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Locating multiple diffusion sources 
in time varying networks from 
sparse observations
Zhao-Long Hu1, Zhesi Shen  2, Shinan Cao3, Boris Podobnik4,5, Huijie Yang6, Wen-Xu Wang2,6 
& Ying-Cheng Lai7,8

Data based source localization in complex networks has a broad range of applications. Despite recent 
progress, locating multiple diffusion sources in time varying networks remains to be an outstanding 
problem. Bridging structural observability and sparse signal reconstruction theories, we develop a 
general framework to locate diffusion sources in time varying networks based solely on sparse data 
from a small set of messenger nodes. A general finding is that large degree nodes produce more 
valuable information than small degree nodes, a result that contrasts that for static networks. Choosing 
large degree nodes as the messengers, we find that sparse observations from a few such nodes are 
often sufficient for any number of diffusion sources to be located for a variety of model and empirical 
networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily 
with fewer required messenger nodes.

Diffusion and propagation processes taking place in complex networks are ubiquitous in natural and in tech-
nological systems1,2, Examples of those processes include air or water pollution diffusion3,4, disease or epidemic 
spreading in the human society5,6, virus invasion in computer and mobile phone networks7,8, behavior propaga-
tion in online social networks9. Once a negative diffusion or propagation emerges, it is imperative to locate its 
sources quickly and precisely to enable timely and appropriate control strategies to prevent and/or inhibit the 
spreading process. A number of methods have been proposed and tested recently to address the source local-
ization problem of propagation processes in complex networks, which include those based on the maximum 
likelihood estimation10, dynamic message passing11, belief propagation12, hidden geometry of contagion13, and 
inverse spreading14,15, A related problem of practical significance is to identify super spreaders for effective control 
of spreading16,17, However, most existing approaches are specifically for static networks. In the real world time 
varying networks are ubiquitous, such as frequently changed social contacts via meetings, emails, phone and 
online softwares18–21, Recently, a source detection framework was proposed on complex networks from one snap-
shot observation of the entire network and demonstrated for an empirical temporal network of sexual contacts22.

Those works focus primarily on source localization for propagation processes. However, source localization 
for diffusion processes is rarely studied. Here we concentrate on diffusion processes, as they constitute a good 
approximation for different types of dynamical processes (e.g., synchronization and other nonlinear processes 
amenable of linearization)2. Very recently, considering multiple sources may exist (e.g., air or water pollution, 
rumors), a general framework that locating of multiple sources in static diffusion processes is presented23. To 
develop effective frameworks to locate sources in time varying networks is an outstanding problem in network 
science and engineering. The essential difference between diffusion on a time varying network and on a static 
network is illustrated in Fig. 1. Specifically, in Fig. 1(a), due to the various time intervals in which different edges 
are activated, a spreading process starting at node b cannot reach node a in any time. In contrast, for a static net-
work with the same structure as shown in Fig. 1(a), the spreading process can reach all nodes in the network. To 
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our knowledge, there has been no solution to the problem of locating multiple diffusion sources associated with 
general dynamical processes on arbitrary time varying networks from local observations24. The purpose of this 
paper is to provide an optimal solution. In particular, exploiting a combination of the structural observability 
and sparse signal reconstruction theories, we develop a general source localization framework that is applicable 
to arbitrarily time varying networks with any number of sources. We demonstrate that sparse data from a small 
set of messenger nodes are capable of identifying multiple diffusion sources accurately and efficiently, even in the 
absence of detailed information about the network structure such as link weights and the presence of measure-
ment noise. The framework is established analytically and validated through extensive numerical tests of model 
and empirical networks.

Results
Framework of locating multiple sources on time-varying networks. A time-varying network with 
N nodes is generally defined by a node set V = {v1, v2, ..., vN} with a set E of time varying edges, where (vi, vj, wji, 
t) ∈ E denotes a directed edge pointing from nodes vi to vj with link weight wji at activation time t. In this paper, we 
consider the following class of discrete-time, diffusion processes on such time varying networks:
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where xi(t) is the state of node i at time t capturing the fraction of infected individuals, the concentration of water 
or air pollutant and etc., at place i. β is the constant diffusion coefficient, and wij(t) is the link weight at time t, 
where self loops are a result of the diffusion process2. For an undirected network, we have wij(t) = wji(t). (Diffusion 
dynamics in continuous time can be treated similarly - see Sec. S1 in Supplemental Information (SI)). The nodes 
from which observations are made are the messenger nodes. When the outputs from the messenger nodes are 
taken into account, the system becomes
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where the state vector ∈tx( ) N  comprises all nodes in the network at time t and A(t + 1) = I + βL(t + 1). In 
A(t + 1), ∈ ×I N N  is the identity matrix, L(t) = W(t) − D(t) is the network Laplacian matrix at time t, 

∈ ×W t( ) N N  is the weighted adjacency matrix of elements wij(t), and ∈ ×D t( ) N N  is a diagonal matrix of ele-
ments di(t) denoting the total out-weight ∑ Γ∈ w t( )j t ji( )i

 of node i with Γi(t) being the neighboring set of i at time t. 
The vector = 





t y t y t y ty( ) ( ); ( ); ; ( )q1 2
 represents the q measurable outputs from q messengers at time t, and 

∈ ×C q N  is the output matrix, where Cij = 1 if output yi(t) is measured from node j. The basic difference between 

Figure 1. Illustration of proposed framework to locate multiple diffusion sources in time varying networks. 
(a) A simple directed time varying network where the numbers associated with the edges denote the activation 
time, where node b is the source and self loops are specified by the nonzero diagonal elements of matrix A. 
(b) Static mapping of the network in (a), where each layer corresponds to an activation time. The diffusion 
direction is from top to bottom (from t = 0 to t = 2), while observations occur in the opposite direction. (c) 
An independent path from observing messenger node a, where the observable range is NOR({a}) = 2. (d) Two 
independent paths from observing nodes a and d. The network is fully observable (NOR({a,d}) = 4) and sources 
are fully locatable.
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source nodes and passive nodes is that, initially (t = t0), the states of the former and latter are nonzero and zero, 
respectively. Without loss of generality, we set t0 = 0. Thus, if the initial states of all nodes can be recovered from 
the measurements of the messenger nodes at a later time (t > 0), all sources can be identified. A solution to this 
problem can be obtained by exploiting the observability condition in canonical control theory. Specifically, we 
consider instants of time t = 0, 1, ..., T and rewrite Eq. (2) as

=













=





 −







≡ ⋅ .
� �

�T

C
CA

CA T A T A

OY

y
y

y

x x

(0)
(1)

( )

(1)

( ) ( 1) (1)

(0) (0)

(3)

where ∈ +Y q T( 1), ∈x(0) N  is the initial state vector, q is the number of messenger nodes, and ∈ + ×O q T N( 1)  
is the observability matrix. To be able to accurately locate the diffusion sources, a unique solution of Eq. (3) is 
needed, given the output vector Y from the set of messenger nodes. The classic observability theory stipulates 
that, if and only if matrix O has full rank, i.e., rank(O) = N, x(0) can be fully and uniquely determined.

If we observe only a single node v, matrix O may not have full rank. As a result, only the initial states of a 
subset of nodes in x(0) can be reconstructed. The number of nodes whose initial states can be reconstructed is 
rank(O), which defines the observable centrality NOR({v}) of v, i.e., NOR({v}) = rank(O). Analogously, for a given 
set Q of nodes, we have an associated matrix C and can obtain rank(O), which defines the observable range 
NOR(Q) of Q, i.e., NOR(Q) = rank(O). Note that NOR({v}) ≤ N and NOR(Q) ≤ N. Thus we can define a normalized 
observable centrality nOR({v}) ≡ NOR({v})/N and a normalized observable range nOR(Q) ≡ NOR(Q)/N.

Since information about the link weights may not be available, a direct calculation of rank(O) is not feasible. 
A resolution is to analyze the structural observability25–28, which is a highly nontrivial task for time varying net-
works. Our idea is to exploit the independent paths in static mappings of the underlying network29, as shown in 
Fig. 1(b). In particular, a mapping from a time varying network to a static network can be obtained by cloning all 
nodes into different layers that correspond to different time t. If an edge is active at t [as shown in Fig. 1(a)], the 
two nodes at both ends of the edge in the corresponding layers in Fig. 1(b) will be connected. Note that the direc-
tion of links in Fig. 1(b) is reversed with respect to the actual direction of diffusion in Fig. 1(a) - a consequence of 
the duality relation between structural observability and controllability28.

Figure 1(c) indicates the quantity NOR({a}) when node a is chosen as a messenger node. There is a single inde-
pendent path, i.e., a → c, such that NOR({a}) = 2 (one independent path and a itself). If a and d are messengers 
[Fig. 1(d)], there are two independent paths and NOR({a, d}) = 4 (including the two messengers themselves). In 
this case, the network is fully observable. The key to source localization is thus to identify all independent paths 
from messenger nodes in the static mappings of the original time varying network. In this paper, to generate a 
time-varying network, we propose a uniform activation network model in which random activations are imposed 
on a static network. Specifically, let z be the number of times (activations) an edge is active in a time interval, 
which can be randomly selected from a uniform distribution U z(1, )max  with zmax denoting the maximum num-
ber of activations. After z is given for each edge, the active time associated with each activation is uniformly 
chosen from the distribution U(1, T) under the constraint that a link cannot be activated twice (or more) at one 
active time.

Estimate of observable range. For a set Q of messenger nodes, NOR(Q) is exactly the number of inde-
pendent paths plus the number of the messengers, which can be calculated by using the maximum flux algorithm. 
Here, we provide a theoretical estimate of the number of independent paths. As shown in Fig. 1, since every node 
has a self-loop, if there exists a link for a certain layer (t > 0), there must exist a path starting from the layer to the 
top layer (t = 0), as shown in Fig. 1(d). Moreover, there exists at most one independent path starting from one 
node in a given layer (t > 0). Thus, for a messenger node v, the maximum number of independent paths from v 
for all layers is the number of layers in which v has a link that points to other nodes. The number is nothing but 
the number lv of distinct activations of v, where each activation (active time) corresponds to a layer with a link 
going out from v (see Sec. S2 in SI for more details). Thus, since the overlap among independent paths from v is 
negligible, we have nOR({v}) ≈ (lv + 1)/N, based on which the quantity nOR(Q) of node set Q can be estimated as

∑≈ + .
∈

n Q l N( ) ( 1)/
(4)i Q

iOR

The fraction p of messenger nodes is thus p = q/N, where q is the number of messengers.
For the uniform activation network model, if the number of distinct activations, lv, cannot be directly meas-

ured, we can use the activation times distribution U z(1, )max  and the active time distribution U(1, T) to estimate 
the average number 〈l〉 of distinct activations. Specifically, for a node with k edges, we denote their activations by 
z1, &hellipsis;, zk. The probability of the number of distinct activations being l for one node with z1, ..., zk is given 
by (see Sec. S2 in SI)
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where c1 is a normalization constant satisfying
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Therefore, for one node associated with z1, ..., zk, the average number of distinct activations is
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For a node of degree of k, the average number of distinct activations is
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where = −c z( ) k
2 max . Given 〈l〉 for each node, for the entire messenger set Q, the normalized observable range can 

be approximated as
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Messenger selection. Considering the cost of allocating messengers for monitoring the state of the whole 
network, finding a minimum set of messengers through independent paths represents the most efficient way to 
locate sources. Moreover, the set can be used to characterize the source locatability of the network. The difficulty 
is that this task is NP-complete30. We employ an alternative approach by exploiting a greedy optimization algo-
rithm to maximize the observable range nOR through selection of the messenger set (see Sec. S3 in SI). In addition, 
sub-modularity31,32 is exploited to reduce the computational cost and provides guaranteed performance at least 
(1 − 1/e) ≈ 0.63 compared to the global optima.

We test our framework using model and empirical networks. Figure 2 shows the observable centrality of nodes 
for Erdös-Rényi (ER)33 random and scale-free (SF)34 networks. Three features are found, which do not occur for 
static networks35. First, nodes of larger degree k have a higher observable centrality NOR, in sharp contrast to what 
happens in a static network where both driver and messenger nodes tend to avoid large degree nodes due to their 
small controllable and observable range. Second, NOR gradually approaches the upper limit T + 1 as k increases. 
Third, NOR is nearly independent of the network structure and depends mainly on T and zmax. The theoretical 
prediction [Eq. (9)] and numerical results agree well with each other.

The results in Fig. 2 suggest that large-degree nodes be chosen as the messengers (denoted as the max-deg strat-
egy). To validate this strategy, we compare it with the more elaborative strategy of greedy optimization. As shown in 
Fig. 3, nOR resulting from the max-deg strategy is quite close to that from the greedy strategy, especially for relatively 
larger values of zmax. The great advantage of the max-deg strategy is that it is based on local information only whereas 
the greedy strategy requires global information about the network. Another remarkable finding is that a very small 
fraction p of messenger nodes are sufficient to fully locate multiple sources (nOR = 1) for both ER and SF networks. 
We also test our framework using three empirical time varying networks, as shown in Fig. 4. It should be noted that 
the number of distinct activations l of every node is available. We see that a quite small value of p can ensure a com-
plete localization of diffusion sources in all the empirical networks. For both model and empirical networks, numer-
ical calculations are in good agreement with theoretical predictions (see Sec. S3 in SI for more details).

Figure 2. Observable centrality of a single messenger of degree k in ER random and SF networks, where the 
theoretical prediction is from Eq. (9) and numerical results are obtained from averaging over 10,000 independent 
realizations. The vertical bars indicate the standard error. Observable centrality increases with the degree and 
approaches its upper limit 〈NOR〉 = T + 1. Other parameters are N = 1000, 〈k〉 = 6, =z 2max  and T = 5.
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A counterintuitive phenomenon is that, in both model and real networks, it is relatively easier to locate diffu-
sion sources in more rapidly changing (more frequently updating) networks as the set of required messenger 
nodes is smaller (e.g., comparing =z 5max  with =z 30max  in Fig. 3 and hour with day in Fig. 4). A heuristic 
explanation is that more rapid changes in the network structure in fact limit the spreading patterns from sources, 
facilitating source localization from a relatively smaller number of messenger nodes.

Actual localization of multiple diffusion sources. We articulate an efficient and robust method to actu-
ally locate the sources based on the already identified messenger set. In a realistic situation, the number of sources 
is much smaller than the network size, so the vector x(0) in Eq. ((3)) has many zero elements. The sparsity of x(0) 
can be exploited to greatly reduce the required measurement from messengers by using the compressive sensing 
(CS) paradigm for sparse signal reconstruction36,37, Specifically, Eq. (3) can be solved and accurate reconstruction 
of x(0) can be achieved through solutions of the following convex-optimization problem:

= ⋅Ox Y xmin (0) subject to (0), (10)1

where = ∑ | |=x x(0) (0)i
N

i1 1  is the L1 norm of x(0), while ∈Y qM, and ∈ ×O qM N . Here M is the number of 
continuous measurements made by messengers. Because of the linear independence of the rows in matrix O and 
the sparsity of x(0), it is feasible to reconstruct x(0) as M is much smaller than T + 1. We define nM ≡ M/(T + 1) to 
compare with the data amount T + 1 required by conventional solution to x(0). To be more realistic, we include 
both measurement noise and uncertainties in the link weights in Eq. (2), which is reformulated as

Figure 3. Normalized observable range nOR as a function of the fraction p of messenger nodes for (a) ER and 
(b) SF networks, using the greedy algorithm and max−deg strategy for different values of zmax, for T = 30. The 
analytical results (dashed curves) from the − egmax d  strategy are from Eq. (9). Network parameters are 
N = 100 and 〈k〉 = 6. All results are obtained by averaging over 50 independent realizations and the vertical bars 
indicate the standard error.

Figure 4. Normalized observable range nOR as a function of the fraction p of messenger nodes for three 
empirical networks: Hospital, High School, and ACM. The time windows for (a) and (b) are one hour and one 
day, respectively. A greedy algorithm for finding the messenger nodes is used. The theoretical predictions (the 
solid curves) are from nOR(Q) ≈ ∑i∈Q(li + 1)/N. Details of the empirical networks and the meaning of the time 
window can be found in Table S1 and Sec. S4 in SI.
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where the measurement y(t) is contaminated by white truncated Gaussian noise of zero mean and variance σ2: 
ε σ∼ 0 1( , )2 , where ∈0 q is zero vector and ∈1 q is the one vector. We assume that the uncertainties in the 
link weights W are also truncated Gaussian: ε= + ′ŵ t w t( ) ( )(1 )ij ij , where ε σ′ ∼ ′(0, )2 . The random noise is 
restricted to positive values to make sure that the values of measurements and link weights are nonnegative. Here 
we use multiplicative noise to ensure that, on average, the ratio of the measurements remains the same with or 
without noise during the dynamics. To quantify the performance of source localization, we use the standard 
AUROC (area under a receiver operating characteristic) metric37, where AUROC = 1 indicates the existence of a 
threshold to fully distinguish between sources and passive nodes whereas AUROC = 0.5 indicates that the two 
types of nodes cannot be distinguished (Sec. S7 in SI).

We use empirical networks (as in Fig. 4) to test the performance of our CS based source localization method. 
As shown in Fig. 5(a) and (b), AUROC increases with nM. When nM is small, AUROC shows large deviation indi-
cating that the location of sources largely affects the accuracy of source localization for given selected messengers; 
once nM exceeds some value, say 0.5, AUROC is close to 1 and the standard deviation reduces a lot implying that 
all sources at any locations can be accurately located. We also compared the performance of source localization 
for different messenger selection strategies (See Sec. S4 and Fig. S5 in SI). Figure 5(c) and (d) show the localiza-
tion accuracy versus measurement noise σ and weight uncertainty σ′. We see that relatively high accuracy can 
still be achieved even when the noise variance approaches unity. Nonetheless, in some simulations the AUROC is 
small (See Sec. S5 and Fig. S6 in SI for the distributions of AUROC) and we may improve these performances by 
increasing the number of messengers or the length of observation time. Further efforts are still needed to see how 
to balance the cost of adding more messengers or increasing observation time.

In real systems, we cannot know the time-varying network structure in advance, which prevents us from 
selecting the optimal messengers. However, if the network structure evolves with periodicity or follows some 
patterns, e.g., the activation dynamic of each edge remains stable for a long period, we can construct a rough 
network based on the past interactions and select messengers using its structural properties, e.g., nodal degree 

Figure 5. Performance of source localization for empirical networks. (a,b) AUROC as a function of nM without 
noise for a single source (Ns = 1) and three sources (Ns = 3), respectively. (c,d) AUROC versus the measurement 
noise standard deviation σ and link weight standard deviation σ′, respectively. Parameters are p = 0.15 and 
β = 0.05. In (c,d), the values of nM are 0.5, 0.6 and 0.5 for hospital, high school and ACM, respectively. The 
time window is a day and there is a single source. All results are obtained by averaging over 500 independent 
realizations and the vertical bars indicate the standard error.
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and estimated observable range. To test the effectiveness of our method under such situation, we divide the 
time-varying network into two parts according to the order of each edge’s activation time: the first part with 
which a rough network is constructed and a set of messengers is selected, and the second part within which 
the source localization is applied. Figure 6(a–c) display the activation time distributions of the three empiri-
cal networks, which indicates circadian rhythms, and illustrate the dividing time point used in the simulation. 
Messengers are selected using greedy algorithm and max-deg strategy ensuring full observable of the first part 
network, and are further used to locate the sources on the second part network. As shown in Fig. 6(d), our sources 
localization method shows a good performance for both strategies on the empirical networks.

Discussions
Source localization is significant for preventing negative diffusion processes and reducing damages. Combining 
structural observability theory with sparse signal reconstruction, we succeed in developing a general framework 
for locating multiple diffusion sources in time varying networks, an extremely challenging problem in complex 
dynamical systems. The framework allows us to define an observable centrality for each node and to locate any 
number of sources by observing a small number of messenger nodes with larger values of observable central-
ity and exploiting the natural sparsity of sources. Appealing features of our framework include requirement of 
only small amounts of measurements and robustness against noise and uncertainties in system parameters. We 
offer analytic formulas for the observable centrality and the minimum number of messenger nodes, which are 
validated using model and empirical networks. A general finding based on our framework is that large degree 
nodes produce more valuable information than small degree nodes, an opposite result to that for static networks 
based on structural observability theory. As a result, choosing larger degree nodes as messenger nodes is more 
efficient to locate multiple sources in time varying nodes; in contrast, small degree nodes are often selected as 
messenger nodes in static networks. A counterintuitive finding is that sources in a more rapid varying network 
can be located more readily than in a slowly changed network. A heuristic explanation for this phenomenon is 
that frequent changes of the network structure in general produce more independent path in the static mapping 
of the original time varying network. As a result, the number of necessary messenger nodes is reduced and the 
sources become relatively easier to be localized. When dealing with time-varying networks, forward-planing 
problem is an unavoidable issue, because in many real systems the future structure of the time-varying network 
cannot be obtained in advance. While if the network structure evolves periodically or following some patterns, 
we can select messengers by fully exploiting the structural information embedded in the past interactions; If 
the evolution of time-varying network is totally random, then selecting messengers randomly may be the only 
way. In this paper, multiplicative noise is considered to test the robustness of our method, although the average 
performance is still satisfied, the worst cases are even worse than that of random guess (AUROC < 0.5) when the 
noise is strong. Therefore, it is very important to develop a more robust and efficient inference framework that can 

Figure 6. (a–c) Activation time distributions for empirical networks. The dividing point of the dataset is shown 
in black arrow. (d) Localization performance as a function of nM for three sources (Ns = 3) without noise for 
greedy algorithm and max-deg strategy. β = 0.05. The results are obtained by averaging over 500 independent 
realizations and the vertical bars indicate the standard error. Here we use the first part of the data to choose 
messengers and locate the sources on the networks constructed with the second part. The time window is a day.
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deal with different noise settings. One possible improvement is relaxing the object function Y = O ⋅ X to ||Y − O ⋅ 
X(0)||2 + λ||X(0)||1 in the cost of adding a tuning parameter λ. Another possible way is to develop a probabilistic 
approach which can utilize the distribution of noise to give a maximum likelihood estimation of the sources.

Our framework has potential applications in addressing many problems relevant to source localization, such 
as consensus, synchronization on power grid networks, locating the sources of epidemic spreading and rumor 
spreading in society, online social communities and computer networks. Moreover, our work has implications 
in disease diagnosis and therapy, such as identify focus sources of epilepsy and tumors in human body. Because 
of the significance and broad application potential of the source localization problem, we expect that the theory 
and practical algorithms presented in this work will stimulate further efforts, e.g., a more efficient and accurate 
algorithm to identify a minimum set of messenger nodes and a new framework available for systems with strong 
nonlinear properties.

Data availability statement. Data can be accessed at http://www.sociopatterns.org/datasets.
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