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TPGLDA: Novel prediction of 
associations between lncRNAs and 
diseases via lncRNA-disease-gene 
tripartite graph
Liang Ding1, Minghui Wang1,2, Dongdong Sun1 & Ao Li1,2

Accumulating evidences have indicated that lncRNAs play an important role in various human complex 
diseases. However, known disease-related lncRNAs are still comparatively small in number, and 
experimental identification is time-consuming and labor-intensive. Therefore, developing a useful 
computational method for inferring potential associations between lncRNAs and diseases has become 
a hot topic, which can significantly help people to explore complex human diseases at the molecular 
level and effectively advance the quality of disease diagnostics, therapy, prognosis and prevention. 
In this paper, we propose a novel prediction of lncRNA-disease associations via lncRNA-disease-
gene tripartite graph (TPGLDA), which integrates gene-disease associations with lncRNA-disease 
associations. Compared to previous studies, TPGLDA can be used to better delineate the heterogeneity 
of coding-non-coding genes-disease association and can effectively identify potential lncRNA-disease 
associations. After implementing the leave-one-out cross validation, TPGLDA achieves an AUC value of 
93.9% which demonstrates its good predictive performance. Moreover, the top 5 predicted rankings of 
lung cancer, hepatocellular carcinoma and ovarian cancer are manually confirmed by different relevant 
databases and literatures, affording convincing evidence of the good performance as well as potential 
value of TPGLDA in identifying potential lncRNA-disease associations. Matlab and R codes of TPGLDA 
can be found at following: https://github.com/USTC-HIlab/TPGLDA.

Long non-coding RNAs (lncRNAs) are a new class of transcripts, with the length longer than 200nt1–3, which 
have been implicated in a number of normal physiological processes at every stage of life, from embryonic devel-
opment and cellular cell fate determination to physiological homoeostasis of entire organisms4. Accumulating 
studies have indicated that a large quantity of lncRNAs are critical in many important biological processes such 
as chromatin modification, transcriptional and post-transcriptional regulation, genomic splicing, differentiation, 
immune responses, cell cycle control and so on3,5,6. Especially, it has been demonstrated that a large number of 
lncRNAs are involved in numerous complex human diseases3,4, such as neurological disorders7, coronary artery 
diseases8, cardiovascular diseases9, and various cancers10. Accordingly, inferring potential associations between 
lncRNAs and diseases can help us understand the pathogenesis of complex diseases at the molecular level and 
benefit biomarker identification for disease diagnosis, therapy, prognosis and monitoring5.

Up to now, a large amount of lncRNA-related biological data has been distributed in different public data-
bases11–13 and only few associations between lncRNAs and diseases have been reported. Collecting and integrat-
ing these data from a great number of literatures and databases is costly. Moreover, many biological experiments 
are time-consuming and expensive. Accordingly, researchers have started to focus on developing computational 
prediction approaches based on the existing datasets, which can quantify the associations’ probability between 
lncRNAs and diseases, and the most promising lncRNA-disease associations are used for further biological exper-
imental validation. In this case, the time and cost of biological experiments can be effectively reduced14.

In recent years, some computational models have been proposed to identify potential associations between 
lncRNAs and diseases. For example, based on important assumption that similar diseases are often associated 
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with functionally similar lncRNAs5, Chen and Yan propose a computational approach of LRLSLDA to identify 
potential disease–related lncRNAs. LRLSLDA is a novel semi-supervised learning method in Laplacian regular-
ized least squares framework. Moreover, this method does not require negative samples and can produce reliable 
results based on lncRNA expression profile and known lncRNA-disease associations. Subsequently, based on 
the finding that functionally related genes are often associated with phenotypically similar diseases15,16, Sun et 
al.17. Construct an lncRNA-lncRNA functional similarity network. Then, they develop a global network-based 
computational approach, RWRlncD, to identify potential lncRNA–disease associations by integrating disease 
similarity network, lncRNA functional similarity network and experimentally verified lncRNA-disease associa-
tions. Based on the same assumption, Ganegoda et al.18. Further propose a kernel based random walk with restart 
in heterogeneous network model (KRWRH), which incorporates with lincRNA tissue specific information, dis-
ease phenotype information and experimentally validated disease-lincRNA associations. KRWRH uses Gaussian 
interaction profile kernel to calculate the similarities of diseases and lincRNAs, and random walk with restart 
method is utilized for final prediction. The good experimental results highlight the importance and effectiveness 
of inferring potential disease-lincRNA associations using different biological information18.

Despite the success achieved by aforementioned methods, another important factor contributing to infer 
potential lncRNA-disease associations lies in the fact that coding and non-coding genes are often cooperated in 
human diseases, which has been demonstrated in many previous studies19–22 For example, Sahu et al.23 demon-
strate that coding gene-TAF1D and lncRNA-SNHG1 are highly co-expressed in neuroblastoma. At the same time, 
rich information about gene-disease associations is available in database such as DisGeNET24 and PsyGeNET25. 
Therefore, if effectively used, such information may be of great help to infer potential associations between 
lncRNAs and diseases. Recently, Yang et al.22 conduct a pioneer study in which the authors integrate coding 
gene-disease associations and propose a propagation algorithm to infer potential lncRNA-disease associations 
based on a bipartite graph of coding-non-coding genes-disease. The authors show integrating coding gene-disease 
associations with lncRNA-disease associations can significantly enhance its prediction performance. Despite its 
low complexity and effectiveness, the bipartite graph model used in this study treats coding and non-coding genes 
without distinction and therefore cannot fully account for the heterogeneity of coding-non-coding genes-disease 
association. In addition, it cannot work for the lncRNAs and diseases without any known associations (here-
after isolated nodes), due to the fact that this method depends on the topological structure of bipartite graph 
and in consequence isolated nodes cannot get any information22. Another pioneer study called ncPred uses a 
tripartite network to infer potential ncRNA-disease association by integrating ncRNA-target associations and 
disease-target associations26. In this excellent work, the target information gives rise to a bridge connecting the 
ncRNA and diseases which significantly improve its predictive performance.

Inspired by the above methods, in this paper we present a novel computational approach of a Tripartite Graph 
for potential LncRNA-Disease Association identification (TPGLDA) by integrating gene-disease associations 
and lncRNA-disease associations. The method begins with an lncRNA-disease-gene tripartite graph to delineate 
the heterogeneity of coding-non-coding genes-disease association. Subsequently, an effective resource alloca-
tion algorithm is proposed to accurately identify potential lncRNA-disease associations. Furthermore, lncRNA 
expression similarity and disease semantic similarity are introduced into TPGLDA to make inference for isolated 
nodes14,27. To perform a proper evaluation of our proposed method, we utilize leave-one-out cross validation 
experiment to demonstrate its superior performance compared with existing approaches. Besides, the analyses 
of several important cancers (i.e. lung cancer, hepatocellular carcinoma, ovarian cancer, etc.) effectively support 
the practical application of our method. We then use TPGLDA to infer potential lncRNA–disease associations 
and some high-ranking results are successfully verified by related literatures and databases, such as Lnc2Cancer28, 
LncRNA2Target29 and MNDR30. These results afford convincing evidence of the good performance of TPGLDA 
as well as potential value in supporting further biological experiments and promoting research productivity.

Results
Overview of proposed method. The overview of TPGLDA in identifying potential lncRNA-disease 
associations can be simple summarized as following four steps (Fig. 1). First, we construct lncRNA-disease and 
gene-disease adjacency matrix by using known lncRNA-disease associations and known gene-disease associa-
tions. For an isolated node, we need to calculate the interaction profile (Eq. 12) and then integrate this vector into 
adjacency matrix for further resource allocation. Second, we construct lncRNA-disease-gene tripartite graph. 
Third, the process of resource-allocation on tripartite graph builds the potential lncRNA-disease associations. 
Finally, the resource score (Rscore) of each potential disease-related candidate lncRNA is calculated in turn. We 
rank all candidates’ Rscore for each disease in descending order, and a higher score will have greater possibility 
for further verification.

Evaluation of prediction performance. Leave-one-out cross validation (LOOCV) is implemented on 
our gold standard dataset to evaluate the performance of TPGLDA in inferring potential associations between 
lncRNAs and diseases5,18,22. At each step of the LOOCV experiment, each known lncRNA-disease association is 
removed from the training samples in turn as test sample, whereas other known associations are taken as training 
samples for model learning5,14,22. Then, the receiver operating characteristics (ROC) curve is utilized to demon-
strate the predictive performance of our proposed method and other methods mentioned in this paper by plotting 
the true positive rate (Sn, sensitivity) and the false positive rate (1-Sp, 1-specificity) at different cutoff points. Here, 
sensitivity refers to the ratio of positive cases which can be correctly identified, and specificity represents the per-
centage of negative cases which can be correctly predicted. The value of AUC is calculated from the correspond-
ing area under ROC curve, and the perfect performance appears in AUC = 1 while the random performance 
emerges in AUC = 0.514,31,32. Besides, we also adopt other evaluation measures such as accuracy (Acc), precision 
(Pre), and Matthews’s correlation coefficient (MCC)31,33. The definitions can be obtained as follows:
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where TP means true positives, FP refers to false positives, TN is true negatives, and FN represents false negatives.

Compared with other methods. In order to comprehensively assess the predictive ability of TPGLDA to 
predict lncRNA–disease associations, we compare our method with two state-of-the-art methods: LRLSLDA5 
and KRWRH18, and the corresponding ROC curves of different methods are shown in Fig. 2. Note that Yang’s 
method22 is not assessed here as it requires the node degree of each candidate ≥2. As a result, both LRLSLDA 
and KRWRH achieve reliable performance with AUC values of 82.2% and 83.8%, respectively, and TPGLDA has 
improved with an AUC value of 93.9%. Besides, other common performance evaluation measures, including Sn, 
Sp, Pre, Acc, and MCC, are also used to measure the predictive performance of these methods, and the results are 
shown in Table 1. Here, we adopt two stringency levels to measure the predictive performance31,34. At medium 
stringency level of specificity (Sp = 95.0%), KRWRH achieves the values of Sn, Pre, Acc, and MCC are 42.6%, 
18.7%, 93.6% and 25.4%, respectively, which performs slightly better than LRLSLDA. By contrast, the corre-
sponding values of TPGLDA are 76.8%, 29.4%, 94.5%, 45.4%, respectively. When the stringency level of speci-
ficity enlarges to 99.0%, the performance of our proposed method and the other two methods are consistently 
improved across all measures. Overall, these assessments generally confirm the good performance of TPGLDA in 
recovering experimentally verified lncRNA-disease associations.

Figure 1. The flowchart of TPGLDA. (a) Construct lncRNA-disease and gene-disease adjacency matrix. 
Calculate interaction profile for isolated nodes and integrate into adjacency matrix for further resource 
allocation. (b) Construct lncRNA-disease-gene tripartite graph. (c) Resource allocation on tripartite graph and 
build the potential lncRNA-disease associations. (d)Calculate the resource score (Rscore) of candidate lncRNAs 
and rank all candidates’ Rscore for each disease in descending order.
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Furthermore, considering the importance of top portion of the prediction results32, the corresponding AUC 
values within the top k candidates of ranking lists are measured and the detailed results are shown in Fig. 3. In the 
top 20 ranking lists, the corresponding AUC values achieved by LRLSLDA and KRWRH are 63.3% and 58.9%, 
respectively, whereas TPGLDA achieves an AUC value of 84.4%. For the results in the top 100, LRLSLDA achieves 
good performance with an AUC of 85.6%. By contrast, TPGLDA obtains a better AUC value of 92.2%. Besides, 
we also report the corresponding recall rate (Fig. 4), which measures the number of known lncRNA-disease 
association pairs that can be correctly identified within the top k candidates of ranking lists31,32. In the top 20 
candidates, our method can successfully rank about 76% of known lncRNA-disease association pairs. When the 

Figure 2. Performance comparison between TPGLDA, LRLSLDA and KRWRH in terms of AUC and ROC 
curve based on LOOCV. As a result, TPGLDA achieves the highest AUCs of 0.939. The base line indicates 
random performance.

TPGLDA KRWRH LRLSLDA

Sp=99.0%

Sn 53.5% 11.7% 10.7%

Acc 97.8% 96.7% 96.7%

Pre 59.2% 24.1% 22.6%

MCC 55.2% 15.2% 14.0%

Sp=95.0%

Sn 76.9% 42.6% 35.2%

Acc 94.5% 93.6% 93.4%

Pre 29.4% 18.7% 16.0%

MCC 45.4% 25.4% 20.7%

Table 1. Comparison with other computational approaches at two stringency levels (Sp = 99.0% and Sp = 
95.0%).

Figure 3. The average AUCs across all the diseases at different top k cutoffs.
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rank threshold reaches to 100, the recall values of LRLSLDA and KRWRH are improved to 72.6% and 78.7%, 
respectively, and the corresponding value obtained by TPGLDA is 93.6%. Taken together, TPGLDA achieves 
decent recall in above different top k ranking lists, suggesting that our method can infer the largest number of 
positive samples based on different cutoffs.

Similar to previous studies31,32, we apply the LOOCV experiment on 15 diseases for demonstrating the prac-
tical predictive ability of different methods, and the corresponding AUC values are shown in Table 2. As a result, 
TPGLDA compares favorably with KRWRH and LRLSLDA in terms of AUC values. For example, for bladder 
cancer, KRWRH and LRLSLDA achieve the corresponding AUC value of 77.4% and 76.5%, respectively, and in 
comparison TPGLDA obtains an AUC value of 88.3%. Also, the AUC value of TPGLDA for breast cancer reaches 
85.2%, which is more than 15% better than the other methods investigated in this paper. Furthermore, the aver-
age AUC values of TPGLDA, KRWRH and LRLSLDA for all 15 diseases are calculated, and the results are 87.4%, 
76.7% and 74.1%, respectively. Besides, we further report the Friedman rank sum test on our dataset to show the 
statistical significance in performance improvement of TPGLDA (Supplementary Table S6). These examinations 
demonstrate that TPGLDA has practical ability to predict various potential lncRNA-disease associations.

In addition to our gold dataset used in performance evaluation, Chen et al. (2013)35 dataset used in ncPred26 is 
applied to make comparison with ncPred (Supplementary Table S7). By applying a 10-fold cross-validation proce-
dure repeated 30 times, we calculate the corresponding averaged AUC value and the result obtained by TPGLDA 
is 0.7586 ± 0.0306, which is comparable with the result (0.7566 ± 0.0218) reported by ncPred26. At the same time, 
the Friedman rank sum test’s result is also reported in Supplementary Table S8. The above two results indicate 
that there is no statistically significant difference between ncPred and TPGLDA predictions in Chen et al. dataset.

At the same time, the time complexity of resource allocation in lncRNA-disease association and gene-disease 
are O(n2m) and O(nrm), respectively. Considering the fact that the number of disease-related genes is an order of 

Figure 4. The average recall across all the diseases at different top k cutoffs.

Disease name No. of Associated lncRNAs

AUC

TPGLDA KRWRH LRLSLDA

Gastric Cancer 24 0.893 0.832 0.756

Colorectal Cancer 21 0.884 0.782 0.687

Breast Cancer 20 0.852 0.675 0.655

Hepatocellular Carcinoma 20 0.911 0.891 0.751

Non-Small Cell

Lung Cancer 15 0.799 0.759 0.765

Prostate Cancer 13 0.886 0.807 0.758

Esophageal Squamous

Cell Carcinoma 13 0.822 0.835 0.739

Ovarian Cancer 12 0.892 0.731 0.768

Bladder Cancer 11 0.883 0.774 0.765

Lung Cancer 9 0.828 0.737 0.750

Melanoma 9 0.939 0.627 0.815

Glioma 9 0.820 0.710 0.808

Tumor 8 0.950 0.786 0.625

Schizophrenia 8 0.860 0.854 0.630

Papillary Thyroid Carcinoma 7 0.892 0.700 0.835

Table 2. Prediction results for TPGLDA, KRWRH and LRLSLDA utilizing leave-one-out cross validation 
experiment on 15 diseases.



www.nature.com/scientificreports/

6SCientifiC REPORTS |  (2018) 8:1065  | DOI:10.1038/s41598-018-19357-3

larger than the number of lncRNAs and diseases, the overall time complexity of resource allocation in tripartite 
graph is O(nrm), which is more efficient to that of ncPred (O(r2m))26. However, the parallelization and optimiza-
tion techniques can greatly reduce the differences in computational speed. Also, we compare the running time of 
different methods and the results show the running time of TPGLDA is 0.6 second in average, which is compara-
ble with other methods (Supplementary Table S9).

Case studies. In addition to LOOCV experiment, we also employ TPGLDA to rank all candidate lncRNAs 
investigated in this paper, and these predictions are used for further analysis in this study. In consistence with 
previous studies5,14,22, all experimentally validated lncRNA-disease associations are utilized as training sample. 
Subsequently, the resource score for each potential lncRNA-disease association is calculated in turn, and the pre-
dicted results are listed in Supplementary Table S3 in descending order. Higher Rscore indicates greater potential 
association between lncRNA and disease. In order to further verify the ability of TPGLDA in discovering poten-
tial lncRNA–disease associations, the case studies of three diseases: hepatocellular carcinoma, lung cancer and 
ovarian cancer are reviewed in detail. Here, the top 5 predicted disease-related lncRNAs computed by TPGLDA 
and their evidences are listed in Table 3. Predictive results are supported by relevant literatures and databases, and 
the detailed cases can be interpreted by the examples as follow.

Lung cancer is one of the most common cancers worldwide which has extremely high mortality rate36. In the 
United States, lung cancer ranks second only to the highest cancer deaths according to the Estimated New Cancer 
Cases of the ten leading cancer types37. Among the top 5 lung cancer-related candidates ranked by TPGLDA, all 
5 potential lncRNAs are verified to be associated with lung cancer by related literatures and databases. For exam-
ple, the lncRNA-CDKN2B-AS1 promotes NSCLC cell proliferation and inhibits apoptosis by suppressing KLF2 
and P21 expression38. Furthermore, recent research demonstrates that upregulated lncRNA-UCA1 contributes 
to progression of lung carcinoma, and lncRNA-UCA1 holds great promise as a potential predictive biomarker in 
clinical diagnosis for lung cancer39.

Hepatocellular carcinoma is predominant component of the primary liver cancer, which is the fifth most com-
mon cancer around the world as well as the third most common cause of cancer mortality40. The top three hepato-
cellular carcinoma-related candidates, lncRNA-GAS5, lncRNA-SOX2-OT and lncRNA-PVT1, are all confirmed 
by recent experimental reports. LncRNA-GAS5, acting as a proto-oncogene, is revealed to be critical to hepato-
cellular carcinoma and the deletion allele is significantly correlated with higher expression of lncRNA-GAS5 in 
hepatocellular carcinoma tissues41. Besides, the up-regulation of lncRNA-SOX2-OT is reported to facilitate hepa-
tocellular carcinoma cell metastasis and high expression of lncRNA-SOX2-OT is demonstrated to be associated 
with histological grade, TNM stage and vein invasion42. Furthermore, Ding et al.43 point out that lncRNA-PVT1 
is associated with tumor progression and can serve as a novel biomarker for predicting tumor recurrence in hepa-
tocellular carcinoma-related patients.

Ovarian cancer is a major case of cancer deaths in women, especially for ovarian epithelial carcinoma44,45. 
Currently, this cancer is generally detected in the late diagnosis, and the etiology of ovarian cancer is poorly 
understood for us45. Among the top 5 predictions of ovarian cancer, most lncRNAs can be confirmed by related 
literatures. For example, a recent experimental result shows that lncRNA-MEG3 may play a significant role as a 
tumor suppressor in ovarian cancer cells46. Furthermore, LncRNA-GAS5 is verified to be related to ovarian cancer 
cell apoptosis by means of the mitochondria-mediated apoptosis pathway, which can be used as a new therapeutic 
target and has an important role in disease progression47.

LncRNA TPGLDA’s rank Evidences (PMID) Description

Lung Cancer

GAS5 1 25925741,24357161 Lnc2Cancer,LncRNA2Target

CDKN2B-AS1 2 21489289,26408699 MNDR,Lnc2Cancer

UCA1 3 26380024 Lnc2Cancer

PVT1 4 26493997;26493997 Lnc2Cancer,literature

HNF1A-AS1 5 25863539 literature

Hepatocelluar Carcinoma

GAS5 1 26404135, 26163879 Lnc2Cancer, literature

SOX2-OT 2 26097588 Lnc2Cancer

PVT1 3 25624916 Lnc2Cancer

LINC00152 4 27351280, 26356260 Lnc2Cancer, literature

UCA1 5 27215316, 27167190 Lnc2Cancer, literature

Ovarian Cancer

MEG3 1 24859196 Lnc2Cancer,LncRNA2Target

GAS5 2 26503132 Lnc2Cancer

CCAT2 3 27283598 Lnc2Cancer

BANCR 4 unconfirmed unconfirmed

CDKN2B-AS1 5 27095571 Lnc2Cancer

Table 3. The top 5 predictions computed by TPGLDA for Lung Cancer, Hepatocellular Carcinoma and Ovarian 
Cancer and the confirmation for their associations by related databases.
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In addition to the above mentioned diseases, TPGLDA also achieves decent prediction results for other dis-
eases. For examples, lncRNA-TUG1 is ranked first in our prediction list of colorectal cancer-related lncRNAs, and 
recent study indicates that the upregulation of lncRNA-TUG1 is closely related to the survival time of colorectal 
cancer patients48. Besides, we find that lncRNA-GHET1 is ranked second in our prediction list, which is shown 
to be significantly upregulated in colorectal cancer tissues and can serve as a therapeutic target for colorectal 
cancer expression patterns49. As for the prediction list of bladder cancer, lncRNA-PVT1 and lncRNA-ANRIL 
are ranked first and seventh, respectively, which have been shown to be up-regulated in bladder cancer50,51. In 
addition, LncRNA-CCAT1, ranking fourth in our breast cancer-related prediction list, is found to be up-regulated 
in breast cancer52, and lncRNA-TUG1, ranking first in our predicted list of gastric cancer, can promote the trans-
ferring and invading capacity of gastric cancer53. The top 10 predictions of these disease-related lncRNAs are 
listed in Supplementary Table S4. Furthermore, we further use TPGLDA to simultaneously rank all candidate 
lncRNA-disease associations5, and the top 20 potential associations are also shown in Supplementary Table S5. 
12 of the top 20 predictions are confirmed by different related databases or literatures. From aforementioned case 
studies, we find that many predictions are confirmed by recent experimental results. For example, recent study 
demonstrates that lncRNA-PVT1 (rank 16th) is overexpressed in osteosarcoma and can decrease the survival 
rate of osteosarcoma patients54. Therefore, with the progress of the biological experiments, it is anticipated that 
more unconfirmed associations in our predictive results will be verified, and those potential lncRNA-disease pairs 
which have higher ranks will be given reasonable priority for subsequent experimental research. In conclusion, 
these case studies further suggest that TPGLDA is useful for inferring potential associations between lncRNAs 
and disease in practice.

Discussions
Accumulating evidences have highlighted the important role of developing a powerful computational method 
to infer potential associations between lncRNAs and diseases, which can significantly help people to explore 
complex diseases at the molecular level and improve the quality of various disease diagnosis, therapy, prognosis 
and prevention. In this paper, we propose a novel computational method, TPGLDA, to identify the underlying 
lncRNA-disease associations by integrating experimentally verified gene-disease associations and lncRNA-disease 
associations. Compared with previous methods, we develop an lncRNA-disease-gene tripartite graph to better 
delineate the heterogeneity of coding-non-coding genes-disease associations. For the sake of better performance, 
we subsequently develop an effective resource allocation algorithm on the constructed lncRNA–disease-gene 
tripartite graph to rank candidates. In addition, TPGLDA can be applied to the isolated nodes by integrating 
lncRNA similarities and disease similarities. Our method firstly demonstrates its good performance by LOOCV 
experiment. Furthermore, the measures of AUC values and recall values within the top k ranking lists show that 
TPGLDA has powerful predictive ability to infer the largest number of positive samples. Finally, the analyses of 
case studies further demonstrate that TGPLDA is useful for identifying potential lncRNA-disease associations in 
practice.

The good results achieved by TPGLDA can be largely ascribed to following factors: firstly, motivated by coop-
eration between non-coding genes and coding genes in human diseases14,18,22,55, we effectively construct the asso-
ciations among lncRNAs, diseases and genes, and develop an lncRNA-disease-gene tripartite graph to better 
delineate the heterogeneity of coding-non-coding genes-disease associations. The tripartite graph integrates a 
large number of disease-related genes as collaborative prediction of underlying association between lncRNAs 
and diseases, which enrich diseases information during the process of resource allocation56. Subsequently, the 
contributions of resource moved in both directions are taken into consideration by a consistence-based resource 
allocation algorithm57, which effectively reduces the unaware biases in resource allocation process57,58 and fur-
ther improves TPGLDA’s predictive performance. Finally, by adopting different biological information including 
disease-related genes, lncRNA expression profile and disease semantic information in our method, potential can-
didates can acquire more information from other diseases and lncRNAs. In summary, TPGLDA shows a decent 
performance and complements the detection results of the existing approaches in inferring potential associations 
between lncRNAs and diseases. Nevertheless, the assessment measures are not sufficient to indicate a criticism of 
other computational approaches. Instead, different methods show the difference between whether considering the 
information of disease-related genes in the heterogeneous associations or not. As a novel computational method, 
it is anticipated that TPGLDA has potential value in biomedical research for comprehending the pathogenesis of 
diseases, which can further advance the quality of disease diagnostics, therapy, prognosis and prevention.

Despite the promising results achieved by TPGLDA, some limitations still should be acknowledged for further 
investigation. Firstly, TPGLDA depends on the tripartite graph topology and in consequence the incompleteness 
of the data may limit its performance. Therefore, it may be useful to further expand the method by integrating 
gene-lncRNA associations or additional biological information that have been successfully adopted in existing 
methods such as ncPred26, which can make our proposed method more accurate and reliable. Secondly, our 
method focuses on unweighted tripartite graph, it will be improved by a refined algorithm with accurately defined 
weights on lncRNA-disease as well as gene-disease56. Finally, the experimentally available lncRNA-disease asso-
ciations are still comparatively small in number. With the continuous development of biotechnology, the perfor-
mance of TPGLDA is expected to further increases when more experiment verified associations are available.

Materials and Methods
Human lncRNA–disease associations and gene-disease associations. The recent version of lncR-
NA-disease associations are downloaded from the LncRNADisease35 database which integrates 687 experimen-
tally validated lncRNA–disease associations between 246 diseases and 369 lncRNAs. We further filter out diseases 
without Disease Ontology (http://disease-ontology.org/) information and lncRNAs without expression profiles 
in ArrayExpress59 (http://www.ebi.ac.uk/arrayexpress/), and eventually obtain 540 experimentally verified 

http://disease-ontology.org/
http://www.ebi.ac.uk/arrayexpress/
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lncRNA-disease associations. This dataset is utilized as the gold standard dataset in the leave-one-out cross valida-
tion experiment and as the training dataset for inference of lncRNA–disease association5. Using the information 
of lncRNA-related diseases, we further collect 5212 gene–disease associations from DisGeNET database24 (http://
www.disgenet.org/web/DisGeNET/) and construct a lncRNA-disease-gene tripartite graph, which includes 115 
lncRNAs, 178 diseases and 1415 genes.

LncRNA expression similarity. We obtain LncRNA expression profiles from ArrayExpress59 which con-
tains more than 60000 expression profiles across 16 human tissues generated through RNA-Seq technology. 
Following previous approaches5,60, we calculate the lncRNA expression similarity (Supplementary Table S1) as the 
absolute Spearman correlation coefficient between the expression profiles of each lncRNA pair, and use matrix 
SIMlnc to denote the lncRNA expression similarity matrix between lncRNA li and lncRNA lj.

Disease semantic similarity. Recently, disease semantic similarity has been used in predicting potential 
ncRNA-disease associations and its effectiveness has been demonstrated in previous studies14,32,61. In this paper, 
the disease semantic similarity is calculated in the same way as described in previous study62, in which a disease 
is represented as a directed acyclic graph (DAG) including all related annotation terms which can be obtained 
from the U.S. National Library of Medicine (MeSH, http://www.nlm.nih.gov/mesh). Based on their DAGs, the 
similarities between diseases are measured and the detailed calculations are illustrated in the DOSE package63. We 
eventually calculate the semantic similarities (Supplementary Table S2) among all diseases and the corresponding 
similarity matrix is denoted as SIMdis.

TPGLDA. Inspired by previous study using tripartite graph of users, items and tags for recommendation56, in 
this paper we first construct an lncRNA-disease-gene tripartite graph T (L, D, G, E), where L = { …l l l l, , n1 2 3 }, 
D = { …d d d d, , }m1 2 3  and G = { …g g g g, , r1 2 3 } are the nodes set of n long non-coding RNAs, the nodes set of m 
diseases and the node set of r genes, respectively. E denotes the interactions (edges) set between nodes in L with 
D and D with G. The tripartite graph can also be represented by two adjacency matrices =

×
{ }A aLD

ij
LD

n m
and 

=
×

{ }A aGD
ij
GD

m r
, where =a 1ij

LD  if lncRNA li is associated with disease dj and otherwise aij
LD = 0 indicating that 

the pair of lncRNA li and disease dj is unknown association. Analogously, we set aij
GD = 1 if disease dj is associated 

with gene gi, otherwise 0.
We model the prediction process of lncRNA–disease associations as resource allocation56 on the 

lncRNA-disease-gene tripartite graph. In order to help readers better understand the procedure of our model, a 
simple example of resource allocation in the tripartite graph is shown in Fig. 5. For a specific lncRNA li, the initial 
resources, located on disease dj, is defined as:

= = ...f l a j m( ) , 1, 2, , (6)i ij
LD

The initial resource vector is then denoted as f l( )1  = (1, 1, 0, 0, 1) if we choose lncRNA l1 as a target lncRNA 
(Fig. 5a). The resource allocation process in TGPLDA includes two steps. In the first step of the allocation, the 
initial resource is simultaneously allocated from nodes in D to those in L and G, respectively. In the second step, 

Figure 5. Operating principle of resource allocation in an lncRNA-disease-gene tripartite graph consisted of 
three lncRNAs, five diseases, and four genes. The blue circles, green squares and purple triangles represent 
lncRNAs in L, disease in D and genes in G, respectively. (a) For target lncRNA l1, the initial resources f l( )1 (1, 1, 0, 
0, 1) locate on di. (b) In the first step, each disease averagely distributes its resource to both sides of neighboring 
nodes based on the degree of each disease. (c) In the second step, the resources flow back to D from L and G, and 
final resource vector locate on D are ′f (11/18, 1, 1/9, 7/18, 8/9)


 and ′′f (25/36, 11/12, 5/18, 11/18, 1/2)


.

http://www.disgenet.org/web/DisGeNET/
http://www.disgenet.org/web/DisGeNET/
http://www.nlm.nih.gov/mesh
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the resource is transferred back from nodes in L and G to the D nodes. We use the corresponding weight matrix 
W  = ×w{ }ij n n to represent the process of resource allocation between lncRNAs and diseases, as below:

∑=
=

w
k l

a a
k d

1
( ) ( ) (7)

ij
l i j

m
ij
LD

js
LD

d j1

where wij is the contribution of resource moved from j-th node to i-th node in L, and can be described as the 
similarity58 between lncRNA li and lncRNA lj. = ∑ =k l a( )l i j

m
ij
LD

1  is the number of related diseases for lncRNA li 
which is called the degree of li. Similarly, = ∑ =( )k d ad j s

n
js
LD

1 represents the degree of dj node in D. We further 
modify the resource allocation algorithm by considering the level of consistency between the contribution of 
resource moved in both directions57, which reflects the impact of co-selection (l l,i j) between the contribution of 
resource from li to lj and the contribution of resource from lj to li, as more consistency of two objects suggests 
higher similarity58. Accordingly, we define a consistence-based resource allocation to represent lncRNA-disease 
association as follows:

= +
∑ ′

′

=′

w w
w

w (8)
ij ij

ji

j
m j i1

where ′wij denotes the sum of contribution from resource allocation between i-th node and j-th node in L. The 
corresponding weight matrix is then rewritten as ′W  = ′

×w{ }ij n n. Combining adjacent matrix ALD and weight 
matrix ′W , the final resource 


′f located on D nodes is defined as:

′ = ′ ×f W A (9)LD

With respect to resource allocation between genes and diseases, the same initial resource located on D nodes56 
are allocated from nodes in D to nodes in G and then transferred back, and the final resource vector ′′f  located on 
D nodes can be calculated as:

 ∑ ∑″ =
′= =

f
a

k g
a

k d( ) ( ) (10)s

r
js
GD

g i j

m
ij
LD

d j1 1

where k g( )g i  = ∑ = aj
m

ij
GD

1  represents the degree of gene gi in G and ′k d( )d j  = ∑ = as
r

js
GD

1  is the number of related genes 
for disease dj. By weighting both ′f  and ′′f , the final resource score Rscore used to measure potential 
lncRNA-related diseases are defined as follows:

γ γ= ′ + − ′′R f f(1 ) (11)score
 

where parameter γ∈[0, 1] is tunable and used to balance the contribution between lncRNAs and genes. In this 
paper, TPGLDA achieves the best prediction performance when γ = 0.6. In fact, our method is robust and insen-
sitive to the selection of γ(see Supplementary Fig. S1).

The inference of the isolated node is implemented by following procedure proposed in previous study27, which 
can be summarized as follows. First, we calculate the similarity SIM s s( , )new i  between an isolated node (e.g. a new 
lncRNA) and its neighbors, which is calculated by lncRNA expression similarity for an isolated lncRNA or disease 
semantic similarity for an isolated disease. Second, we calculate the interaction profile Snew by the following form:

∑= ⋅
=

S SIM S S a( ( , ))
(12)new

i

n

new i i
1

new

where ai is an interaction profile vector and Snew is used to reflect potential relationships between the isolated 
node and diseases by considering its neighbors interactions with diseases27, which is then integrated into tripar-
tite graph for further resource allocation.

References
 1. Esteller, M. Non-coding RNAs in human disease. Nature Reviews Genetics 12, 861–874 (2011).
 2. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Molecular cell 43, 904–914 (2011).
 3. Wapinski, O. & Chang, H. Y. Long noncoding RNAs and human disease. Trends in cell biology 21, 354–361 (2011).
 4. Harries, L. W. Long non-coding RNAs and human disease. Biochemical Society Transactions 40, 902–906 (2012).
 5. Chen, X. & Yan, G.-Y. Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics, 

btt426 (2013).
 6. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Reviews Genetics 10, 155–159 

(2009).
 7. Johnson, R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiology of disease 46, 245–254 (2012).
 8. Ishii, N. et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. Journal of human genetics 

51, 1087–1099 (2006).
 9. Congrains, A. et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. 

Atherosclerosis 220, 449–455 (2012).
 10. Li, J., Xuan, Z. & Liu, C. Long non-coding RNAs and complex human diseases. International journal of molecular sciences 14, 

18790–18808 (2013).



www.nature.com/scientificreports/

1 0SCientifiC REPORTS |  (2018) 8:1065  | DOI:10.1038/s41598-018-19357-3

 11. Amaral, P. P., Clark, M. B., Gascoigne, D. K., Dinger, M. E. & Mattick, J. S. lncRNAdb: a reference database for long noncoding RNAs. 
Nucleic acids research 39, D146–D151 (2011).

 12. Bu, D. et al. NONCODE. v3. 0: integrative annotation of long noncoding RNAs. Nucleic acids research, gkr1175 (2011).
 13. Dinger, M. E. et al. NRED: a database of long noncoding RNA expression. Nucleic acids research 37, D122–D126 (2009).
 14. Chen, X. KATZLDA: KATZ measure for the lncRNA-disease association prediction. Scientific reports 5, 16840 (2015).
 15. Ideker, T. & Sharan, R. Protein networks in disease. Genome research 18, 644–652 (2008).
 16. Lu, M. et al. An analysis of human microRNA and disease associations. PloS one 3, e3420 (2008).
 17. Sun, J. et al. Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network. 

Molecular BioSystems 10, 2074–2081 (2014).
 18. Ganegoda, G. U., Li, M., Wang, W. & Feng, Q. Heterogeneous network model to infer human disease-long intergenic non-coding 

RNA associations. IEEE transactions on nanobioscience 14, 175–183 (2015).
 19. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Reviews Cancer 6, 857–866 (2006).
 20. Liu, M.-X., Chen, X., Chen, G., Cui, Q.-H. & Yan, G.-Y. A computational framework to infer human disease-associated long 

noncoding RNAs. PloS one 9, e84408 (2014).
 21. Wang, P. et al. Identification of biomarkers for the detection of early stage lung adenocarcinoma by microarray profiling of long 

noncoding RNAs. Lung Cancer 88, 147–153 (2015).
 22. Yang, X. et al. A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in 

diseases. PloS one 9, e87797 (2014).
 23. Sahu, D. et al. Co-expression analysis identifies long noncoding RNA SNHG1 as a novel predictor for event-free survival in 

neuroblastoma. Oncotarget 7, 58022–58037 (2016).
 24. Piñero, J. et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, 

bav028 (2015).
 25. Gutiérrez-Sacristán, A. et al. PsyGeNET: a knowledge platform on psychiatric disorders and their genes. Bioinformatics, btv301 

(2015).
 26. Alaimo, S., Giugno, R. & Pulvirenti, A. ncPred: ncRNA-disease association prediction through tripartite network-based inference. 

Frontiers in bioengineering and biotechnology 2 (2014).
 27. Mei, J.-P., Kwoh, C.-K., Yang, P., Li, X.-L. & Zheng, J. Drug–target interaction prediction by learning from local information and 

neighbors. Bioinformatics 29, 238–245 (2013).
 28. Ning, S. et al. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human 

cancers. Nucleic acids research 44, D980–D985 (2016).
 29. Jiang, Q. et al. LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic 

acids research 43, D193–D196 (2015).
 30. Wang, Y. et al. Mammalian ncRNA-disease repository: a global view of ncRNA-mediated disease network. Cell Death and Disease 4, 

e765 (2013).
 31. Sun, D., Li, A., Feng, H. & Wang, M. NTSMDA: prediction of miRNA–disease associations by integrating network topological 

similarity. Molecular BioSystems 12, 2224–2232 (2016).
 32. Xuan, P. et al. Prediction of potential disease-associated microRNAs based on random walk. Bioinformatics, btv039 (2015).
 33. Liu, Z.-P., Wu, L.-Y., Wang, Y., Zhang, X.-S. & Chen, L. Prediction of protein–RNA binding sites by a random forest method with 

combined features. Bioinformatics 26, 1616–1622 (2010).
 34. Li, A., Ge, M., Zhang, Y., Peng, C. & Wang, M. Predicting long noncoding RNA and protein interactions using heterogeneous 

network model. BioMed research international 2015 (2015).
 35. Chen, G. et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic acids research 41, D983–D986 

(2013).
 36. Greenlee, R. T., Murray, T., Bolden, S. & Wingo, P. A. Cancer statistics, 2000. CA: a cancer journal for clinicians 50, 7–33 (2000).
 37. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA: a cancer journal for clinicians 65, 5–29 (2015).
 38. Nie, F.-q et al. Long noncoding RNA ANRIL promotes non–small cell lung cancer cell proliferation and inhibits apoptosis by 

silencing KLF2 and P21 expression. Molecular cancer therapeutics 14, 268–277 (2015).
 39. Wang, H.-M., Lu, J.-H., Chen, W.-Y. & Gu, A.-Q. Upregulated lncRNA-UCA1 contributes to progression of lung cancer and is 

closely related to clinical diagnosis as a predictive biomarker in plasma. International journal of clinical and experimental medicine 
8, 11824 (2015).

 40. El–Serag, H. B. & Rudolph, K. L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 
2557–2576 (2007).

 41. Tao, R. et al. Association between indel polymorphism in the promoter region of lncRNA GAS5 and the risk of hepatocellular 
carcinoma. Carcinogenesis 36, 1136–1143 (2015).

 42. Shi, X.-M. & Teng, F. Up-regulation of long non-coding RNA Sox2ot promotes hepatocellular carcinoma cell metastasis and 
correlates with poor prognosis. International journal of clinical and experimental pathology 8, 4008 (2015).

 43. Ding, C. et al. Long non-coding RNA PVT1 is associated with tumor progression and predicts recurrence in hepatocellular 
carcinoma patients. Oncology letters 9, 955–963 (2015).

 44. Holschneider, C. H. & Berek, J. S. inSeminars in surgical oncology. 3-10 (Wiley Online Library).
 45. Miller, N. L. et al. An Rgnef (p190RhoGEF/Arhgef28) signaling axis regulates ovarian cancer progression. Cancer Research 74, 

3157–3157 (2014).
 46. Sheng, X. et al. Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in 

the development of epithelial ovarian cancer. Oncology reports 32, 277–285 (2014).
 47. Gao, J. et al. Long non-coding RNA growth arrest-specific transcript 5 is involved in ovarian cancer cell apoptosis through the 

mitochondria-mediated apoptosis pathway. Oncology reports 34, 3212–3221 (2015).
 48. Sun, J. et al. The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting 

epithelial-mesenchymal transition. Journal of translational medicine 14, 42 (2016).
 49. Zhou, J. et al. Knockdown of long noncoding rna ghet1 inhibits cell proliferation and invasion of colorectal cancer. Oncology 

Research Featuring Preclinical and Clinical Cancer Therapeutics 23, 303–309 (2016).
 50. Zhu, H. et al. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and 

apoptosis through the intrinsic pathway. Biochemical and biophysical research communications 467, 223–228 (2015).
 51. Zhuang, C. et al. Tetracycline-inducible shRNA targeting long non-coding RNA PVT1 inhibits cell growth and induces apoptosis in 

bladder cancer cells. Oncotarget 6, 41194 (2015).
 52. Zhang, X.-F., Liu, T., Li, Y. & Li, S. Overexpression of long non-coding RNA CCAT1 is a novel biomarker of poor prognosis in 

patients with breast cancer. International journal of clinical and experimental pathology 8, 9440 (2015).
 53. Ji, T.-T., Huang, X., Jin, J., Pan, S.-H. & Zhuge, X.-J. Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and 

invasion through regulating and controlling the expression of miR-144/c-Met axis. Asian Pacific journal of tropical medicine 9, 
508–512 (2016).

 54. Zhou, Q. et al. Long non-coding RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to regulate miR-
195. Oncotarget 7, 82620–82633 (2016).



www.nature.com/scientificreports/

1 1SCientifiC REPORTS |  (2018) 8:1065  | DOI:10.1038/s41598-018-19357-3

 55. Zhou, M. et al. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease 
network. Molecular BioSystems 11, 760–769 (2015).

 56. Zhang, Z.-K., Zhou, T. & Zhang, Y.-C. Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs. 
Physica A: Statistical Mechanics and its Applications 389, 179–186 (2010).

 57. Zhu, X., Tian, H., Zhang, P., Hu, Z. & Zhou, T. Personalized recommendation based on unbiased consistence. EPL (Europhysics 
Letters) 111, 48007 (2015).

 58. Zhu, X., Tian, H. & Cai, S. Personalized recommendation with corrected similarity. Journal of Statistical Mechanics: Theory and 
Experiment 2014, P07004 (2014).

 59. Parkinson, H. et al. ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic acids research 
35, D747–D750 (2007).

 60. Huang, Y.-A., Chen, X., You, Z.-H., Huang, D.-S. & Chan, K. ILNCSIM: improved lncRNA functional similarity calculation model. 
Oncotarget 7, 25902–25914 (2016).

 61. Chen, X. et al. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic 
similarity. Scientific reports 5, 11338 (2015).

 62. Wang, D., Wang, J., Lu, M., Song, F. & Cui, Q. Inferring the human microRNA functional similarity and functional network based 
on microRNA-associated diseases. Bioinformatics 26, 1644–1650 (2010).

 63. Yu, G. & Wang, L.-G. Disease ontology semantic and enrichment analysis. (2012).

Acknowledgements
This work is supported by National Natural Science Foundation of China (61471331 and 61571414); University 
of Science and Technology of China, USTC. We appreciate the valuable suggestions from any reviewers. We also 
thank Binghua Wang and Bo Ma for many helpful discussions and suggestions.

Author Contributions
L.D. and M.W. wrote the main manuscript text and prepared all Tables and Figures. L.A. and D.S. provided 
valuable suggestions and guidance. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-19357-3.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-19357-3
http://creativecommons.org/licenses/by/4.0/

	TPGLDA: Novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph
	Results
	Overview of proposed method. 
	Evaluation of prediction performance. 
	Compared with other methods. 
	Case studies. 

	Discussions
	Materials and Methods
	Human lncRNA–disease associations and gene-disease associations. 
	LncRNA expression similarity. 
	Disease semantic similarity. 
	TPGLDA. 

	Acknowledgements
	Figure 1 The flowchart of TPGLDA.
	Figure 2 Performance comparison between TPGLDA, LRLSLDA and KRWRH in terms of AUC and ROC curve based on LOOCV.
	Figure 3 The average AUCs across all the diseases at different top k cutoffs.
	Figure 4 The average recall across all the diseases at different top k cutoffs.
	Figure 5 Operating principle of resource allocation in an lncRNA-disease-gene tripartite graph consisted of three lncRNAs, five diseases, and four genes.
	Table 1 Comparison with other computational approaches at two stringency levels (Sp = 99.
	Table 2 Prediction results for TPGLDA, KRWRH and LRLSLDA utilizing leave-one-out cross validation experiment on 15 diseases.
	Table 3 The top 5 predictions computed by TPGLDA for Lung Cancer, Hepatocellular Carcinoma and Ovarian Cancer and the confirmation for their associations by related databases.




