits. Under normal physiological conditions, IGF1 interacts with insulin to maintain normal blood glucose lev-
els and to modulate carbohydrate and lipid metabolisms48. In T2DM patients, SNP rs35767 decreased the levels 
of IGF1 expression, in GG genotype subjects compared with control subjects carrying A allele28. The reduction 
in insulin compared with normal physiological levels did not meet the demand to normalize glycemia, leading to 
ectopic glucose metabolism.

Using iTEA, we successfully discovered a new functional variant, rs815815, and demonstrated its effects on 
CALM2 expression. Allele-specific regulation of CALM2 expression was validated using a luciferase reporter 

Figure 6. Aberrant gene expression of CALM2 caused by rs815815. (a) The risk allele of rs815815 (allele A) 
shows greater enhancer activity than the non-risk allele (allele G) in HeLa cells and HEK293 cells. The relative 
expression of each allele was normalized to the total expression of CALM2 (black bars). For each cell line, the 
s.d. values were calculated from three independent clones for each allele. The p values were calculated by two-
sided t-test. (b) CALM family genes. (c) AMPK family genes. (d) Calmodulin and AMPK families present 
negative correlation pattern in expression in tissues relevant to the development of diabetes. The value in the 
heatmap indicates the correlation coefficient (Pearson’s correlation).

https://www.gtexportal.org/home/
https://www.ncbi.nlm.nih.gov/geo/
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assay. Previous research has suggested that CALM2 is differentially methylated in diabetic rats49. These data indi-
cated that rs815815 contributes to T2DM susceptibility by increasing CALM2 expression.

Using iTEA, we identified additional functional genetic variants at moderated stringency. Seven additional 
SNPs (rs1107366, rs10946398, rs2074356, rs2796441, rs6930576, rs4607517 and rs6937795) were identified, three 
of which (rs10946398, rs2074356, and rs4607517) have been previously reported to be functional in T2DM.

Computational models (e.g., random forest, support vector machines, and artificial neural networks) have 
been widely used to determine the DNA regulatory regions, and a large number of samples are needed to obtain 
robust results50–53. In our study, we analyzed only nine samples which were insufficient for robust predictions 
using the existing computational models. Here, we obtained meaningful results using the nine samples. By 
utilizing paired ChIP-seq data in combination with RNA sequencing data for adipose, liver, muscle and pan-
creas tissues, it is possible to improve the quality by increasing the number of samples. In this study, we only used 
ChIP-seq data for the histone modification H3K27ac. Future studies will be improved by combining other data 
types (different histone modifications, DNase I hypersensitivity, and DNA methylation) with H3K27ac modifica-
tion to identify the DNA regulatory regions to improve confidence in the pipeline. In this study, we used 1–2 kb 
flanking regions around the TSS in motif discovery54, because these regions were ranked highly for discovering 
transcription factor binding sites. However, this approach cannot identify transcription factors that appear in 
super-enhancers, which could be 100 kb long, indicating the limitation of this approach. Additionally, we used 
T2DM as a disease model and proposed the concept of iTEA, as this study only analyzed SNPs associated with 

Figure 7. Circos plot of seven functional SNPs at moderate stringency. Circular representation of the location 
and p-value of the seven SNPs. The outermost ring represents autosome ideograms (chromosomal number 
is annotated), with the pter-qter orientation in a clockwise direction. The second outermost circle represents 
T2DM-associated SNPs and the p-value from GWAS. The four blue circles represent the read coverage from 
ChIP-seq data of four different tissues (light blue for adipose, blue for liver, dark blue for liver, very dark blue for 
pancreas). The four innermost, orange rings represent the read coverage from RNAseq of four different tissues 
(light orange for adipose, orange for liver, dark orange for liver, very dark orange for pancreas).
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T2DM. However, iTEA can be generalized to other diseases by analyzing different tissues and SNP candidates, as 
well as by altering the cut-off values.

We compared iTEA with the two commonly used tools HaploReg and RegulomeDB. We evaluated the bona 
fide and false positive of functional SNPs by using two common sets of SNPs. The first list of SNPs is comprised 
of 11 functional SNPs based on experimental evidence obtained via literature search (Table S2). The second list of 
SNPs comprises the nine functional SNPs identified by iTEA (Table S3). Here, we used the common SNP list to 
scrutinize and compare the output of three different algorithms (iTEA, Haploreg and RegulomeDB). Using this 
approach, we observed overlaps and differences of output among the three methods (Figure S4a, and Figure S4b). 
Collectively, this study suggested that determining the functionality of SNPs should be handled with care and that 
ideally several methods should be combined to achieve better predictions. This analysis also indicated the value 
to develop new approaches to complement current ones.

In summary, we proposed a new strategy termed integrated transcriptome and epigenome analysis (iTEA) for 
studying potential functional variants located in non-coding regions. The well-known diabetic risk SNP rs35767 
was identified by iTEA, and a novel functional SNP rs815815 involved in glucose metabolism was discovered. 
SNP rs815815 is functionally linked with diabetic phenotypes via its regulation of CALM2, which acts in the 
AMPK-mediated glucose metabolism-regulation pathway. Our study established a new approach to functionally 
connecting genetic variation with disease-relevant phenotypes. This approach can be extended to the studies of 
risk loci associated with other diseases.

Methods
Collection of T2DM susceptibility variants. We used the NHGRI GWAS Catalog55 (available at www.
genome.gov/gwastudies. accessed Jun. 25th, 2016) to obtain a list of GWAS associations. SNPs had been cata-
logued to show genome-wide association (P < 1 × 10−5) with fasting glucose, obesity, and body mass index. We 
obtained a list of published SNPs from the NHGRI GWAS Catalog by searching with the keyword ‘type 2 diabetes’ 
to retrieve primary associations and records. After filtering by P < 1 × 10−5, 520 records were obtained. Since 
one SNP could be associated with multiple diabetic traits or several publications, only 356 unique SNPs were 
included. A total of 356 variants satisfied these criteria and were termed ‘T2DM-associated SNPs’ (Supplementary 
Table S1).

ChIP-seq data analysis. We obtained all available ChIP-seq data involving the adipose, liver, muscle and 
pancreas - four tissues related to T2DM pathogenesis - from NIH Roadmap Epigenomics Project (http://www.
roadmapepigenomics.org). We obtained one sample (GSM906394) originating from adipose tissues and two sam-
ples (GSM1112808 and GSM1112809) from livers. We obtained three samples (GSM1127171, GSM1013130 and 
GSM910556) from muscles and two samples (GSM1127061 and GSM1127071) from the pancreases. The epige-
netic data in primary human cells/tissues was obtained from Broad Institute of MIT and Harvard, UCSF, UCSD, 
University of Washington (Seattle) and Baylor College of Medicine. Each of the samples was obtained from an 
unrelated healthy subject. We performed peak analysis and motif analysis for H3K27ac modifications in each 
sample. Peak analysis and motif analysis were performed using HOMER (v4.6). First, the ChIP-seq data were 
transformed into a platform-independent data structure using the makeTagDirectory function. The results for all 
samples from the same tissue were merged into one data set. Second, the dataset was analysed using HOMER’s 
findPeaks function (using the ‘-style histone’ option) to identify peaks (regions of the genome where more reads 
were present than random). Following the primary, putative peak calling step (the putative peak size was set at 
500 bp), three types of filters in the function were applied to compare with the Input controls. The Input control 
is the DNA not precipitated in ChIP-seq experiments. Third, the identified peaks were analysed using HOMER’s 
findMotifsGenome function to identify the de novo motifs of lengths 8 and10 bp. Finally, the identified peaks 
were annotated using the annotatePeaks.pl function.

RNA-seq data analysis. We further obtained all available the RNA sequencing data involving adipose, liver, 
muscle and pancreas tissues from the NIH Roadmap Epigenomics Project. FPKM (fragments per kilobase of 
exon per million fragments mapped) values were used to quantify the expression of all human transcripts. FPKM 
values were calculated using Cufflinks v2.1.156. The mapped sequence reads (bed format) were first transformed 
to bam format and then used as input for Cufflinks. The default parameters were used in transcript quantification. 
The FPKM value was calculated as follows:

=
( )( )

FPKM C

(1)
i L N

10 103 6

Herein, C is the number of fragments mapped to transcript i, N is the total number of sequenced and mapped 
fragments, and L is the length of the exons of encoded by transcript i. Three samples (GSM1010958, GSM1120304, 
and GSM1120305) of adipose tissue were obtained, and the three FPKM values for each transcript were averaged 
to represent the expression level in the adipose tissue. We obtained one sample (GSM1157105) of the pancreas. 
Three samples (GSM1010968, GSM1120310, and GSM1120311) of muscles were obtained, and the three FPKM 
values of each transcript were averaged to represent the expression level in the muscle. We obtained two samples 
(GSM1067795 and GSM916093) of the liver, and the two FPKM values of each transcript were averaged to repre-
sent the expression level in the liver. Each of the samples was obtained from an unrelated healthy subject.

Identification of functional variant candidates. To select the functional variant candidates, we aligned 
T2DM-associated SNPs with DNA motifs found in H3K27ac peak regions using BEDTools57. The BEDTools 
command intersectBed command was used with the parameters -a, -b, -wa, -wb. Considering the effects of 

http://www.genome.gov/gwastudies
http://www.genome.gov/gwastudies
http://www.roadmapepigenomics.org
http://www.roadmapepigenomics.org
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transcriptional regulation of the functional variant candidates, we used a higher FPKM (>10) to select the 
functional variant candidates. All RNA-seq and ChIP-seq annotations of SNP loci were displayed in the UCSC 
Genome Browser58.

Correlation analysis. Correlation analysis was applied to determine the direction and strength of correla-
tions in gene expression between genes in the AMPK and calmodulin families, using RNA-seq data obtained for 
the four aforementioned tissues. We used the Pearson correlation coefficient to measure the linear correlation 
between the expression level of AMPK and calmodulin. The value of the Pearson correlation coefficient ranges 
from -1 to 1, in which 1 is total positive linear correlation, 0 is no linear correlation, and -1 is total negative linear 
correlation. The Pearson correlation coefficient was calculated using the cor() function and is illustrated using 
the pairs() function coupled with a custom R function of panel.cor(). Details were shown in the Supplementary 
Information. The correlation matrix was applied to illustrate the heatmap using R package ‘pheamap’. The sam-
ples used for the correlation include one sample (GSM1157105) from pancreases, three samples (GSM1010968, 
GSM1120310, and GSM1120311) from muscles, and two samples (GSM1067795 and GSM916093) from liv-
ers. Each of the samples was obtained from an unrelated healthy subject by the Broad Institute, UCSF, UCSD, 
University of Washington, or Baylor College of Medicine.

Assembly of reporter constructs. We prepared a 951 bp genomic DNA fragment containing the human 
SNP rs815815, located in intron 2 of the human CALM2 gene. The DNA fragment was amplified by PCR from 
human genomic DNA using the following primers:

5′-GAAAATAAACTACTTTCTGGATTCCTTCTTGAATTTTC-3′ (forward primer); 5′-AATCCAGAAAGT 
AGTTTATTTTCCCTGCTCAACAATTT-3′ (reverse primer). The fragment was inserted into the 
pGL3-Promoter (pGLP) reporter vector (Promega) to create the pGLP-G construct using Hieff CloneTM One 
Step PCR Cloning Kit (Yeasen) according to the manufacturer’s protocol. The SNP locus contained the G allele 
in the aforementioned construct. Site-directed mutagenesis was used to modify the pGLP-G construct into the 
pGLP-A construct in which the SNP locus contained the A allele. Mutagenesis was conducted by overlapping 
PCR, and two pairs of primers were designed as follows.

Primer pair 1: 5′-GGTAAAATCGATAAGGATCCGCACAACAACCCTGCAAGGTAAG-3′ (forward 
primer);

5′-AATTCAAGAAGGAATCCAGAAAGTAGTTTATTTTCCCTGCTCAACAATTT-3′ (Mutagenic reverse 
primer: mutation site, underlined);

Primer pair 2: 5′-ATTGTTGAGCAGGGAAAATAAACTACTTTCTGGATTCCTTCTTGAATTTT-3′ 
(Mutagenic forward primer: mutation site, underlined);

5′-TCTCAAGGGCATCGGTCGACGGCTAGGGTTAAGTGGGATTGGG-3′ (reverse primer).

Cell culture and luciferase reporter assay. Two independent clones for each allele were verified by 
sequencing and were transfected into HeLa and HEK293 cell lines in biological triplicates. The cells were cultured 
in high-glucose DMEM (Gibco) supplemented with 10% foetal bovine serum (Gibco). The cells were maintained 
at 37 °C in a humidified 5% CO2 atmosphere. The cells were inoculated in 24-well plates at 4 × 104 cells/well and 
were grown to 70–80% confluence, and then were co-transfected with 0.5 μg of either pGLP-A or pGLP-G, and 
0.05 μg control vector (Promega) using FuGENE® HD Transfection Reagent (Promega) according to the man-
ufacturer’s instructions. The cells were harvested and lysed 48 h after transfection. Firefly and Renilla luciferase 
activities were measured with a Synergy H1 Hybrid Reader (BioTek). Renilla luciferase activity was used as an 
internal control.

Literature-based validation. We performed a comprehensive literature search to see which of the 356 
T2DM-associated variants have been identified as functional variants. We retrieved 1942 articles from PubMed 
using the keywords of “diabetes” and IDs of SNPs in dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/). 
Among them, we manually selected 449 articles that mentioned at least one SNP from our list of 356 SNPs. In the 
449 articles, 11 SNPs were validated to be functional variants with experimental approaches.

Availability of data. NHGRI GWAS catalog provides (www.genome.gov/gwastudies) the list of GWAS asso-
ciation from previous investigations. ChIP-seq and RNA-seq datasets are available from the Roadmap Epigenetics 
Project (http://www.roadmapepigenomics.org). The data after our processing is available upon request.
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