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Flexible spectral manipulation 
property of a high power linearly 
polarized random fiber laser
Jun Ye  1, Jiangming Xu1,2, Jiaxin Song1, Hanshuo Wu1, Hanwei Zhang1,2, Jian Wu1,2 &  
Pu Zhou1,2

Fiber lasers with flexible spectral manipulation property could provide a flexible tool for scenes 
where the temporal coherence property accounts, for example, coherent sensing/communication 
and nonlinear frequency conversion. Due to the good laser performance and relative simplicity of 
implementation, random fiber lasers (RFLs) based on random distributed feedback and Raman gain 
have earned more and more attention in the past few years, and a variety of RFLs with substantially 
different spectral properties have been developed. In this presentation, we demonstrate a high power 
linearly polarized RFL with flexible spectral manipulation property, in which the central wavelength and 
the linewidth of the spectrum can be tuned independently through a bandwidth-adjustable tunable 
optical filter (BA-TOF). The central wavelength of the RFL can be continuously tuned from 1095 to 
1115 nm, while the full width at half-maximum (FWHM) linewidth has a maximal tuning range from ~0.6 
to more than 2 nm. Moreover, the output power of 1102.5–1112.5 nm reaches ~23 W with polarization 
extinction ratio (PER) value > 20 dB. To the best of our knowledge, this is the first demonstration of a 
powerful linearly polarized RFL with both wavelength and linewidth tunability.

In 2010, Turitsyn et al. demonstrated a new type of random fiber laser (RFL), which is quite different from con-
ventional fiber laser with well-defined resonator1. RFL makes use of Rayleigh scattering (RS) to produce random 
distributed feedback (RDFB) and stimulated Raman scattering (SRS) to provide amplification, demonstrating the 
most obvious features of cavity-free and mode-less2. Over recent years, RFLs have drawn a great deal of atten-
tion, and gradually lead to the realization of high power3,4, narrow-linewidth5–7, multi-wavelength8,9 and linearly 
polarized operation7,10,11. Thanks to the good laser performance and relative simplicity of implementation, RFLs 
have attracted a large variety of applications, such as frequency doubling to the visible range12, sensing and tele-
communication13–15, pump source in mid-infrared laser and supercontinuum light source16–19, and stable seed for 
high power fiber master oscillator power amplifier (MOPA)20,21.

For better understanding the physical mechanism of random lasing and widening the application range 
in optical communication, sensing, secure transmission and other fields, various kinds of RFL schemes with 
wavelength tunability have been demonstrated22–28. The tunable operation of RFL is produced either with a 
wavelength-fixed pump and an optical filter or directly with a tunable pump source. Due to the relatively broad 
and flat profile of Raman gain, Babin et al. demonstrated a 1535–1570 nm tunable RFL by inserting a tunable filter 
into the cavity22. With an optical grating filter, Sarmani et al. achieved a 1550–1571 nm tunable RFL23. With a fiber 
Fabry-Perot cavity connected with a Mach-Zehnder interferometer, Zhu et al. reported a multi-wavelength RFL 
with tuning range from 1553.9 to 1565.4 nm24. To further widen the wavelength tuning range, reduce the lasing 
threshold and pursue more potential in power scaling, tunable RFLs using rare-earth-doped fiber as gain medium 
instead of Raman gain have been demonstrated25,26. Wang et al. proposed a tunable Er-doped RFL with a tunable 
fiber Fabry-Perot interferometer, which realized a broad tuning range up to 40 nm with a pump threshold as low 
as 13 mW25. With a piece of Yb-doped fiber and a manual tunable filter, Du et al. first reported a tunable RFL 
working at 1 μm, which can be tuned continuously from 1040 to 1090 nm26. However, the above reported tunable 
RFLs either exploit the gain spectrum of a single Raman shift or employ the rare earth ions only. Moreover, the 
operating bandwidths of the tunable optical filters are limited. So that the maximal tuning range is confined to 
a few tens of nanometers in these schemes. A combination of tunable pump source and cascaded SRS process 
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could be a good candidate to achieve widely tunable RFLs. In this way, Zhang et al. demonstrated a RFL with an 
ultra-broadband wavelength tuning range of 300 nm27, even 900 nm28.

Although a variety of RFLs with linearly polarized output, wavelength tunability, high power and 
multi-wavelength property have been reported in recent years, nevertheless, the linewidth parameter of laser 
spectrum, which is related to the inherent temporal property of a laser, its manipulation has not been reported so 
far but merits detailed investigation for the sake of application potential in sensing and communication systems 
based on RFLs. In this presentation, we demonstrate a wavelength-tunable, linewidth-adjustable high power 
RFL with linearly polarized output for the first time to our best knowledge, in which the central wavelength and 
the linewidth of the spectrum can be tuned independently by inserting a bandwidth-adjustable tunable optical 
filter (BA-TOF). This laser provides a flexible tool for scenes where the temporal coherence property accounts, 
for example, coherent sensing/communication and nonlinear frequency conversion. In the proof-of-principle 
experiment, the central wavelength can be continuously tuned from 1095 to 1115 nm, while the maximal tuning 
range of the full width at half-maximum (FWHM) linewidth is from ~0.6 to more than 2 nm. Moreover, the out-
put power of 1102.5–1112.5 nm reaches ~23 W with polarization extinction ratio (PER) value > 20 dB.

Results
Operation without BA-TOF. The experimental setup is schematically shown in Fig. 1. It includes a linearly 
polarized fiber laser centered at 1055 nm as the pump source, followed by a polarization maintaining isolator 
(PM ISO). A half-opened cavity structure which consists of a fiber loop mirror (FLM) and a piece of 450-m-long 
PM passive fiber is utilized to decrease the threshold of random lasing. A BA-TOF is placed into the FLM to 
obtain wavelength-tunable and linewidth-adjustable random emission. In order to monitor the operation of the 
BA-TOF, a PM tapper with coupling ratio of 1/999 is also placed into the FLM. In addition, all the end facets are 
cleaved at an angle of 8° to suppress the unexpected backward reflection.

As a comparison experiment, we first studied the linearly polarized RFL operating without the BA-TOF. 
Figure 2(a) shows the output spectrum with maximal pump power of 46.9 W, and it’s seen that the spectrum is sta-
ble and smooth, which consists of three components: the residual 1055 nm pump radiation, the first order Stokes 
centered at 1112.3 nm and the second order Stokes centered at 1169 nm. The intensities of the residual 1055 nm 
pump radiation and the second order Stokes are measured to be 12 dB and 35 dB lower than the first order Stokes, 
respectively, indicating the high power purity up to 95% (calculated through numerical integration based on the 
spectral data). We also measured the spectral evolution of first order Stokes at different pump powers, as pre-
sented in Fig. 2(b). At lower pump power (<31 W), it’s found that the spectrum consists of two subcomponents 
at 1107.1 nm and 1112.3 nm, probably because the Raman gain profile in silica fibers has two nearly equal peaks 
shifted by ~13.2 THz and ~14.6 THz relative to the pump wave10. Whereas with the increment of pump power, 
the second subcomponent gradually takes a dominant role and eventually forms the spectrum with a single-peak 
structure. This spectral feature has been well explained in ref.29 by considering power transfer between adjacent 
subcomponent.

Figure 2(c) shows the linewidth evolution as a function of the pump power. The spectra rapidly broaden when 
the injected pump power is relatively low (<30.7 W), and the FWHM linewidth varies from ~0.8 nm to ~1.4 nm 
while the 10 dB linewidth increases from ~2 nm to ~2.8 nm correspondingly. When the pump power is increased 
further, the FWHM linewidth saturates at 1.5–1.6 nm level, whereas the 10 dB linewidth keeps near-linearly 
increasing to ~3.7 nm. The spectral broadening could be explained by the nonlinear effects such as cross-phase 
modulation (XPM) and self-phase modulation (SPM)30. By measuring the total output power and doing integra-
tion based on the spectral data, we can get the power of the residual pump and the first order Stokes. Figure 2(d) 
shows the output powers dependence on the pump power, it’s seen that the lasing threshold of the first order 

Figure 1. Schematic diagram of the experimental setup. PM ISO: Polarization maintaining isolator, PM WDM: 
Polarization maintaining wavelength division multiplexer, BA-TOF: Bandwidth-adjustable tunable optical filter, 
RDFB: Random distributed feedback.
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Stokes is about 27 W, below which only the residual pump radiation is present. Above the lasing threshold, the 
output power of the first order Stokes grows rapidly, which reaches 27.3 W with full pump power of 46.9 W. The 
power ratio of the first order Stokes to the injected pump radiation, or the so-called optical-optical conversion 
efficiency, is calculated to be ~57%. In addition, the simulated output powers (presented by a blue line and a red 
line) through a power balance model31,32 coincide well with the experimental output powers (presented by blue 
circles and upside-down red triangles).

Wavelength Tunability. Inserting the BA-TOF and fixing its passband at the minimum value, we first 
explored the wavelength tunability of the RFL. The normalized output spectra are shown in Fig. 3(a), which 
are measured from 1095 nm to 1115 nm with a step of 2.5 nm, spanning a spectral range of 20 nm. Figure 3(b) 
shows the output power of the first order Stokes dependence on the operating wavelength with the pump power 
of 34.1 W, 40.6 W and 46.9 W. An apparent similarity between the power variation curve and the Raman gain 
profile can be observed, where the output powers reach the highest value at ~1107.5 nm and ~1112.5 nm, corre-
sponding to the two peaks of the Raman gain with frequency shifts of ~13.2 THz and ~14.6 THz. Furthermore, 
the maximal output powers of 1102.5–1112.5 nm reach more than 20 W with power fluctuation less than 1 dB. 
But at shorter and longer wavelengths, the Raman gain decreases significantly, which causes the obvious decrease 
of optical-signal-to-noise ratio (OSNR) and thus leads to the clear reduction of output powers. As shown in 
Fig. 3(c), when operating at 1096 nm and 1095 nm, the signal lasing is much more powerful than the spontaneous 
Raman emission, and the OSNRs are measured to be ~21 dB and ~15 dB respectively. Whereas at 1094 nm, the 
OSNR quickly reduces to ~7 dB. Further decreasing the wavelength to 1093 nm, the signal lasing almost fully 
degrades and only the spontaneous Raman emission is present in the output spectrum. A similar case occurs near 
1115 nm, as shown in Fig. 3(d), the OSNR varies from 34 dB to 12 dB when tuning the central wavelength from 
1114 nm to 1115 nm. Similarly, the signal lasing is difficult to radiate when further adjusting the wavelength to 
1116 nm. As a result, due to the available bandwidth of the Raman gain, the wavelength tuning range is confined 
to ~20 nm, which is a typical value in tunable RFLs with only Raman gain22–24. By optimizing the passband of the 
BA-TOF and the length of the passive fiber, perhaps the wavelength tuning range can be further expanded.

Linewidth Tunability. On the other hand, fixing the central wavelength, we analyzed the linewidth tunabil-
ity of the RFL. Taking the case of operating at 1107 nm, the linewidth-adjustable spectra of the output beam and 
the 0.1% sample light in the FLM are depicted in Fig. 4(a) and (b) respectively (measured at full pump power). It 
should be noted that the legend of Fig. 4(a) presents the FWHM linewidths while the legend of Fig. 4(b) stands 
for the passband of the BA-TOF. The output spectrum shows a clear peak with relatively long tails, while the 
spectrum in the FLM presents a flatter top with sharp edges. Via increasing the passband of the BA-TOF, the 

Figure 2. (a) Spectrum at the maximal pump power of 46.9 W. (b) Spectra of the first order Stokes at different 
pump powers. (c) FWHM linewidth and 10 dB linewidth evolutions. (d) Output power as a function of the 
injected pump power.
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Figure 3. (a) Normalized tunable output spectra. (b) Output power of the first order Stokes as a function of 
wavelength with the pump power of 34.1 W, 40.6 W and 46.9 W. (c) Spectra near 1095 nm and (d) 1115 nm.

Figure 4. (a) Linewidth-adjustable spectra of the output beam and (b) the 0.1% sample light. (c) Output power 
as a function of the FWHM linewidth.



www.nature.com/scientificreports/

5SCientifiC RePoRtS |  (2018) 8:2173  | DOI:10.1038/s41598-018-20664-y

output spectra can gradually broaden, where the FWHM linewidths can be continuously tuned from ~0.61 nm 
to ~2.03 nm (the corresponding 10 dB linewidth varies from ~1.97 nm to ~4.02 nm). An interesting phenomenon 
can be observed when further increasing the passband of the BA-TOF, that is the abrupt change of the FWHM 
linewidth. When adjusting the passband to 5.4 nm, the FWHM linewidth narrows to ~1.48 nm. However, when 
the passband is increased to 6.2 nm, the FWHM linewidth immediately broadens to ~5.24 nm.

The reason could be attributed to the working principle of the BA-TOF, whose passband is increased via 
broadening the aperture inside to let the longer wavelength pass through, and the linewidth-adjustable spectra in 
the FLM also testify this working principle (see Fig. 4(b)). Thus, due to the high Raman gain at frequency shift of 
~14.6 THz, the subcomponent near 1112 nm will start to radiate immediately as long as this wavelength is covered 
by the passband of the BA-TOF. As a result, the subcomponent of ~1107 nm and the subcomponent of ~1112 nm 
are simultaneously present in the output spectrum, thus leading to the abrupt change of the FWHM linewidth. 
In fact, the concept of FWHM linewidth is not universally applicable for single-peak spectrum and multi-peak 
spectrum. Also due to the working principle of the BA-TOF, the central wavelength is moving little by little away 
from 1107 nm when adjusting the linewidth. Figure 4(c) shows the output power of the random emission while 
tuning the linewidth (measured at 1107 nm with 46.9 W pump). The laser output power reaches ~23 W and keeps 
almost constant with a variation of ~8% in the tuning range 0.6–2.0 nm.

Simultaneous Manipulation of Wavelength and linewidth. Furthermore, we studied the linewidth 
tunability at different wavelength. Increasing the passband of the BA-TOF with a step of ~0.7 nm, we measured the 
FWHM linewidths of the spectra with central wavelength varying from 1101 nm to 1109 nm. As shown in Fig. 5, 
the presented configuration could provide a continuous tuning range of ~1.5 nm for the linewidth-adjustable ran-
dom emission. At a certain central wavelength, the broadest spectrum shows a FWHM linewidth 2–3 times that 
of the narrowest one. The linewidth tuning range may be limited by the width and the flatness of the convolution 
between the Raman gain profile and the spectrum of the pump radiation.

Finally, the PER value of the linearly polarized RFL is analyzed briefly, which is measured by a spatial structure 
constructed as follows. At the output end, a collimator is used to avoid the divergence of the output beam, after 
which a dichroic mirror (DM) is employed to extract the first order Stokes from the remaining 1055 nm pump 
radiation. The polarization direction of the first order Stokes should be adjusted by a half-wave plate, so that the 
polarization beam splitter (PBS) can split the input beam into two components with maximal power difference, 
thus dividing the two beams with orthogonal polarization direction. The PER value of the output laser is defined 
as PER = 10 log(Pmax/Pmin), where Pmax and Pmin represent the maximal and the minimal power of the beams split 
by the PBS when rotating the half-wave plate. As a result, with the pump power grows and well above the thresh-
old, we found that the PER value keeps nearly the same, slightly varying between 21 and 22 dB.

Discussion
Note that the wavelength tuning range is confined to ~20 nm, owing to the available bandwidth of the Raman 
gain, which is only a few THz although it nominally covers a range over 40 THz33. In our case, the practicable 
gain coverage is measured to be 10.5–15.2 THz (about 4.7 THz), which is a typical value in tunable RFLs with 
only Raman gain. For example, the available bandwidths of the Raman gain are 4.3 THz in ref.22, 2.6 THz in ref.23 
and 1.4 THz in ref.24, respectively. And in fact, if counting only the wavelength with high output power and high 
efficiency, the calculated available gain coverage will be much narrower. In this experiment, the wavelength with 
output power higher than 20 W ranges from ~1102 to ~1113 nm, hence the corresponding available gain coverage 
is calculated to be 12.1–14.5 THz (about 2.4 THz). Through optimizing the length of the PM passive fiber (may 
not be the optimal length for highest output power), reducing losses in the experimental setup or combining 
different gain mechanisms, the wavelength tuning range is possible to be further expanded. On the other hand, 
the maximal tuning range of the FWHM linewidth is from ~0.6 to ~2 nm at the full pump power. The linewidth 

Figure 5. Tunable linewidths at different central wavelength.
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tuning range may be limited by the width and the flatness of the convolution between the Raman gain profile and 
the spectrum of the pump radiation. Therefore, a pump source with broadband spectrum could be a good can-
didate to further widen the linewidth tuning range. Moreover, by ingeniously designing the reflectivity spectrum 
of a fiber Bragg grating (FBG) to compensate the unevenness of the Raman gain, we are more likely to obtain a 
broader linewidth tuning range with customized spectrum profile.

In summary, a high power linearly polarized RFL with flexible spectral manipulation property is reported 
in this manuscript, especially the linewidth tunability, is explored for the first time as far as we know. The pre-
sented high power linearly polarized RFL has a typical half-opened configuration and employs a BA-TOF to 
obtain wavelength-tunable and linewidth-adjustable random emission at the same time. As a result, the central 
wavelength can be continuously tuned from 1095 to 1115 nm, while the FWHM linewidth has a maximal tuning 
range from ~0.6 to more than 2 nm. Moreover, the output power of 1102.5–1112.5 nm reaches ~23 W with PER 
value > 20 dB. This laser may provide a flexible tool for scenes where the temporal coherence property accounts, 
such as coherent sensing/communication and nonlinear frequency conversion. The next step of our research 
will pay attention to further expand the tuning ranges and explore the applications in tunable optical parametric 
oscillator (OPO) and visible light generation. Meanwhile, combining with the broadband saturable absorption 
property of two-dimension materials to realize the temporal and spectral manipulation of RFLs may bring great 
interest for practical application and scientific research34–36.

Methods
The pumping is provided by a linearly polarized all-fiber MOPA source centered at 1055 nm, which consists of a 
continuous wave (CW) ring-cavity seed and a PM Yb-doped fiber amplifier. The power of the radiation emitted 
from the seed is measured to be ~1.04 W, and after passing through the PM Yb-doped fiber amplifier, the pump 
laser can generate linearly polarized emission with an output power up to 46.9 W and FWHM linewidth <1.2 nm. 
Then the linearly polarized pump radiation is injected into a piece of 450-m-long PM passive fiber (PM Ge-doped 
fiber with a core/inner cladding diameter of 10/125 μm and numerical aperture of 0.07) via the 1060 nm port of 
a high power PM wavelength division multiplexer (PM 1060/1110 nm WDM with operating range ± 10 nm), 
the 1110 nm port of the PM WDM is spliced to a PM coupler with coupling ratio of 50/50, which forms a fiber 
loop mirror (FLM) by splicing its output ports. Thus, a linearly polarized RFL with a half-opened cavity is con-
structed, in which the feedback is provided both by the broadband reflective FLM and the random distributed 
Rayleigh scattering in the passive fiber. To obtain wavelength-tunable and linewidth-adjustable random emission, 
a BA-TOF with 1-m-long pigtailed fiber is placed into the FLM, which is built based on free-space optical Fourier 
transformation combing with diffraction gratings to provide an access of selecting spatially desired spectral ingre-
dients of input light and makes it possible to tune the central wavelength and the linewidth independently. The 
output powers and the spectra are measured by a power meter and an optical spectrum analyzer (Yokogawa 
AQ6370D), respectively.
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