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A novel gene of Kalanchoe 
daigremontiana confers plant 
drought resistance
Li Wang1, Chen Zhu2, Lin Jin3, Aihua Xiao1, Jie Duan1,4 & Luyi Ma1

Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different 
environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer 
drought resistance and could thereby affect K. daigremontiana development. The detected subcellular 
localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell 
membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene 
promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered 
strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved 
drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants 
by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing 
abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 
3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative 
oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, 
by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, 
the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco 
drought resistance, which may increase our understanding of the molecular network involved in 
developmental manipulation under drought stress in K. daigremontiana.

Plant growth relies on balancing propagation and survival in a rapidly changing habitat since the plant is a sta-
tionary system that cannot escape an inhospitable environment, unlike animals1. Thus, having a flexible growth 
system to adapt to a rapidly changing environment is the key in a variety of plant species2–4. Characterization of 
the regulatory mechanisms of plants under abiotic stresses (drought, salt, and temperature stress) increases our 
understanding by considering abiotic resistance in plants as a specific event during the developmental process5–8. 
Many transcription factor (TF) family genes and microRNA (miR) genes such as miR398 and miR393 have been 
shown to improve plant abiotic resistance by manipulating downstream stress resistance gene expression via 
hormone signaling9,10. In addition, many studies have also indicated that cross-talk between growth and stress 
hormone signaling can result in developmental arrest and enhancement of plant survival, allowing propagation 
of the species11,12.

Kalanchoe (K.) daigremontiana is a model plant for studying photosynthetic activity in crassulacean acid 
metabolism (CAM) species and plantlet morphogenesis along the dentate leaf margin13,14. As a CAM species, the 
K. daigremontiana succulent leaf structure shows impressive tolerance in drought and high-temperature envi-
ronments15. It is of great interest to understand how plantlet morphogenesis is maintained while environmental 
stress continues to apply pressure. Previously, we observed an interesting scenario regarding an increased num-
ber of plantlets along the K. daigremontiana leaf margin under light drought stress compared to well-watered 
conditions, which allowed us to study the regulatory mechanisms between development and drought resistance. 
Different gene expression patterns in leaves between light drought stress and well-watered plants were identified 
by Suppression Subtractive Hybridization (SSH) technology16. Among genes with modulated expression, the 
KdN41 gene, without a known function, was identified.
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Here, we hypothesized that this gene may participate in drought stress signal perception, which could affect 
plant development in K. daigremontiana. In this study, the full cDNA and promoter sequences of KdN41 were 
sequenced and the characteristics of putatively encoded proteins were analyzed using bioinformatics tools. 
The expression patterns of the KdN41 gene were also examined in K. daigremontiana leaves under different 
hormone and drought stress treatments. The spatial expression pattern of the KdN41 gene was monitored by 
β-glucuronidase (GUS) expression driven by the KdN41 gene promoter during different abiotic stress conditions 
(drought, salt, and heat stress). Finally, tobacco plants (Nicotiana tabacum, NT) overexpressing KdN41 were stud-
ied to evaluate the role of this gene in drought resistance.

Results
Antioxidant genes enrich in K. daigremontiana leaf under drought stress. Previously, SSH cDNA 
library were constructed among well watered K. daigremontiana leaves and leaves under light stress16. The library 
revealed different expressed genes induced by drought stress. Lacking a complete genome sequence in K. daigre-
montiana, 361 ESTs were annotated by employing four public databases, non-redundant protein database (Nr), 
non-redundant nucleotide database (Nt), Swiss-Prot protein database (Swiss-Prot), and Kyoto encyclopedia of 
genes and genomes database (KEGG). (Supplementary Fig. S1).

When compared with the COG database, all annotated ESTs were divided into 19 different functional classi-
fications, excluding those poorly characterized or functional unknown ESTs (Supplementary Fig. S2a). Among 
these types, the first five categories were Translation, Ribosomal structure and biogenesis, Posttranslational mod-
ification, protein turnover, chaperones, Carbohydrate transport and metabolism, Energy production and conver-
sion, Lipid transport and metabolism.

The go ontology (GO) databases were used to further classify the functions of the predicted genes. 
Approximately 315 ESTs were classified into three main categories: ‘biological process’, ‘cellular component’ and 
‘molecular function’ (Supplementary Fig. S2b). Within the ‘cellular component’ category, a large number of ESTs 
were annotated as ‘integral component of membrane’, while the major groups within the ‘molecular function’ 
category were ‘ATP binding’ and ‘metal ion binding’. It’s worth to mention that in the ‘Biological process’ category, 
‘oxidation-reduction process’ (27 ESTs) was the most abundant subcategories, among which antioxidant enzymes 
like peroxidase (POD), catalase (CAT), as well as NADP related genes were included (Supplementary Table S1).

Based on these data, KdN41 was predicted to participate in the pathways of antioxidant activities to increase 
plant drought resistance.

Clone and bioinformatics analysis of the KdN41 gene. Based on the partial cDNA sequence of 
KdN41, the full cDNA sequence of KdN41 was determined to be 884 bp after splicing the products of 3′ and 5′ 
RACE (rapid-amplification of cDNA ends) (Supplementary Fig. S3). The full sequence of the KdN41 promoter 
was found to be 194 bp (from gDNA 5′ beginning to the start of ATG initiation codon), which was determined by 
the genome walking method.

According to NCBI ORF Finder analysis, the possible open-reading frame (ORF) sequence length for 
KdN41 protein is 450 bp, encoding 149 amino acids. Nucleotide BLAST and protein BLAST analyses revealed 
no highly similar match with other known genes in other plant species. The protein characteristics of KdN41 
examined by the ProtParam tool showed that the putative protein contains 20 types of amino acids (chemi-
cal formula: C713H1112N196O250S5) with a 16.59-kD molecular mass and an isoelectric point of 4.60. According 
to the SWISS-Model prediction of KdN41 protein structure, the structure showed 3.50 and 11.31% similar-
ity, respectively, to Arabidopsis thaliana Polyadenylate-binding protein 2 and Schizosaccharomyces pombe 
Polyadenylate-binding protein 2. Therefore, KdN41 appears to be a novel gene based on both nucleotide and 
amino acid sequence BLAST analyses.

The key cis-acting elements of the KdN41 gene promoter were predicted to be MBS (MYB TF binding 
site previously implicated in drought stress response), TC-rich repeats (stress response element), and P-box  
(a gibberellin-responding element) based on PlantCare analysis (Supplementary Fig. S4).

KdN41 gene expression patterns under different hormone and drought stress treatments.  
Based on the multiple hormone response elements presented in the KdN41 gene promoter, we hypothesized that 
its expression may fluctuate under different hormone signaling and drought stress conditions. Therefore, KdN41 
expression profiles in K. daigremontiana leaves treated with 4 kinds of hormones [gibberellins (GA3), salicylic 
acid (SA), abscisic acid (ABA), or methyl jasmonate (MeJa)] and 4 different (16%, 12%, 8%, 4%) soil water con-
tents respectively were analyzed using qRT-PCR.

The KdN41 gene expression showed no significant difference among leaves of K. daigremontiana plants under 
16%, 12% and 40% (control group, CK) soil water contents (Fig. 1a). However, a slight increase in KdN41 expres-
sion was observed in leaves of K. daigremontiana plants under 8% soil water content compared to CK (P < 0.05). 
Under 4% water content, the KdN41 expression boosted almost 1 time more than CK (P < 0.05) (Fig. 1). Thus, the 
KdN41 expression is sensitive to decreasing soil water content.

An extended effect of SA in upregulating the expression of the KdN41 gene was more obvious than with other 
hormone treatments, suggesting that SA may be a key player in regulating this gene. After 6 h KdN41 gene expres-
sion was upregulated significantly by ABA or GA treatment, but its expression was downregulated between 4 and 
6 h in the MeJa treatment. KdN41 upregulation was affected mainly by SA signaling and its downregulation was 
possibly affected by ABA, GA, or MeJa signaling (Fig. 1b).

Sub-cellular localization of KdN41 gene. We also used Yellow Fluorescent Protein (YFP) as a marker to 
monitor the sub-cellular localization of KdN41 (using its ORF sequence) in tobacco leaf epidermal cells.
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A strong signal of the KdN41-YFP fusion protein was primarily detected in the nucleus (Fig. 2a) and a weak 
signal was observed in the cell membrane (Fig. 2a), compared to the average signal in control samples (Fig. 2d).

Therefore, the KdN41 gene expressed in the cell nucleus and membrane.

KdN41 gene expression pattern under drought stress signals. Since KdN41 gene expression may be 
induced under stress conditions, according to its promoter sequence, we utilized a construct of the KdN41 pro-
moter driving GUS gene expression to determine the locations and conditions that induce KdN41 gene expres-
sion. Next, three stress conditions (drought, salt, and heat) were used to test KdN41 gene expression patterns.

Interestingly, KdN41 gene expression could not be detected in any tissue when no stress condition was applied, 
similar to wild-type (WT) plants (Fig. 3a and b). However, only 10 h after the onset of 20% (w/v) PEG6000 treat-
ment (drought stress), KdN41 gene expression detected by GUS staining was mainly observed in the leaf vein 
(Fig. 3d) compared to WT (Fig. 3e) and positive control (PC, transformed with 35S::GUS) plants (Fig. 3f). Weak 
GUS staining in the main root part (Fig. 3j) indicated faint KdN41 gene expression compared to PC (Fig. 3l) and 
WT plants (Fig. 3k). After salt stress (Supplementary Fig. S5) or heat stress treatment (Supplementary Fig. S6), no 
GUS staining could be detected within the leaf vein or any root area compared to WT plants.

To summarize, KdN41 gene expression was mostly silent during normal growth conditions, and only drought 
stress induced its high expression in the leaf vein.

Over-expression of the KdN41 gene confers drought stress resistance in tobacco. Given that 
the specific KdN41 gene expression pattern under drought stress, this gene could play a role in tobacco drought 
stress tolerance. Therefore, the ability to resist drought stress (light drought, LD; medium drought, MD; severe 
drought, SD) was tested among KdN41 over-expression (OE), WT, and negative control (NC, transformed with 
empty vector) plants.

The phenotypes of OE, WT, and NC tobacco plants were compared under increasing drought treatment. OE 
plants (less leaf wilting) showed better drought resistance than WT, and NC plants, especially under SD stress 
(less than 1% soil water content) (Fig. 4).

Therefore, over-expression of KdN41 gene improves drought stress resistance in tobacco.

Over-expression of KdN41 gene reduced reactive oxygen species (ROS) in tobacco leaves under 
drought stress. Drought is commonly considered as an induction of oxidative stress. The limited water avail-
ability often results in over-accumulation of ROS content such as hydrogen peroxide (H2O2) and super-oxygen 

Figure 1. KdN41 expression patterns in response to drought and different hormone treatments. (a) 
KdN41expression patterns in response to increasing drought stress. The horizontal axis represents relative soil 
water content, the water content of 40% is CK; (b) KdN41expression patterns in response to different hormone 
treatments. Abscisic acid (ABA), salicylic acid (SA) gibberellins (GA), methyl jasmonate (MeJa), and H2O (CK). 
*Indicated a significant difference when compared with CK (p < 0.05); Errors bars represented ± SD (standard 
deviations) of nine independent replications. The expression level of CK at 2 h was treated as reference and 
calculated as 1.
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ion (O2
−), which is essential for plant to maintain homeostasis. Thus, we asked whether over-expression of 

KdN41 gene could improve the elimination of excessive ROS content in tobacco leaves during drought stress. 
The 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining methods were used to detect ROS 
localization in OE, WT, and NC tobacco leaves.

Both DAB and NBT staining results showed small staining area of ROS in leaves of three genotypes under 
well watered condition (Fig. 5a,b). A slight increase in staining area of ROS was observed in WT and NC tobacco 
leaves (Fig. 5c,d) under LD stress condition (8–10% soil water content), however, no significant expansion in 
staining area of ROS was shown in OE tobacco leaves (Fig. 5c,d) under LD stress condition. Under MD stress 
(3–5% soil water content), a large staining area of ROS was showed in WT and NC tobacco leaves (Fig. 5e,f), while 
only limited increase could be observed in OE tobacco leaves (Fig. 5e,f). Under SD stress (less than 1% soil water 
content), almost the whole area of WT and NC tobacco leaves were stained (Fig. 5g,h), however, the staining area 
of ROS site in OE tobacco leaves was much smaller (Fig. 5g,h).

The well-maintained homeostasis of ROS content in OE tobacco leaves under drought stress suggested that 
the activities of antioxidant enzymes such as peroxidase (POD), catalase (CAT) were more robust in OE leaves 
than those of in WT and NC leaves. Thus, POD, CAT activities and H2O2, O2

− contents were also measured in 
OE, WT, and NC tobacco leaves.

The POD and CAT activities showed no significant difference between three genotypes during well water 
condition (Fig. 6a,b), which was consistent with H2O2 and O2

− contents (Fig. 6c,d). A remarkable increase of both 
POD and CAT activities were found in OE tobacco leaves (P < 0.05) under LD and MD stress (Fig. 6a,b), leading 
to fewer contents of H2O2 and O2

− than those of in WT and NC under MD stress (P < 0.05) (Fig. 6c,d). Under 
SD stress, though POD and CAT activities went down in OE tobacco leaves, but was still higher than those of in 
WT and NC (P < 0.05), which was consistent with the lower contents of H2O2 and O2

− in OE tobacco leaves than 
those of in WT and NC leaves (P < 0.05) (Fig. 6c,d).

In summary, over-expression of KdN41 gene increased antioxidant enzymes activities and eliminated exces-
sive H2O2, O2

− contents in tobacco leaves.

Over-expression of KdN41 gene reduced osmotic damage in tobacco leaves under drought 
stress. The improved drought resistance of OE tobacco might also perform well in controlling osmotic dam-
age and ABA signaling. Therefore, the electrolyte leakage (EL), Proline, MDA (Malondialdehyde) and ABA con-
tents were tested in OE, WT and NC tobacco leaves.

In OE plants, EL, Proline and MDA results indicated better drought resistance and lower leaf cell membrane 
damage than WT and NC plants (Fig. 7a,c and d). The leaf ABA contents of OE plants slightly increased after 
drought treatment and was higher than those of WT and NC under LD and MD (Fig. 7b), which was consistent 
with the drought resistance phenotypes.

To summarize, over-expression of KdN41 gene reduced osmotic damage in tobacco leaves under drought 
stress.

Figure 2. Sub-cellular localization of KdN41 gene in tobacco epidermal cell. (a,d) 35S::N41::YFP and 35S::YFP 
signal detection; (b,e) DAPI staining signal detection; (c,f) merged image.
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Drought resistance related genes expression profiles in OE KdN41 gene tobacco leaves under 
drought stress. Given that the improved drought resistance of KdN41 gene OE plants, we also asked whether 
drought resistance related genes expression profiles were consistent with the phenotype. The relative expres-
sion of KdN41, respiratory burst oxidase homolog D (RbohD), POD1, CAT, Superoxide Dismutase (SOD) and 
dehydration-responsive element binding like (DREB-like) gene profiles in OE, WT, and NC tobacco leaves during 
drought stress were determined by RT-qPCR.

The KdN41 gene in OE leaves showed constitutive expression during well watered condition and drought 
stress (Fig. 8a). Mainly under LD stress, expressions of NtRbohD, NtSOD or NtDREB-like were found to be higher 
in OE than those of in WT and NC leaves (P < 0.05) (Fig. 8b,e and f). The POD1 and CAT gene expressions were 
both strongly up-regulated in OE leaves during drought stress, and became significant higher than those of in WT 
and NC leaves under LD, MD, and SD (P < 0.05) (Fig. 8c,d).

In summary, over-expression of KdN41 gene in tobacco resulted in reinforced antioxidant enzymes encoding 
genes expression and lower ROS synthesis gene (RbohD) expression during drought stress, which confers reduced 
oxidative damage in OE leaves.

KdN41 gene over-expression causes early flowering in tobacco. Surprisingly, the early-flowering 
phenomenon was observed in KdN41-expressing transgenic tobacco plants compared to WT and NC tobacco 
plants, after watering was restored post-drought treatment (Supplementary Fig. S7). In KdN41-expressing 
tobacco plants, the first flower bud formed at week 20. In the following week, half of the total plants under evalu-
ation exhibited flowering. All plants under evaluation flowered by week 22. For WT and NC plants, no flower was 

Figure 3. KdN41 GUS staining analyses of PromoterKdN41::GUS, wild type (WT), and 35S::GUS (PC) 
tobacco plants after drought stress using 20% PEG. (a–c) leaf staining results with no drought treatment; 
(d–f) leaf staining results under drought treatment; (g–i) root staining results with no drought treatment; 
(j–l) root staining results under drought treatment; Black arrows mark GUS staining area in leaf vein of 
PromoterKdN41::GUS plants.
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observed until week 21. Moreover, it was not until week 24 that all plants of these two kinds of transgenic plants 
were observed with flower buds. Thus, the flowering time for OE plants was earlier by almost 20 days compared 
to WT and NC tobacco plants (Supplementary Table S2).

This early flowering phenotype of OE plants might indicate that this gene also plays a role in strengthening the 
developmental phase change post-drought stress.

Discussion
The expression profiles of KdN41 gene revealed by GUS staining under drought, salt, and heat stresses showed 
that this gene specifically responds to drought stress signaling, which is consistent with its appearance in our 
previous drought stress SSH cDNA library. In other studies, ROS have been repeatedly shown to be a key signal 
cascade mediating stress signaling17. We explored whether ROS could accompany the expression of KdN41 gene, 
using DAB staining to visualize H2O2 localization in leaves under drought, salt, and heat stress (Supplementary 

Figure 4. Different phenotypes in 35S::N41 (OE), wild type (WT) and NC (negative control) tobacco plants 
under increasing drought stress levels. (a) Plants with non-treatment; (b) plants under light drought (soil water 
content: 8–10%); (c) plants under medium drought (soil water content: 3–5%); (d) NC, OE and WT plants 
under severe drought (soil water content: <1%).
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Fig. S8 and S9). Under drought stress, the location of KdN41 gene expression by GUS staining was observed 
(Fig. 3) to coincide with the localization of H2O2 by DAB staining (Supplementary Fig. S9). Under salt stress, the 
presence of H2O2 did not trigger KdN41 gene expression. Therefore, KdN41 gene expression may be independent 
of ROS signaling, and instead may be a specific drought stress signaling responder.

The short promoter of KdN41 gene harboring multiple stress response elements suggests that this gene is tightly 
regulated by other gene networks. Thus, during normal growth conditions, the low expression of KdN41 gene could 
play an important regulatory role in growth. Considering the KdN41 expression patterns in response to drought 
signal, this gene may also function in tobacco salt and heat stress tolerance. To test this hypothesis, the ability to 
resist salt and heat was evaluated in OE, WT, and NC plants. During 7 days of continuous salt stress, a similar 
response was observed among OE, WT, and NC tobacco seedlings. The leaves of almost every plant turned from 
green to yellow, and no increased tolerance was observed after KdN41 over-expression (Supplementary Fig. S10a). 
For the heat stress treatment, OE, WT, and NC tobacco seedlings were compared under a constant high tempera-
ture of 50 °C. After 7 h of heat stress, almost all OE, WT, and NC plants showed similar responses, with the leaves 
beginning to turn brown. No significant difference was observed between samples of OE and samples of the two 
other groups (Supplementary Fig. S10b). However, OE tobacco seedlings of similar developmental stage under 
PEG drought stress displayed better resistance phenotypes than WT and NC plants (Supplementary Fig. S11).

KdN41 gene expression responded to drought stress signals, and over-expression of KdN41 gene improved 
tobacco drought resistance but failed to improve the resistance of tobacco plants to salt and heat stress. This 
indicates that this gene could play an indirect role in clearing harmful substances induced by stress. The lack of 
response of this gene during salt and heat stress indicates that systematic control of the specific response gene is 
crucial for the perception of certain environmental stresses.

Figure 5. ROS staining of 35S::N41 (OE), wild type (WT) and NC (negative control) tobacco plants under 
increasing drought stress levels. (a-b) Plants with non-treatment; (b-c) plants under light drought (soil water 
content: 8–10%); (e-f) plants under medium drought (soil water content: 3–5%); (g-h) NC, OE and WT plants 
under severe drought (soil water content: <1%).
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The reduced leaf size of the KdN41-overexpressing plants is suggestive of several roles for this gene. According 
to the data (Supplementary Table S3), the leaves of KdN41-overexpressing plants were much shorter and nar-
rower than those of WT and NC plants. These reduced leaf areas provide benefits for drought resistance. For 
example, lower work load for various physiologic traits such as leaf hydraulic conductance, photosynthesis, and 

Figure 6. Changes of peroxidase (POD), catalase (CAT), H2O2 and O2
− content in 35S::N41 (OE), wild type 

(WT) and NC (negative control) tobacco plants during increasing levels of drought stress, NT (non-treatment), 
LD (light drought), MD (medium drought), and SD (severe drought). Errors bars represented ± SD (standard 
deviations). *Indicated a significant difference compared to WT (Duncan’s multiple range test p < 0.05).

Figure 7. Electrolyte leakage (EL) activities, abscisic acid (ABA), Proline and malondialdehyde (MDA) content 
in 35S::N41 (OE), wild type (WT) and NC (negative control) tobacco plants during increasing levels of drought 
stress, NT (non-treatment), LD (light drought), MD (medium drought), and SD (severe drought). Errors bars 
represented ± SD (standard deviations). *Indicated a significant difference when compared to WT (Duncan’s 
multiple range test p < 0.05).
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nutrition consumption might be achieved18. In addition, lower membrane damage, lower levels of oxidant toxin 
levels and osmotic adjustment substances would be achieved19. The latter was consistent with the physiological 
parameters we observed (Fig. 6). In addition, tissue-specific expression of KdN41 gene in vascular tissue under 
drought stress (Fig. 3) reflects its possible role in communicating with other regulators in the leaf hydraulic con-
ductance photosynthesis and nutrition consumption processes. The leaf vein is an essential structure in nutrition, 
water, and hormone transportation during the plant life span, and supports photosynthesis20. The leaf hydraulic 
conductance machinery can manipulate water transport and keep the stomata open to allow photosynthesis21. 
Previous study also confirmed that reduced cell size rather than cell number will determine the plasticity in vein 
and stomata density, which adjusts leaf transpiration in dealing with changing environment conditions22. The 
KdN41-overexpressing plants showed an obvious reduced decrease in photosynthetic rate compared to the WT 
(Supplementary Fig. S12b,e and h) and NC (Supplementary Fig. S12c,f and i) plants, especially under medium 
and severe drought stress (Supplementary Fig. S12d–f and g–i).

Thus, the reduced leaf size of KdN41-overexpressing tobacco might also serve as a dynamic leaf transpiration 
system to adapt to drought stress condition. In summary, the reduced size of leaves in KdN41-overexpressing 
tobacco may be an adaptive in response to drought stress.

Since the first report on the function of DREB transcription factor23, dwarfing plants has been a clas-
sic way to enhance stress tolerance24. However, some studies have confirmed improved stress tolerance in 
DREB1B-overexpressing plants without dwarfing, suggesting that ABA signaling is an independent stress response 
mechanism25. In this report, differences in ABA concentration between different kinds of transgenic plants and 
WT were much smaller than other physiological parameters, which might suggest that KdN41-overexpressing 
tobacco possess different methods of improving drought resistance.

During light to severe drought stress, the KdN41-overexpressing tobacco leaves showed high to low antiox-
idant enzyme activities compared to WT and NC plants (Fig. 6), indicative of hypersensitivity in detoxifying 
the oxidant substances. During drought stress, the KdN41-overexpressing plants continued to grow taller, but 

Figure 8. Relative expressions of drought resistance related genes in 35S::N41 (OE), wild type (WT) and NC 
(negative control) tobacco plants in response to increasing levels of drought stress, NT (non-treatment), LD 
(light drought), MD (medium drought), and SD (severe drought). Errors bars represented ± SD (standard 
deviations). *Indicated a significant difference compared to WT (Duncan’s multiple range test p < 0.05). The 
expression level of WT group under NT was treated as reference and calculated as 1.



www.nature.com/scientificreports/

1 0SCIENtIFIC REpORTS |  (2018) 8:2547  | DOI:10.1038/s41598-018-20687-5

the leaf length and width were much lower than WT and NC plants (Supplementary Table S3). This could also 
be explained by the lower expression levels of auxin-related genes and higher expression of the ABA responsive 
element binding factor (ABF) gene, which endows KdN41-overexpressing plants with a slower growth rate than 
WT and NC plants under continuous drought stress (Supplementary Fig. S13). Therefore, the KdN41 gene in 
KdN41-overexpressing plants may be involved in balancing growth and drought stress resistance, and the low 
ratio of growth to drought stress resistance in KdN41-overexpressing plants is a result of “fine-tuning” of drought 
stress resistance.

The main approach in modern crop breeding is to cultivate a single species with multiple key agronomic traits 
(seed quality, biomass production, and pest and disease resistance) to cope with rapidly changing environmental 
conditions. For this purpose, low-input, space, and resource conservation, as well as biodiverse agriculture or 
horticulture, is essential26. K. daigremontiana is an ideal plant with rapid propagation and various environmental 
condition adaptation traits in agriculture and horticulture usage.

The KdN41 gene is an interesting example that reflects precise control between growth rate and drought stress 
resistance. In this study, the 35 S promoter was used to drive KdN41 gene expression in various tissues. KdN41 
overexpression was found to confer improved drought resistance, but it could also decrease biomass production 
due to reduced leaf size in transgenic tobacco. However, an inducible or tissue-specific promoter to control KdN41 
gene expression could be used to regulate expression of this gene in specific situations. One potential approach is 
to apply the RD29A promoter (a specific drought response promoter) to regulate KdN41 gene expression. During 
water shortages in the drought season, this gene may function in stressed crop tissues to enhance the survival 
rate. When the water availability returns to normal, the crop will provide better biomass production compared 
to non-breeding cultivars. Considering the early flowering phenomenon in KdN41-overexpressing tobacco, this 
could be beneficial for breeding based on the crop flowering time. Generating a crop with a controllable flowering 
time in a specific season would address the late flowering problem in agriculture and horticulture production. 
Future studies on other gene candidates for crop breeding may be possible by exploring the KdN41 gene network.

Methods
Plant materials and growth conditions. Tobacco and K. daigremontiana were grown in substrate 
(peat:perlite = 3:1) under a 16/8-h light (250 μmol m−2 s−1) cycle at 25 °C at 50–70% relative humidity in a growth 
room.

RACE assay, Genome-walking assay and bioinformatics analysis of KdN41 gene. DNA and 
RNA extractions from K. daigremontiana were performed as described previously27,28. Based on a partial cDNA 
sequence, TaKaRa 5′-Full-RACE (TaKaRa, Japan) and TaKaRa 3′-Full-RACE (TaKaRa, Japan) kits were used 
to amplify the 5′- and 3′-ends of the full length KdN41 cDNA sequence with cDNA template. According to a 
partial gDNA sequence of KdN41 gene, TaKaRa Genome Walking Kit (TaKaRa, Japan) was employed to amplify 
5′ flanking sequence containing promoter. The KdN41 gene ORF was predicted using the ORF Finder program 
(http://www.ncbi.nlm.nih.gov/gorf/gorf.html), and cis-acting elements in the promoter were predicted using the 
Plant Cis-Acting Regulatory Element (PlantCare; http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) 
database. Conserved domains were predicted using the NCBI Conserved Domain Search program (http://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), and CDS-encoding protein characteristics were predicted using the 
ProtParam (http://web.expasy.org/protparam/), iPSORT (http://ipsort.hgc.jp/), and PSIPRED (http://bioinf.
cs.ucl.ac.uk/psipred/) programs.

Hormone treatments in K. daigremontiana. Three-month-old WT K. daigremontiana plants were 
divided into five groups. All groups were treated using the foliage spray method, as follows: 500 mL H2O (CK), 
500 mL of 100 μM ABA (product number: A1049, Sigma, USA), 500 mL of 100 μM SA (product number: S7401, 
Sigma, USA), 500 mL of 100 μM GA3 (product number: G7645, Sigma, USA), and 500 mL of 100 μM MeJa (prod-
uct number: 392707 ALDRICH, USA) respectively. RNA was extracted from the leaves of three individual plants 
(each representing a biological replicate) from each group after 2, 4, 6, and 10 h. cDNA synthesis and real-time 
PCR analyses were performed using the TransStart® Tip Green qPCR SuperMix (TransGen Biotech, Beijing), fol-
lowing the manufacturer’s instructions, and an ABI Step One PCR instrument (Applied Biosystems). The results 
were calculated using the 2−ΔΔCt method29. The assay for each gene used three biological replicates as templates 
(For each biological replicate, three technical replicates were used. Thus, a total of nine reactions were run.) The 
partial cDNA sequence of the KdActin gene was used as a reference gene. Because this gene indicated stable 
expression level among different plant organs including leaf, stem and root in previous study. Leaf of CK was 
treated as a reference tissue.

Vector construction and tobacco transformation. The complete KdN41 ORF cDNA sequence was 
introduced into the pBIN438 plasmid driven by the enhanced CaMV35S promoter as an overexpression con-
struct (35S::N41); A tissue expression construct of the KdN41 gene (PromoterKdN41::GUS) was designed by using 
its 197-bp promoter sequence to replace the CaMV35s promoter in the pBI121 plasmid, to drive expression of 
the GUS gene. The empty plasmids pBIN438 (35S::None) and pBI121 (35S::GUS) were used as a NC and PC in 
further experiments. YFP was employed as a reporter. Recombinant pGTVII plasmids containing 35S::N41::YFP 
and 35S::YFP (as control) were constructed respectively. All plasmids mentioned above were transformed into the 
Agrobacterium tumefaciens strain LBA4404.

The tobacco plants were infected by A. tumefaciens strain LBA4404 with the constructs mentioned above 
through previous method30. Confirmation of positive transformation in tobacco T0 generation of each con-
struct was performed by PCR amplification of the KdN41 gene ORF, KdN41 promoter, partial NPTII respectively 

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://web.expasy.org/protparam/
http://ipsort.hgc.jp/
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
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(Supplementary Fig. S14–S17). Three primary transformed tobacco plants of each construct were selected ran-
domly to provide T1 progeny. Seeds of primary transgenic plants were grown on Murashige and Skoog (MS) 
medium with a 50−mg L−1 kanamycin selection pressure for three weeks (WT seeds were grown on MS medium) 
(Supplementary Table S4).

Transgenic tobacco line stress treatments. Drought stress treatment. T1 seedlings from three individ-
ual lines of each construct were used, and for each line, three seedlings were employed (nine seedlings in total). 
The combination of PromoterKdN41::GUS, PC, and WT (for KdN41 tissue expression) and the combination of OE, 
NC, and WT (for KdN41 function identification) were grown in MS liquid medium with 20% PEG6000 for 10 h 
as a drought stress treatment (controls were grown in liquid MS medium) at 25 °C under a 16/8-h light (250 μmol 
m−2 s−1) cycle at 50–70% relative humidity (Supplementary Table S5).

Three-month-old T1 generation plants from three individual lines of each construct were used (three biolog-
ical replicates for each individual line, and nine plants per construct). KdN41 OE, WT, and NC tobacco plants 
grown in peat substrate were watered to pot capacity and allowed to dry gradually. After the first sign of wilting 
was observed, soil water content was measured using a Delta T wet sensor (Delta-T Devices Ltd., UK). Three 
weeks after soil drying, LD was reached at 8–10% (8.34% average) soil water content; four weeks after soil drying, 
MD was reached at 3–5% (3.42% average) soil water content; five weeks after soil drying, severe SD was reached 
below 1% (0.21% average) soil water content. Each kind of transgenic plant and WT contained a non-treatment 
group (NT) that remained well-watered as a control (Supplementary Table S5).

Salt stress treatment. T1 seedlings from three individual lines of each construct were used, and for each line, 
fifteen seedlings were employed (forty-five seedlings per construct). The combination of PromoterKdN41::GUS, PC, 
and WT (for KdN41 tissue expression) and the combination of OE, NC, and WT (for KdN41 function identifica-
tion) were treated as follows (Supplementary Table S5): grown on solid MS medium containing 400 mM NaCl at 
25 °C under a 16/8-h light (250 μmol m−2 s−1) cycle at 50–70% relative humidity for 7 d for salt stress treatment 
(controls were grown on MS medium).

Heat stress treatment. T1 seedlings from three individual lines of each construct were used, and for each line, 
fifteen seedlings were employed (forty-five seedlings per construct). The combination of PromoterKdN41::GUS, 
PC, and WT (for KdN41 tissue expression) and the combination of OE, NC, and WT (for KdN41 function iden-
tification) were treated as follows (Supplementary Table S5): grown on MS medium at 50 °C for 7 h in a growth 
chamber for heat stress treatment (controls were grown on MS medium at 25 °C).

Histochemical staining assay. For GUS protein expression localization, tobacco leaves were stained as 
described previously31. H2O2 localization in tobacco leaves was detected using the DAB and NBT staining meth-
ods32. Images are representative of >10 observed samples stained in three independent experiments for each 
stress treatment.

YFP localization assay. One-month old tobacco leaves were injected with the LBA4404 strain containing 
one of the plasmids mentioned above, as described previously33. After 48 h, microscopic observations for YFP 
or KdN41-YFP fusion protein were performed using a Confocal Laser Scanning Platform Leica TCS SP8 (Leica, 
Germany).

Physiological traits and gene expression quantification. The photosynthetic activities of the three 
uppermost fully developed leaves were measured at three individual stress stages using a Li-6400 (LI-COR, USA). 
POD and CAT activities of leaves were measured following a previously described method34. EL of 0.1 g of fresh 
leaves from three individual stress stages was measured using a previously described method35. Proline, MDA, 
H2O2 and O2

− contents were measured following a previously described method32. Total RNA was extracted from 
0.1 g of tobacco leaves using the Eastep® Super Total RNA Extraction Kit (Promega, Shanghai) and cDNA was 
synthesized using the GoScript™ Reverse Transcription System (Promega, Shanghai) and real-time PCR was 
performed using the TransStart® Tip Green qPCR SuperMix (TransGen Biotech, Beijing), following the manu-
facturer instructions, using an ABI Step One PCR instrument (Applied Biosystems). The results were calculated 
using the 2−ΔΔCt method29. The reference gene used for Quantitative Real-time PCR was NtEF1α, which is a 
housekeeping gene (GenBank accession no. D63396). WT tobacco leaf of NT was chosen as a reference tissue. 
Three individual lines (three plants for each line as technical replicates, totally nine plants) of OE, WT, and NC 
were used as biological replicates.

Hormone detection in transgenic tobacco plants. Raw hormone mixtures were extracted from 0.1 g 
of tissue from the uppermost fully developed leaf with 1 mL of pH 7.0 PBS. ABA concentrations were measured 
using a colorimetric ELISA kit containing plates pre-coated with antibody specific to ABA. (Winter Song Boye 
Biotechnology Co. Ltd., Beijing). Samples were diluted six-fold prior to the tests. The standard curve was gen-
erated based on a series of known ABA standard sample reactions to 180, 120, 60, 30, 15, and 0 ng mL−1. Three 
individual lines from each transgenic plant and WT were used. Three biological replicates of each individual line 
of each kind of transgenic plant were used.

Bioinformatic analysis of SSH library. A SSH library from the leaves of K. daigremontiana induced by 
drought stress was obtained as previous described16. Different expressed genes (DEGs) as ESTs between normal 
watering and drought treatment samples were further annotated by Nr, Nt, Swiss-prot, and KEGG, and classified 
by COG and GO.
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Statistical analyses. ANOVA and mean comparisons were performed using SPSS version 20.0 software. 
The value of 2−ΔΔCT was also proceeded with SPSS version 20.0 software. Error bars represent standard deviation. 
*And different letters indicate statistically significant differences at p < 0.05 based on Duncan’s multiple range 
test. Figures were created using SciDavis 0.2.4.

Primers. Primers were listed in supplementary materials (Supplementary Table S6).
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