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Strength of shear bands in fluid-
saturated rocks: a nonlinear effect 
of competition between dilation 
and fluid flow
Evgeny V. Shilko  1,2, Andrey V. Dimaki1 & Sergey G. Psakhie1,3

This study shows the significant and nonlinear effect of the competition between dilation and fluid flow 
on the shear strength of constrained shear bands in fluid-saturated rocks. This effect is conditioned by 
the contribution of the pore pressure to the yield stress and strength. The pore pressure is controlled by 
the dilation of the pore space in the solid skeleton of the shear band during plastic deformation and by 
squeezing of pores in surrounding blocks by the dilating shear band due to the high stiffness of the host 
massif. A generalized equation has been derived to describe the dependence of the shear band strength 
on the ratio of strain rate to fluid flow rate.

A range of laboratory and full-scale geological and geophysical research suggests that irreversible deformation 
in rock samples and rock massifs is strongly localized in shear bands at different scales, the largest of which are 
tectonic faults1–3. These narrow zones not only determine the compliance of rocks in the form of localized relative 
shear displacements of structural blocks, but control seismic activity of rock massifs. The latter explains the cur-
rent interest in the mechanical properties of fault zones and the rapid increase in the number of published works 
in this area.

One of the key mechanical properties is the maximum (or peak) strength of the fault zone under given stress 
and confinement conditions4–7. Reaching the maximum strength corresponds to a change in the response of 
the shear band from pervasive strain (strain hardening stage) to strain localization (strain softening stage)8,9. 
The behavior of the shear band at the strain softening stage is largely determined by the degree of consoli-
dation of the gouge. In particular, for shear bands with a mature zone of unconsolidated/granular gouge the 
hardening-to-softening transition is typically smooth and does not lead to onset of dynamic slip as granular 
gouge usually exhibits velocity-strengthening frictional behavior10–12. At the same time, consolidated (lithified 
and indurated) shear bands behave in a fundamentally different way with rapid stress drop (corresponding to 
brittle rupture) and transition to dynamic slip accompanied by radiation of elastic waves (velocity-weakening 
behavior)9,10,13. The radiated acoustic/seismic power is determined by the magnitude of the dynamic stress drop, 
which in turn strongly depends on the peak strength of the shear band. This problem is especially important for 
faults or fault segments with healed (consolidated) core zones, which typically have high shear strength. Failure 
of such faults or fault segments has a dynamic character and is accompanied by generation of strong seismic 
waves14–16. Therefore, the estimation of maximum shear strength is both a fundamental and practical problem 
widely discussed in fault and rock mechanics4–7.

The conditions for onset of pervasive inelastic strain and subsequent reaching of the maximum strength of 
shear bands (including faults) are mainly affected by the pore structure and pore fluid pressure. The pore pressure 
dynamics is controlled by two interrelated processes17–27: (1) fluid flow and (2) pore volume change. The pervasive 
inelastic deformation of rock is often accompanied by its dilatancy28–30. The volume of the connected crack-pore 
space in the rock increases during pervasive shear deformation of the shear band, which leads to decrease of local 
pore pressure. The reduction of fluid pressure reduces the intensity of the relaxation processes associated with the 
formation of new discontinuities and coalescence of existing ones. This effect is called dilatancy hardening18. In 
turn, fluid inflow is able to compensate for the pore pressure drop and reduce the effect of strain hardening27,31. The 
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ratio of fluid flow rate to strain rate (which governs the dilation rate) determines the specific value of shear strength 
of shear bands. Note that the influence of the competition between dilatancy and fluid flow on shear strength is 
strongly pronounced for shear bands that are surrounded by material blocks with a similar permeability to that 
of the shear band gouge. This particularly corresponds to healed (consolidated) faults where the difference in the 
porosity and permeability of the principal slip zone (of width 1–10 cm) and surrounding periphery zone (up to 
several meters wide) is much less pronounced than in faults with a mature zone of unconsolidated gouge32.

Conventionally, the effect of pore fluid on the maximum shear strength (hereinafter referred to as strength) of 
shear bands, including fault zones, has been studied for limiting modes of deformation (very slow and very fast) 
that correspond to drained and undrained hydrological conditions33. This is principally due to the fact that the 
limiting modes most closely correspond to the long-term creep and short-term dynamic modes of deformation 
of fault zone regions. Numerous experimental and theoretical works, starting with the classical paper of Brace 
and Martin33, show that the strength of permeable rock samples can increase significantly (up to 30–50%) in 
transition from the drained to undrained condition31,34–40. This is explained by the limitation of fluid inflow to the 
increasing pore space of the incipient shear band and corresponding inhibition of pore pressure drop recovery.

Despite the progress achieved in studying the mechanical behaviour of shear bands (including fault zones) in 
permeable rocks, the influence of some essential factors is not fully understood. Among them are permeability of 
the shear band and the blocks and their “fluid holding capacity” (which depends on porosity and size). Another 
important factor is the elastic stiffness of the bulk of rock surrounding the shear band12,41. This factor is tradition-
ally associated with the magnitude of effective normal stress defined as the difference between applied normal 
stress and local pore pressure9,27,42. The magnitude of elastic stiffness reaches its maximum value in the bulk of the 
rock massif, where the mechanical constraint by surrounding rock strongly limits movement of blocks adjacent 
to the shear band in the normal direction. In such conditions, dilation of the shear band or core zone of the fault 
causes progressive compression of adjacent block regions and is accompanied by increase in the value of compres-
sive volumetric stress (and compressive effective normal stress) in the fault zone.

There is still no unambiguous understanding of how the strength of a shear band in the depth of constrained per-
meable rock massif changes in the transition region between the undrained and drained conditions. The topicality 
of this question is particularly related to the important and widely discussed problem of using watering to control 
the dynamics of shear stress relaxation in fault zones27,43,44. Keeping this question in mind, we studied the nature and 
functional form of the dependence of the shear band strength on the ratio of shear strain rate to fluid flow rate under 
constrained conditions corresponding to faults in rock massifs. The study was performed by numerical modelling of 
the shear deformation of a fluid-saturated permeable shear band using the discrete element method.

Problem Statement
We considered a 2D model sample consisting of two blocks separated by an interfacial layer (shear band) in the 
plane strain approximation (Fig. 1). The blocks imitate the regions of the medium adjacent to the shear band, 
which are less damaged than the shear band, have higher cohesion, and therefore deform elastically under the 
considered loading conditions. The shear band of width 2 h is a layer of an elastic-plastic dilatant material, which 
simulates the layer of consolidated gouge in principal slip zones of faults9,45. The width of the model blocks was 
H = 20 h. We used the following reference values of widths of the shear band and blocks: 2 h ≈ 1.5 cm, H = 15 cm. 
The shear band and blocks were assumed to be permeable and fluid saturated.

The model shear band with surrounding fragments of blocks was numerically simulated by the discrete ele-
ment method46–49 using a fully coupled macroscopic model of fluid-saturated porous brittle materials50,51. Within 
this model the discrete elements simulating parts of the shear band and surrounding blocks are treated as porous 
and permeable. The effect of the fluid contained in the crack-pore space of a discrete element on its stress state 
is described on the basis of the Biot linear model of poroelasticity52–54. The inelastic behavior of the permeable 
brittle material of the discrete element is described using a plastic flow model of rocks with a non-associated flow 
law and the Mises–Schleicher yield criterion (Nikolaevsky’s model)55,56:

Figure 1. Model sample structure and loading scheme for modelling of constrained shear of a porous fluid-
saturated shear band surrounded by porous fluid-saturated blocks.



www.nature.com/scientificreports/

3SCIenTIfIC REPORtS |  (2018) 8:1428  | DOI:10.1038/s41598-018-19843-8

( )P Y
3 3

,
(1)mean

eff eq
mean pore

eqσβ +
σ

= β σ + +
σ

=

where β and Y are the internal friction coefficient and cohesion (yield stress under pure shear deformation) of 
dry material of the discrete element, Ppore is the pore pressure, σmean and σeq are the mean stress and the equivalent 
stress within the discrete element volume51. Nikolaevsky’s model assumes a linear relation between the rates of 
shear and bulk plastic strains with the dilatancy factor Λ. The dilation of the material of the discrete element leads 
to an increase in its porosity and permeability51. Within the formalism of discrete elements, local failure is mod-
eled by changing the state of a pair of interacting elements from linked (or bonded) to unlinked49. As the failure 
criterion we apply the Drucker–Prager criterion in the following formulation:

( )P1 5( 1) 0 5( 1) , (2)mean pore eq cλ λ. − σ + + . + σ = σ

where λ = σc/σt is the strength ratio of “dry” material under uniaxial compression (σc) and tension (σt). The 
pressure-dependent Mises-Schleicher and Drucker-Prager criteria are generalizations (smoothing) of the 
Mohr-Coulomb yield and failure criteria, which are widely used in rock and fault mechanics4,7,24,38,57. The influ-
ence of the pore fluid pressure Ppore on the conditions of onset of inelasticity and fracture is taken into account 
within these criteria by means of their formulation in terms of effective mean stress Pmean

eff
mean poreσ = σ + .

The elastic characteristics of the shear band and blocks were assumed to be similar and corresponded to typi-
cal values for sandstones with a porosity of 10–15% (Young’s modulus E = 15 GPa, Poisson’s ratio ν = 0.3). The 
material of discrete elements modelling the blocks was treated as elastic-brittle and high-strength. The material of 
discrete elements modelling the shear band was a model elastic-plastic material with linear hardening with the 
following plasticity and strength parameters: β = 0.57, Λ = 0.36, Y = 10.84 MPa (this corresponds to a yield stress 
of 28 MPa under uniaxial compression), strain hardening modulus Π = 515 MPa, uniaxial compressive strength 
σc = 40 MPa, uniaxial tensile strength σt = 13.33 MPa (λ = 3). The calculations were carried out at an initial mean 
stresses mean

0σ  below the brittle-ductile transition threshold (in this case, at σ < 40 MPamean
0 ).

The initial values of porosity (φ0 = 0.1) and permeability k0 of the shear band and the blocks were assumed to 
be equal. This approximation is consistent with the low gradients of porosity and permeability in central zones of 
healed (consolidated) faults.

The model sample was simulated by a close-packed ensemble of equally sized discrete elements. Initially, 
all interacting elements were assumed to be linked to imitate a consolidated shear band. The element size was 
5·10−4 m. Separate tests have shown that further reduction of the element size does not have any significant effect 
on the simulation results (see Supplementary Materials).

We modelled constrained shear of the sample in the horizontal plane along the X axis (Fig. 1). Periodic bound-
ary conditions were specified on the lateral faces in the horizontal direction to simulate an infinitely long shear 
band. The sample was loaded in two stages. At the first stage, a normal load σN was applied to the upper and lower 
sample faces. The initial fluid concentration in the pore space of the sample was chosen so as to create the speci-
fied pore pressure Ppore

0  in the sample. There was no plastic deformation in the sample by the end of the first load-
ing stage. The stress and pore pressure distributions were homogeneous. At the second stage, the sample was 
subject to simple shear by applying constant tangential velocity Vx and zero normal velocity (along the Y axis) to 
the upper and lower faces to fulfil the constrained shear condition. The sample deformation proceeded until crack 
initiation in the shear band.

The described 2D system models a horizontal cross section of a healed fault between structural blocks of a 
rock massif at a certain depth. Note that the initial “horizontal” (in the XY plane) stresses in the given formulation 
of the problem exceed the “vertical” ones. This is consistent with experimental data indicating that horizontal 
stresses are considerably higher than vertical ones in regions with high deformation activity58.

We used the following types of hydrological boundary conditions on the external surfaces of the sample: (1) 
impermeable boundaries (hydraulically isolated sample) or (2) perfectly permeable (pore pressure on the surfaces 
was permanently equal to the initial value Ppore

0 ). These boundary conditions correspond to the hydrological con-
ditions in the central regions of fault zones in the bulk of low and high permeability host rocks, respectively.

Results
Figure 2a shows examples of shear loading curves of the reference sample (2 h ≈ 1.5 cm, H = 15 cm) at different 
shear strain rates. Here shear stress is calculated as the ratio of shear resistance force, measured at the upper 
sample face, to the square of the face. It can be seen that the initially elastic deformation transitions into inelastic 
deformation distributed in the volume of shear band (pervasive shear strain accompanied by dilation). Upon 
reaching the maximum shear stress (which is a peak shear strength) the shear crack is nucleated and developed in 
the shear band along the direction of band strike.

The simulation results showed that at high strain rates the magnitude of shear strength tends toward the upper 
limit, and at low strain rates – toward the minimal value. In the example shown in Fig. 2a the values of shear 
strength for curves 1 and 4 are close to the upper and lower limits, respectively. Such regularity was first observed 
by Brace and Martin33, and then reported in numerous experimental and theoretical studies of confined compres-
sion of rock samples and shear loading of model fault zones31,34–39. At the same time, we found that, in general, 
the reduction of shear strength from the upper to the lower limit with reduction of strain rate is not monotonous. 
At a certain intermediate strain rate the shear strength reaches a local minimum (curve 2 in Fig. 2a). Further 
reduction of strain rate leads to an increase of shear strength up to a local maximum (curve 3 in Fig. 2a). At even 
smaller strain rates the shear strength again decreases down to the lower limit. This result was unexpected, but is 
confirmed by recent experimental studies31,40,59–62.
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In the present study, we varied the shear strain rate V h h/( )xy xε = + , the initial permeability of the blocks and 
the shear band k0 (at fixed φ0 = 0.1), the dynamic fluid viscosity η, and system size (2H + 2h) within several orders 
of magnitude: εxy  from 5·10−4 s−1 to 1 s−1, k0 from 10−18 m2 to 10−13 m2, η from 2·10−4 Pa·s to 2·10−2 Pa·s (dynamic 

Figure 2. Shear strength variability. (a) Shear loading curves of the reference sample (2 h ≈ 1.5 cm, H = 15 cm) 
at different shear strain rates εxy . The values of permeability (k0 = 10−15 m2) and fluid viscosity (η = 10−3 Pa·s) are 
the same for all curves. (b) A typical dependence of the shear strength τc of the shear band on the parameter Axy 
for a hydraulically isolated sample (h/H = 0.05, = . σ = .P 0 5 17 5 MPapore mean

0 0 ). Roman numerals I–III mark 
the curve regions corresponding to different behavior modes of the fluid-saturated sample in shear. The values 
Acrit1 and Acrit2 correspond to the local minimum and maximum shear strength. Points a–d indicate the values of 
Axy for which the pore pressure and mean stress distributions are shown in Fig. 3. The top and the bottom faces 
of the sample are fixed in vertical direction. Lower Axy imply faster fluid flow or lower strain rate, higher Axy 
imply slower fluid flow or higher strain rate.

Figure 3. Distributions of pore fluid pressure Ppore and effective mean stress mean
effσ  in the Y direction in fluid-

saturated samples (h/H = 0.05, = . σ = .P 0 5 17 5 MPapore mean
0 0 ) for different Axy values: (a) 24 GPa; (b) 1.5 GPa; 

(c) 0.384 GPa; (d) 0.0496 GPa. Four pairs of curves in each figure correspond to different values of applied shear 
strain εxy: 0.2 c

Axyε  (1); 0.6 εc
Axy (2); 0.8 εc

Axy (3); 0.98 c
Axyε  (4). Here εc

Axy is the ultimate (at the moment of failure) 
value of applied shear strain for the corresponding sample. The arrows indicate the direction of the flow of time 
(direction of shear strain increase). The samples are hydraulically isolated; their top and bottom faces are fixed 
in vertical direction. Lower Axy imply faster fluid flow or lower strain rate, higher Axy imply slower fluid flow or 
higher strain rate.
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viscosity of water at room temperature is about 10−3 Pa·s), (2H + 2h) from 15 cm to 150 cm. We found that the 
parameter combination

= ε η +A H h k( ) / , (3)xy xy
2

0

unambiguously determines the value of shear strength of the shear band for a given initial mean stress σmean
0 , pore 

pressure Ppore
0 , and ratio h/H. In other words, shear band zones have the same shear strength if they are character-

ized by the same value of Axy, (even if the specific values of the parameters k0, η, xyε , and h differ by orders of 
magnitude). The parameter Axy has the meaning of strain rate normalized by fluid flow rate, because the combi-
nation k0/η(H + h)2 detеrmines the fluid flow rate in conventional equations of fluid mass transfer.

Figure 2b shows a typical dependence of the shear strength τc of the modelled shear band on the parameter Axy 
for a hydraulically isolated system. Each point of the curve corresponds to a separate calculation at given values 
of k0, η, εxy  and h (at h/H = const, σN = const, =P constpore

0 ). The region Axy → ∞ (region I in Fig. 2b) corresponds 
to combinations of k, η, xyε  and h at which the fluid flow rate is extremely low compared to the rate of pore pres-
sure change caused by pore volume variation. This corresponds to the hydrological conditions close to the 
undrained condition of the shear band. The region of low Axy values (region III in Fig. 2b) corresponds to low 
shear rate, low fluid viscosity or high permeability of the blocks. In this region the fluid flow rate is relatively high, 
and the hydrological conditions for the shear band approach a fully drained (the pore pressure distribution in the 
sample is close to homogeneous during the entire course of deformation).

The strength τc of the shear band approaches the absolute maximum at Axy → ∞ (dynamic loading, highly 
viscous fluid or impermeable blocks) and tends to the absolute minimum at Axy → 0 where permeability of the 
sample is large enough to provide homogeneous distribution of pore pressure at all stages of deformation. At 
the same time, the dependence τc(Axy) in the interval of intermediate Axy values (region II in Fig. 2b) has unex-
pected non-monotonic character. The non-monotonicity of the τc(Axy) dependence can be explained by analysing 
the dynamics of pore pressure and effective mean stress distributions across the vertical section of the samples 
(Fig. 3).

At high Axy, the pore fluid pressure in the shear band drops to zero at the early stage of inelastic deformation 
accompanied by dilation (curves 1–4 for Ppore in Fig. 3a). Due to the mechanical confinement of the system, shear 
band expansion leads to progressive compression of the blocks, which in turn causes increased compressive mean 
stress and pore pressure (at the same time, the magnitude of expansion is smaller than in an unconstrained sys-
tem). Consequently, the absolute value of effective mean stress within the shear band increases during the course 
of deformation (effective mean stress is compressive, i.e. negative). The magnitude of the effective mean stress in 
the shear band is up to several times higher than in bordering regions of blocks, and this difference gradually 
increases with shear strain (curves 1–4 for σmean

eff  in Fig. 3a). The maximum absolute value of effective mean stress 
in the shear band is achieved for the case of negligible fluid flow rate, which results in the maximum shear 
strength at Axy → ∞ (Fig. 2b).

A reduction of the parameter Axy, for example as a result of a decrease in strain rate or viscosity or an increase 
in the permeability, leads to increase in the rate of fluid flow from the blocks to the shear band. Moreover, at suf-
ficiently low values of Axy, the pore pressure in the blocks decreases (instead of increasing) under shear deforma-
tion (curves 1–4 for Ppore in Fig. 3b), despite the dilation of the interface and block compression. Fluid outflow is 
accompanied by a decrease in the linear dimensions of the blocks. The latter determines the increase in the rate of 
shear band expansion (curves a and b in Fig. 4) and the corresponding decrease in the absolute values of effective 
mean stress in the shear band and blocks as compared to an impermeable system (curves 1–4 for mean

effσ  in Fig. 3b). 
Besides this, due to increase of fluid inflow, a substantial gradient of effective mean stress forms in the cross sec-
tion of the shear band. The minimum of σmean

eff  is localized at the center. The described changes in the stress state 
cause a decrease in the strength τc of the shear band with decreasing Axy (region I in Fig. 2b). At a certain “thresh-
old” combination of the filtration and deformation parameters Axy = Acrit1, the shear strength τc reaches its local 
minimum (point “c” in Fig. 2b).

In the region Axy < Acrit1 (region II in Fig. 2), the ratio of fluid flow rate to strain rate becomes large enough to 
maintain a nonzero fluid pressure in the shear band up to large values of applied shear strain εxy (curves 1–4 for 
Ppore in Fig. 3c), including the point of failure. In this case, the smaller is the value of Axy, the higher is the pore 
pressure in the shear band at the same value of applied shear strain εxy. As the pore pressure rises, the inelastic 
contribution to the total strain rate increases. Consequently, the dilation rate increases with decrease of Axy. This 
effect is most pronounced at the early stage of inelastic strain (curves b and c in Fig. 4). In the interval of Axy cor-
responding to region II in Fig. 2b the increase in the rate of block compression by the dilating shear band over-
compensates for the contraction of blocks caused by fluid outflow. As a result, in region II the effective mean stress 
in the shear band again increases with decrease of Axy (curves 1–4 for σmean

eff  in Fig. 3c). Moreover, the gradient of 
effective mean stress in the cross section of the shear band decreases at the same time. The above considerations 
explain the observed increase in the strength τc of the shear band. At some “threshold” combination of the filtra-
tion and deformation parameters Axy = Acrit2, the shear strength τc reaches its local maximum (point “c” in 
Fig. 2b).

In the region Axy < Acrit2 (region III in Fig. 2), which corresponds to an extremely low rate of applied shear 
strain or high permeability, the fluid flow rate provides nearly homogeneous distributions of pore pressure across 
the sample and of effective mean stress across the blocks and the shear band (Fig. 3d). A key feature of region III 
is that the pore pressure in the shear band remains nonzero up to the moment of crack formation and its value 
increases with decrease in Axy (Ppore ≈ 5 MPa or about 30% of the Ppore

0  value in the example shown in Fig. 3d). The 
threshold Acrit2 corresponds to a combination of the parameters at which the pore pressure in the center of the 
shear band reaches zero at the moment of crack initiation. The increase of dilation rate with increasing Ppore tends 
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to saturation in region III (curves c and d in Fig. 4). Therefore, increase of the pore pressure in the shear band in 
region III leads to slower growth of effective mean stress during the course of deformation and hence to decrease 
in the shear strength. The lower limit τc is reached at Axy → 0 (fully drained condition for the shear band).

The described qualitative change of the distribution of effective means stress also determines the position of 
the shear crack in the shear band (Fig. 5). At large and small values of Axy (Axy ≫ Acrit1 and Axy < Acrit2, respec-
tively) a pair of symmetrically positioned cracks is formed (formation of a pair of cracks is a consequence of the 
symmetry of the system). The distance between the cracks and the center of the shear band is approximately 60% 
of the half-width of the shear band (the upper scheme in the Fig. 5a). In the region I the crack position gradually 
shifts to the center of the shear band following the decrease in strength of the shear band with decrease of Axy 
(Figs 2b and 5b). The interval of Axy, where crack shifts from “limiting” position (60% of the half-width of the 
shear band) to the center of the shear band, approximately amounts to two orders of magnitude. In the region II 
(within the range Acrit2 < Axy < Acrit1) there is only one crack propagating along the central line of the shear band 
(the lower scheme in the Fig. 5a). Transition to the region III is accompanied by backward shift of crack position 
to the “limiting” position. This behaviour is caused by changes in the degree of inhomogeneity of effective mean 
stress across the shear band with changing Axy. For Axy several orders of magnitude larger than Acrit1 the distri-
bution of mean stress in the central part of the shear band is almost homogeneous, while the zone of maximum 

Figure 4. The dependences of the shear band volume strain on applied shear strain for a hydraulically isolated 
sample (h/H = 0.05, = . σ = .P 0 5 17 5 MPapore mean

0 0 ) characterized by different Axy values: 24 GPa (a); 1.5 GPa 
(b); 0.384 GPa (c); 0.0496 GPa (d). The volume strain was determined as the change of the shear band width Δh 
from its initial value 2 h. Curves a–d correspond to the same values of Axy, as in Figs 2d and 3. The top and the 
bottom faces of the samples are fixed in vertical direction. Lower Axy imply faster fluid flow or lower strain rate, 
higher Axy imply slower fluid flow or higher strain rate.

Figure 5. Crack line position variability. (a) Schemes of crack location in the periphery (upper picture) and in 
the centre (lower picture) of the shear band. (b) The dependence of normalized distance from crack to the 
centre of shear band on the parameter Axy for a hydraulically isolated sample (h/H = 0.05, σ= .P 0 5pore mean

0 0

= .17 5 MPa). Roman numerals I–III mark the curve regions corresponding to different behavior modes of the 
fluid-saturated sample under shear loading. The values Acrit1 and Acrit2 correspond to the local minimum and 
maximum shear strength (Fig. 2b). The top and the bottom faces of the sample are fixed in vertical direction. 
Lower Axy imply faster fluid flow or lower strain rate, higher Axy imply slower fluid flow or higher strain rate.
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stress gradient is located relatively close to blocks (the cracks nucleate in this zone). For values of Axy belonging 
to the region II (lower than Acrit1), a narrow zone of lower effective mean stress forms in the centre of the shear 
band (Fig. 3b). This zone determines the position of the crack in the centre of the shear band. At Axy < Acrit2 the 
new factor appears, which leads to backward shift of the crack position. This factor is nonzero pore pressure in 
the shear band during the entire course of deformation. In the samples with Axy lying in the region III this factor 
determines the profile of effective mean stress distribution across the shear band with maximum absolute value 
in the centre and the zone of maximum stress gradient located relatively close to the boundaries with the blocks.

Discussion
The derived nonlinear and non-monotonic character of the dependence of the shear strength of mechanically 
constrained shear band on the parameter Axy as well as the explanation of the reasons for this dependence are well 
supported by the results of recent experimental studies on triaxial deformation of different sandstone31 and edi-
fice rock40 samples as well as on cone penetration tests in consolidated silts59–62. In particular, Duda and Renner31 
showed in their detail study that non-monotonic dependence of the strength of permeable fluid-saturated sam-
ples on axial strain rate under constant value of nominal effective confining pressure is determined by a change in 
the internal drainage state. They concluded that effective drainage during deformation is determined by the inter-
action between the mechanical (deformation of the skeleton) and hydraulic (fluid redistribution) evolution. An 
important issue supported by issues of other cited experimental papers is that “bulk hydraulic properties rather 
than local inhomogeneities control the condition of drainage”31. Duda and Renner31 proposed an approximate 
expression to estimate critical strain rate corresponding to the local minimum of strength (the conditional point 
of transition from internal drained to undrained conditions):

 ~ε
Δε

η
k

s l
,

(4)crit
inelast

2

where Δεinelast denotes an interval of axial strains associated with significant volume changes, s is specific storage 
capacity, l is a characteristic length of fluid redistribution. Considering εcrit as an analogue of Acrit1, we can estimate 
the values of the parameter Acrit1 for sandstones studied by Duda and Renner31. Substituting the expression (4) for 
εcrit into the expression (3) for Axy and applying the values of Δεinelast and s for three experimentally studied sand-
stones we obtain an estimation of ~ ~A s/ 10 10 GPaxy inelast

1 0Δε − – . This estimation corresponds within the 
order of magnitude to the numerically derived value Acrit1 for the considered shear band. The all above said con-
firms our idea that non-monotonic profile of the dependence of strength on the parameter Axy characterizing the 
ratio of strain rate to fluid flow rate is general for fluid- saturated rock samples and fragments of rock massifs 
where fracture has a localized pattern in the form of shear band formation or activation.

We have to emphasize that the key factor determining non-monotonic variation of the shear strength of a 
dilatant shear band at varying ratios of strain rate to fluid flow rate is mechanical constraint by the surrounding 
bulk of massif. Mechanical constraint in combination with dilation of the shear band leads to increasing compres-
sion of adjacent regions of rock and consequently to increase of effective stress. The rate of increase of effective 
stress determines the normal elastic stiffness of the surrounding massif. As shown in Fig. 2b, the rate of increase 
of effective stress, and consequently the elastic stiffness, nonmonotonously change with decreasing ratio of strain 
rate to fluid flow rate, and this change determines the shear strength variation.

The curve shown in Fig. 2b has three characteristic regions. In each region the change of strength is monoto-
nous, which implies the presence of a dominant mechanism, which determines the direction of the change. When 
passing into a different region, both the dominant mechanism and the direction of the trend are changed.

In region I the dominating mechanism lies in the decrease of the linear dimensions of the blocks due to fluid 
outflow to the shear band (poroelastic contraction). Decrease in the value of Axy is accompanied by the inflow of 
a large amount of fluid into the shear band and hence by reduction of the constraint imposed on the shear band 
by the compressed blocks (effective normal stiffness of the blocks decreases). This mechanism determines the 
decrease of the shear strength in region I as Axy decreases.

In region II the trend-determining mechanism is tied to the increase of the dilation rate of the shear band with 
decreasing value of Axy due to slowing of pore pressure reduction and maintaining nonzero pore pressure during 
most of the shear process. This mechanism provides an increase in the absolute value of effective mean stress in 
the sample and hence increase in the strength of the shear band in region II as Axy decreases.

In region III the trend-determining mechanism is linked to the fact that pore pressure in the shear band 
remains non-zero during the entire shear process. In this region pore pressure in the shear band is higher in the 
samples characterized by lower values of Axy. Because of this fact an absolute value of effective mean stress in a 
shear band is also lower in the samples with lower Axy. Decrease of an absolute value of effective mean stress leads 
to gradual decrease in the shear strength down to the absolute minimum at Axy → 0.

The described three parts of the curve τc(Axy) have sigmoid profiles, which is the result of the competition 
between shear band dilatancy and poroelastic contraction of blocks due to fluid outflow. Analysis of the obtained 
result allowed to formulate the following general dependence of the shear strength of constrained shear band 
zones on the parameter Axy. The dependence is expressed as a sum of a constant and three sigmoid contributions 
(curve 1 in Fig. 6a):

τ = τ +
τ

+
+

τ

+
−

τ

+
−( ) ( ) ( )c A c A c A1 1 1

,
(5)

c
xy

p
xy

p
xy

p0
1

1

2

2

3

3
1 2 3
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where τ1, τ2 and τ3 are the amplitudes of contributions of the three above-mentioned mechanisms to the shear 
strength, c1, c2 and c3 are the inverse positions of the sigmoid midpoints, the exponents p1, p2 and p3 determine 
the steepness of the sigmoid functions and τ0 is a constant contribution independent of the fluid flow dynamics.

The amplitudes of the contributions have the following physical meanings. The constant contribution τ0 is the 
strength of the shear band in the absence of fluid flow (or under high strain rate) at a constant value of normal 
force σN applied to the upper and lower sample faces during the entire course of shear. Note that the dilation of 
the shear band doesn’t lead to increase in mean stress in the blocks under the given loading conditions. Another 
three contributions are concerned with squeezing of the blocks due to shear band dilation in a mechanically 
constrained sample.

The first sigmoid contribution dominating in region I is determined by a descending dependence of block’s 
normal stiffness on Axy under constrained conditions. A value of τ1 can be experimentally estimated as a value of 
shear band strength at Axy → ∞ under mechanically constrained sample faces minus τ0: τ = τ → ∞ − τ( )Ac xy1 0.

The third contribution is determined by the influence of non-zero pore pressure in the shear band on effective 
mean stress. A value of τ3 can be obtained from a constrained shear test at Axy → 0, measuring pore pressure in the 
shear band. Special numerical analysis at different Ppore

0  and the fixed value of 35mean
0σ = −  MPa has shown that 

the amplitude τ3 is proportional to the value of pore pressure Ppore
max in “fully drained” state of the shear band 

(Axy → 0) at the moment of failure. This linear dependence is in good quantitative agreement with the analytical 
estimate derived from failure criterion (2): λτ = . − P0 5 3 ( 1) pore3

max (see Supplementary Materials).
The second sigmoid contribution is determined by the dependence of the dilation rate of a shear band material 

on the magnitude of pore pressure. Having experimentally estimated a value of τ3, it is possible to calculate τ2 in 
the following way: τ = τ → − τ − τ( )A 0c xy2 0 3.

Another six parameters can be estimated on the basis of fitting the curve to experimental data on the shear 
strength in intermediate range of Axy. More promising way is a development of an analytical approach allowing 
estimation of these parameters based on material properties. This is a subject of further research. However, we 
should mention that analytical estimation ~ εΔA s/crit inelast1  makes determining of parameters of the first and the 
second sigmoidal contributions into Eq. (5) much easier.

The specific parameter values of the Eq. (5) depend on mechanical characteristics of the skeleton of shear band 
and blocks, bulk modulus of fluid, the h/H ratio, initial mean stress mean

0σ , fluid content in the blocks and hydro-
logical conditions. An example of constant and sigmoid contributions to shear band strength for the particular 
case shown in Fig. 2b are drawn in Fig. 6b.

Figure 6a shows examples of the τc(Axy) dependences for different pore pressure values and hydrological 
boundary conditions (curves 1–3) approximated by Eq. (5). Comparison of the curves 1 and 2 shows the deter-
mining role of fluid content for the non-monotonic pattern of variation of τc. Decrease in initial pore pressure 
leads to “degeneration” of the curve to the simple sigmoid function (τ3 approaches zero, τ1 and τ2 decrease) and 
then to trivial τc = const at →P 0pore

0 . The strength of a shear band also strongly depends on the permeability of 
the host massif enclosing the shear band and adjacent regions of blocks. At a relatively high host massif permea-
bility (curve 3, Fig. 6a) modelled by means of “perfectly permeable” boundary conditions, the amplitudes τ2 and 
τ3 increase, compared with the same parameters for a hydraulically isolated system (curve 1, Fig. 6a), while the 
parameters of the constant and first contributions remain unchanged. This leads to a sharp increase in the non-
monotonicity of the curve including a pronounced increase in the value of the local maximum and considerably 
lower value of the minimum at Axy → 0.

Figure 6. (a) Numerically derived sets of points τc(Axy) approximated by Eq. (5) for hydraulically isolated samples 
at P 0 5 17 5 MPapore mean

0 0σ= . = .  (curve 1), hydraulically isolated samples at σ= . =P 0 2 7 MPapore mean
0 0  (curve 

2), and samples with perfectly permeable boundaries at P 0 5 17 MPapore mean
0 0σ= . =  (curve 3). In all examples 

35 MPamean
0σ = − , h/H = 0.05. (b) Examples of contributions to the shear strength τc of the shear band (regions I–

III correspond to those in Fig. 2b). The presented contributions are used to approximate the set of points shown in 
Fig. 2b (their superposition is curve 1 in Fig. 6a). Lower Axy imply faster fluid flow or lower strain rate, higher Axy 
imply slower fluid flow or higher strain rate.
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Finally, we stress that in this study we assumed the permeability of the blocks to be same as shear band perme-
ability, which is reminiscent of the situation in the central zones of lithified fault segments. At the same time, it is 
a widespread situation that the permeability of the shear band is higher than permeability of surrounding blocks. 
In particular, permeability of unconsolidated shear band may be several orders of magnitude higher than block 
permeability. Separate analysis of such systems has shown that the form of the relationship (5) and the values of 
its parameters do not change if the combination Axy is defined as follows: = ε η +A H h k( ) /xy xy

block2
0

, where k block
0  

is block permeability (Fig. 7). So, the dependence τc(Axy) is general for shear band zones, where block permeabil-
ity does not exceed shear band permeability (at the same φ0). This allows to state that it is the permeability of the 
blocks that controls the shear band strength in rock massifs, all other factors being equal.

The shear band strength is directly connected with the length of the stable stage of pervasive shear (Fig. 2a). 
The results of this study show that the length of this stage can change (and potentially can be managed) as a 
result of changes in shear rate, fluid viscosity and permeability of the shear band zone and surrounding massif. 
Depending on the magnitude and sign of change of the parameters that determine the instantaneous value of 
Axy, this change can be positive (elongation) or negative (shortening). The latter may be especially important for 
control of the point of transition of the regime of shear of consolidated fault segments from stick to dynamic slip.

Methods
We numerically simulated constrained shear of a model shear band using one of the representatives of the group 
of discrete element methods (DEM), namely the explicit method of simply deformable elements. The term 
“explicit” means that evolution of an ensemble of interacting discrete elements is defined by a numerical solution 
of the system of classical equations of motion using an explicit numerical scheme (the velocity Verlet algorithm 
in our case)48. We use the well-known approximation of equivalent discs in the 2D problem statement for inter-
preting the element shape when numerically solving equations of motion (this kind of implementation of DEM 
is often called a distinct element method)47,48. This approximation allows to use simplified (Newton-Euler) equa-
tions of motion and to divide the interaction between two discrete elements into two independent components: 
central (oriented along the line connecting the centres of mass of the elements) and tangential (in the plane 
transverse to the mentioned line). In the simply deformable element approximation the state of a discrete element 
is determined by the average stress tensor σαβ and average strain tensor εαβ, which are calculated through inter-
action forces, pair overlaps and relative shear displacements in the interacting pairs of the element with its neigh-
bours47,49. One important feature of our implementation of the simply deformable DEM is the use of the original 
many-body formulation of the element-element interaction49,63. It allowed us to implement coupled models of 
poroelasticity, poroplasticity and fluid affected failure within the DEM. Detailed description of the features of the 
numerical method and model implementation can be found in the papers49,50.

The problem of modelling the mechanical behaviour of permeable fluid-saturated material by an ensemble 
of interacting discrete elements is divided into two subproblems: (1) description of the mechanical behaviour of 
the enclosing solid skeleton with interstitial fluid; (2) description of fluid transfer in the filtration volume (system 
of connected channels, pores and microcracks) of the solid. In the considered model we assume the character-
istic thickness of pores, channels and microcracks to be smaller than the discrete element size. Therefore, the 
discrete elements are treated as porous and permeable. The influence of pore fluid in the volume of the element 
on its mechanical properties and response is described implicitly with use of the models of poroelasticity and 
poroplasticity.

We used Biot’s linear model of poroelasticity to describe the mutual relation between average stresses and 
strains and fluid pore pressure in the volume of the discrete element. The formulation of the constitutive equation 
for a fluid-filled porous isotropic elastic solid is used54:

Figure 7. Numerically derived sets of points τc(Axy) approximated by Eq. (5) for hydraulically isolated samples 
(h/H = 0.05, = . σ =P 0 5 17 MPapore mean

0 0 ) with different values of permeability of blocks (k block
0 ) and shear 

band (k intf
0 ). The parameter Axy is calculated using k block

0 . The top and the bottom faces of the samples are fixed in 
vertical direction. Lower Axy imply faster fluid flow or lower strain rate, higher Axy imply slower fluid flow or 
higher strain rate.
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where α, β = x, y, z; G and K are the shear and bulk elastic moduli of the material of the element; δαβ is the 
Kronecker delta; a is the poroelastic constant proportional to the ratio of bulk moduli of porous and nonporous 
material, Ppore is the average value of pore pressure in the volume of the element.

The behavior of the material of the discrete element beyond the yield stress is simulated using Nikolaevsky’s 
rock plasticity model with a nonassociated flow rule and modified Mises–Schleicher yield criterion (1), which 
handles effective mean stress in the volume of the discrete element σ = σ + Pmean

eff
mean pore instead of conventional 

mean stress in solid skeleton σmean. A feature of Nikolaevsky’s model is that it postulates a linear dependence 
between the rates of the bulk and shear plastic strain components with a proportionality factor Λ, termed the 
dilatancy factor. Nikolaevsky’s model is implemented within the DEM formalism with use of the radial return 
algorithm of Wilkins. According to the algorithm, a numerical solution of an elastic-plastic problem at each step 
of integrating the equations of motion consists of: (1) incremental solution of an elastic problem and (2) subse-
quent reduction of the average stress tensor σαβ in the volume of the discrete element to the yield surface Y if the 
inequality Φ = βσ + σ > Y/ 3mean

eff
eq  holds true49:

σ′ = σ − σ δ + σ − δαβ αβ αβ αβM N( ) ( ) , (7)mean mean

where σ′αβ are the reduced values of the components of the average stress tensor in the volume of the discrete 
element, = − σ Φ − Λβ +M G Y K G1 ( 3 / )(3 ( )/( 3 ))eq  is the reduction factor of stress deviators, N = KΛ(Φ − Y/
(KΛβ + G)) is the correction of the mean stress value calculated in an elastic approximation. Nikolaevsky’s plas-
ticity model of brittle materials is a typical representative of nonassociated flow models. Its main limitation is the 
neglect of possible pore collapse. Therefore, this model is typically applied to brittle materials with relatively low 
initial porosity (less than 15–20%) at mean stresses below the brittle-ductile transition threshold64,65.

The rheological properties of the dry material of a discrete element are assigned through the dependence 
Y(εms), where ε = ε β + εK G/3 / 3ms mean eq  is a combination of mean strain εmean and equivalent strain εeq (here 
we imply total values of strains including both elastic and irreversible parts)49. The strain parameter εms can be 
conventionally called “modified Mises-Schleicher strain parameter”). The form of parameter εms ensures the 
equality Φ/εms = 3G within the region of elastic behavior (εms is an analog of equivalent strain in the conventional 
models of plasticity of metals with von Mises yield criterion). The dependence Y(εms) for dry material (Ppore = 0) 
is easily calculated from available or assigned stress-strain curves under shear or uniaxial compression. The strain 
hardening modulus Π is a derivative Π = dΦ/dεms.

The modified failure criterion of Drucker and Prager (2), which takes into account local pore fluid pressure is 
used as the criterion of bond failure (linked pair → unlinked pair) in pairs of interacting fluid-saturated discrete 
elements49.

Note that the yield and failure criteria (1–2) are generalizations (smoothing) of the Mohr-Coulomb yield and 
failure criteria, which are widely used in rock and fault mechanics4,7,24,38,57. The main distinction of criteria (1–2) 
is that they take into account the intermediate principal stress along with the major and minor principal stresses. 
Typically the estimates of yield stress and strength by (1–2) are quite close to Mohr-Coulomb criteria, and main 
limitations and working ranges of (1–2) as well as sensitivity of the results to the values of criterion parameters 
are similar for both kinds of criteria.

The filtration volume (also called the open porosity) Ωpore of the discrete element is considered to be the sum 
of two components: the volume of the initial system of connected pores, cracks and channels (Ωpore,el) and the 
volume of new pores (Ωpore,pl) formed due to material dilatancy during inelastic deformation (i.e., due to irrevers-
ible opening of microscopic discontinuities). Reversible changes of Ωpore,el during elastic deformation of porous 
material are described within the framework of Biot’s linear model of poroelasticity54:

a
K

P
K

a3 3
(1 (1 )) ,

(8)
pore el

mean pore
0 0Ω = Ω




φ +

σ
+ − + φ





.

where Ω0 is the initial volume of the element, φ0 is the initial porosity. The irreversible change of pore volume 
Ωpore,pl due to material dilatancy is expressed through the plastic component of bulk strain of the discrete element 
θplast:

Ω = Ω θ = Ω θ − θ = Ω 


ε + ε + ε − σ + 
( ) ( )aP K( ) 3 / , (9)pore pl plast elast xx yy zz mean pore, 0 0 0

where θ and θelast are the total bulk strain of the element and its reversible (elastic) part, εαα are diagonal compo-
nents of the average strain tensor in the element volume.

Permeability k of the material of a discrete element is treated as a function of porosity φ = Ωpore/Ω0 and the so 
called “characteristic diameter” of filtration channels dch

49,66:

= φ .k d (10)ch
2

In the general case the parameter dch is not the average transverse size of discontinuities, but the size of the 
narrowest channels in the crack-pore space, which determine the rate of fluid flow through the volume of the 
discrete element.
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We considered interstitial fluid to be compressible and used the classical equation of state66: =Ppore  
ρ ρ −( )K / 1fl pore 0

, where Kfl is the bulk modulus of interstitial fluid, ρpore = mfl/Ωpore is fluid density in the pore 
space of the element (mfl is mass of fluid in pore space), ρ0 is the equilibrium value of fluid density under atmos-
pheric conditions. We assume Ppore = 0 if ρpore ≤ ρ0. The fluid pressure gradient is assumed to be a driving force of 
filtration. We used the classical equation of fluid mass transfer in the “micropore” space66:

φ
∂ρ

∂
= ∇





 η

∇ρ




.t

K k
(11)

pore
fl pore

This equation is numerically solved using the Euler method on a grid formed by an ensemble of interacting 
discrete elements. Here grid nodes are the centres of mass of discrete elements. There is no mass transfer between 
grid nodes in which ρpore ≤ ρ0.

The described model was verified in a series of numerical tests including uniaxial compression of samples of 
dry model materials with different values of the dilatancy factor Λ, fluid filtration through a thin layer of perme-
able material and fluid discharge from a sample under rapid uniaxial compression (without failure). Verification 
results are shown in Supplementary Materials.

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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