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Visual learning with reduced 
adaptation is eccentricity-specific
Hila Harris & Dov Sagi

Visual learning is known to be specific to the trained target location, showing little transfer to untrained 
locations. Recently, learning was shown to transfer across equal-eccentricity retinal-locations when 
sensory adaptation due to repetitive stimulation was minimized. It was suggested that learning 
transfers to previously untrained locations when the learned representation is location invariant, with 
sensory adaptation introducing location-dependent representations, thus preventing transfer. Spatial 
invariance may also fail when the trained and tested locations are at different distance from the center 
of gaze (different retinal eccentricities), due to differences in the corresponding low-level cortical 
representations (e.g. allocated cortical area decreases with eccentricity). Thus, if learning improves 
performance by better classifying target-dependent early visual representations, generalization is 
predicted to fail when locations of different retinal eccentricities are trained and tested in the absence 
sensory adaptation. Here, using the texture discrimination task, we show specificity of learning across 
different retinal eccentricities (4–8°) using reduced adaptation training. The existence of generalization 
across equal-eccentricity locations but not across different eccentricities demonstrates that learning 
accesses visual representations preceding location independent representations, with specificity of 
learning explained by inhomogeneous sensory representation.

Specificity is a well-known characteristic of visual learning1,2. For instance, enhanced visual sensitivity due to 
repeated training is limited to the trained retinal location3,4. Specificity, a robust psychophysical finding, was 
taken to reflect the site of learning within the visual processing stream, suggesting that plasticity within the pri-
mary visual cortex underlies visual learning4,5. However, additional results suggest also the involvement of multi-
ple cortical areas6–10. An important difference between low and high level visual areas is spatial invariance; while 
in lower visual areas neuronal representations correspond to a limited visual field of view, with an eccentricity 
dependent scale, visual representations higher in the visual processing pipeline show spatial invariance11, better 
matching our subjective experience of space invariant recognition and “object constancy”12.

In recent years, an increasing body of evidence demonstrates conditions under which learning generalizes, 
for example, by applying a double-training paradigm or a brief pre-test under the transfer conditions13–15. Others 
found that learning generalizes during the initial phase of training6, when brief training is applied, when two 
locations are trained together16, or when the task is not too demanding16. In particular, it has been suggested that 
specificity results from sensory adaptation induced during training17–19. We have previously shown18,20,21, using 
the texture discrimination task, that performance decreases when the number of trials within a training session 
increases, and that the perceived orientation of a test line is changed18 (tilt after-effect), as expected from sen-
sory adaptation22. Adaptation to oriented patterns23, a result of continuous exposure to an oriented pattern (e.g. 
gratings), was shown to be reduced when concurrently adapting to two orientations 45° apart24. Accordingly, we 
presented during training stimuli with line elements oriented 45° away from the target, showing reduced adapta-
tion in the texture task and generalization to a new location17,25. The effectiveness of the reduced adaptation train-
ing was in accordance with several underlying adaptation features such as locality and orientation-selectivity17. 
Adaptation-driven specificity may account for previous research done in the field, since some of the conditions 
that resulted in generalization can be viewed as reduced adaptation conditions. Since adaptation is induced by 
repetitive stimuli, any modulation that reduces repetitions (brief training, presentation of different stimuli during 
training) is also likely to reduce adaptation21,26,27.

While previous studies suggest that adaptation interferes with learning27,28, of particular interest here is the 
suggestion made that adaptation interferes with invariant learning by adding network-dependent modifications 
in early visual areas17. According to this account of learning specificity, the specificity results from differences 
between the sensory representations (possibly in the primary visual cortex) of the trained and the transferred 
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stimuli29. A readout mechanism2,30 that learns to perform the discrimination task at a fixed trained location, by 
capturing location-dependent specific features that happen to be useful for task performance at that location31, 
will fail to transfer this learning to a new location. Generalization is obtained when the stimulus evokes similar 
representations at the trained and the transfer locations, as is the case without adaptation when the two locations 
share the same eccentricity. However, for a constant target, the evoked low-level representations are expected 
to differ in the absence of adaptation when the trained and transferred locations differ in eccentricity, since the 
human visual system, including the retina and the visual cortex, is known to be retinotopic with a nonuniform 
spatial sampling32–34. Importantly, the sampling rate decreases with eccentricity, that is, fewer neurons are allo-
cated to process the peripheral relative to the central visual field, and the size of their receptive field increases 
with eccentricity, producing a close to constant cortical population point image35. Thus, specificity of learning is 
predicted even in the absence of sensory adaptation if learning is based on low-level visual information, before 
location invariant object-features are abstracted. Finding transfer of learning across eccentricities may imply that 
the relevant performance limiting neuronal-representation is space invariant (that is, corrected for the low-level 
distortions), possibly corresponding to our actual (action relevant) perception of space36,37.

In the experiments reported here, the effects of adaptation were reduced by interleaving target trials with 
no-target trials oriented 45° away from the target (see above – ‘reduced adaptation’), previously shown to allow 
for transfer of learning across equal-eccentricity locations, using comparable experimental parameters17,19,25,38. 
Furthermore, training sessions were kept short (~30 minutes) in order to further minimize adaptation and 
fatigue18,39. Here we trained observers with the target positioned at one eccentricity (4°), after which they were 
trained with the target at another eccentricity (8°). The choice of eccentricities is motivated by results showing 
a relatively constant behavior between 4° and 8° of eccentricity40,41. The results point to eccentricity-dependent 
specificity of learning.

Methods
Apparatus. Stimuli were presented on a 19″ Mitsubishi Diamond Pro 930SB color monitor, using a PC 
with an Intel processor. The monitor refresh rate was 100 Hz. The luminance of the stimulus (line textures) was 
63–65 cd/m2, drawn on a (close to) black background (see Fig. 1), thus with Michelson contrast = ~1. The exper-
iments were carried out in a dark environment.

Stimuli and task. Observers were trained with the standard texture discrimination task (TDT4) using a 
modified stimulus (Fig. 1). In the original experiment4, a typical texture experiments, there was a 3 × 1 target 
array embedded in a 19 × 19 stimulus array, that is 361 locations out of which 3 were occupied by target elements, 
357 by background elements, and one location at the display center was occupied by a fixation letter (‘T’ or ‘L’, ran-
domly oriented). Here, background elements were added so that instead of a 19 × 19 array17, a 19 × 25 (H × W) 

Figure 1. Texture Discrimination Task. (A) Target stimulus with diagonal lines at 4° eccentricity. (B) Target 
stimulus with diagonal lines at 8° eccentricity. Subjects had to determine (1) the letter at the center of display (T 
or L), and (2) the arrangement of the three diagonal lines (horizontal or vertical). (C) Mask stimulus.
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array was presented. Texture elements were short lines, 0.5° × 0.035°, spaced 0.72° apart, with 0.05° jitter. Targets 
lines were diagonal (45°) while background lines were horizontal. The display size was 14° by 18.5° of visual angle, 
viewed from a distance of 100 cm. Observers had to judge the arrangement of the target triplet (an array of three 
diagonal lines) and report whether it was horizontal or vertical. The peripheral target was embedded in the back-
ground and its position was centered at 4° or 8° of a visual angle (depending on the experiment) relative to the 
center of display (Fig. 1). Mask patterns were 19 × 25 arrays of randomly oriented ‘V’-shaped patterns, with the 
central one (at fixation, replaced by a randomly oriented superposition of the two possible fixation targets (‘T’ and 
‘L’). The target frame was presented for a duration of 10 ms and the mask frame for 100 ms duration.

Each trial was self-initiated by the observer. Fixation was enforced at the center of the display by a 
forced-choice letter discrimination task between a randomly oriented ‘T’ and a randomly oriented ‘L’ presented 
with the target (10 ms). Next, the observer had to report whether the peripheral target array was horizontal or 
vertical. Responses were provided by pressing a computer mouse click. Auditory feedback was provided if there 
was an incorrect response for the fixation (T\L) task. Target and mask stimuli were separated by a time interval 
(stimulus onset asynchrony, SOA) ranging from 20 to 400  ms (15 values: 20–220 in steps of 20 ms, 260, 300, 340, 
400 ms). In each daily session, SOA was randomized across trials, with 18 trials per SOA17. The measured psycho-
metric functions (%correct discrimination as a function of SOA) were fitted with the Weibull function (using a 
maximum likelihood estimation) in order to estimate the discrimination threshold20
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where P(t) is the measured probability of a correct response, t represents the varied experimental parameter (SOA 
in msec), T is the estimated discrimination threshold for each session, β describes the psychometric function’s 
estimated slope, and fe is the estimated “finger error” parameter (0 ≤ fe ≤ 1). Performance on the T/L task was 
analyzed separately. The experimental results were analyzed in two ways: (1) whole session estimation, where 
fitting was done to each observer data using all trials in a session (N = 270 trials), and (2) sessions were divided 
into 3 ordered sub-sessions with each sub-session fitted separately (N = 90 trials).

Observers. Fifteen observers participated in the experiments reported here, with 6 additional observers par-
ticipating in an experiment reported in the Supplementary Information. All had normal or corrected-to-normal 
vision. Observers were naïve to the purpose of the experiments, and gave their written informed consent. The 

Figure 2. Five observers trained with the texture discrimination task over four daily sessions with the target 
positioned at 4° (sessions 1–4), after which they were tested at 8° eccentricity (4–8° eccentricity group). All 
observers show learning at the 4° eccentricity (sessions 1–4), followed by increased thresholds at 8° eccentricity 
(session 5). Their thresholds on session 5 are comparable to that of the novice group having no previous 
experience (8° novice group) denoted by O(±SE); thus learning is eccentricity specific. Thresholds were 
computed by fitting a Weibull function to whole session results (270 trials distributed over 15 SOA values). 
Results are also presented for the fixation T/L task (mean ± SE), showing experience dependence, but no effect 
of target eccentricity.
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Figure 3. Three observers from the 8° eccentricity group (JK, KV, VP) were trained at 8° eccentricity (sessions 
5–8, round symbols), after four sessions of training with the target positioned at 4° (sessions 1–4), showing 
learning at 8° eccentricity. The final performance at 8° is not significantly different from that of the experienced 
group (5–8° training group, N = 4) denoted by the X(±SE). Thresholds were computed by fitting a Weibull 
function to whole session results (270 trials distributed over 15 SOA values).

Figure 4. Detailed results showing thresholds of individual observers from the 4–8 training group, and their 
means (black curves), at 3 time points during each session. The different observers are marked by different 
symbols. Also shown are the mean and individual results of the 8-novice group (green curves; dashed for 
group mean, continuous for individual obs.) and of the 5–8 training group (red curves; dashed for group mean, 
continuous for individual obs.). The 4–8 training group show specificity (N = 5), demonstrated by the increased 
initial thresholds on day 5 relative to day 4 in all observers. Their thresholds were similar to that of the novice 
group on the transfer day (day 5), and to that of the experienced group at the end of testing (day 8). Thresholds 
were computed by fitting a Weibull function to 1/3 session results (90 trials each, 15 SOA values).
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work was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of 
Helsinki), and approved by the local Institutional Review Board of the Weizmann Institute.

Procedures. All observers received pre-training trials with SOA = 360 ms prior to the first training session 
on the first day. During this pre-training phase, the observers achieved a criterion of 10 (but see below, 5–8° 
training group) correct trials in a row (for both fixation and peripheral target tasks, which required a total of ~30 
trials). Observers were informed about the change in the target’s position prior to the location change, but there 
was no pre-training at the new location. In all experiments reported here, adaptation was reduced by interleaving 
no-target trials, presenting stimuli consisting of uniform textures with lines tilted 45° from the target line25. These 
trials were equal in number to the test trials (N = 270), effectively doubling experimentation time, and were ran-
domly intermixed during each experimental session. Observers were required to provide a target-response on all 
trials, including the no-target trials (termed ‘dummy trials’), resulting in chance performance.

4–8° training group. Observers (n = 5) trained the texture discrimination task (see above) for four daily ses-
sions with the target positioned at 4° (upper-left quadrant, azimuth of −45°), after which they were trained at 8° 
(lower-right quadrant, azimuth of 119°) eccentricity. Two observers of this group did not complete the experi-
ment and performed only one session at 8° eccentricity, whereas three observers were trained at this eccentricity 
for 4 sessions.

8° novice group. Observers (n = 6) having no previous experience with the texture discrimination task, trained 
the task for one daily session with the target positioned at 8° eccentricity (lower-right quadrant, azimuth 119°).

5–8° training group. Observers (n = 4) that were trained and tested earlier25 with targets presented at 5° eccen-
tricity (azimuth −45 followed by 135°) using the standard texture discrimination stimulus of a 19 × 19 array, were 
trained here using the extended stimulus (19 × 25 array) with the target at 8° eccentricity (lower-right quadrant, 
azimuth 119°). All these observers were previously trained with a reduced adaptation method (with interleaving 
dummy trials, as described above), two were trained with the gradual SOA method (monotonically reducing 
SOA during the training session) combined with random SOA tests, and two were trained with the random SOA 
method but with reduced pre-training (a criterion of 5 trials instead of 10 as described above, as detailed in Harris 
and Sagi25).

Results
To verify that the reduced-adaptation method used here at 4° eccentricity was indeed effective, learning curves 
were compared with two types of curves obtained in our previous study17, fortified by some unpublished data 
(Supplementary Fig. 1), using (1) the reduced adaptation training method (N = 13; Harris et al.17, +45 method), 
and (2) the standard training method (N = 7; Harris et al.17, standard method). This comparison, shown in the 
Supplementary Information, confirms the effectiveness of the reduced-adaptation method used here.

The 4–8° eccentricity group exhibited significant learning following training (Fig. 2; data also shown in 
Supplementary Fig. 1 as Adapt- 4, showing main effect of training day). At the 4° eccentricity, all observers showed 
learning, thresholds improved from 95 ± 9 (session 1, mean ± SE) to 65 ± 5 ms (sessions 3–4, mean ± SE) during 
the four days of training (pairwise t-test, session 4 vs 1, t(4) = 3.69, p = 0.01). On the 5th day, with the target at 
8° eccentricity, all observers had their threshold at the new location increased, with a group mean of 110 ± 11 ms 
comparable to that of day 1 (mean ± SE, pairwise t-test: session 5 vs 4: t(4) = 4.34, p < 0.01; session 5 vs session 
1: 2-tailed pairwise t-test, t(4) = 1.51, p = 0.2), which indicates specificity of learning. This specificity is further 
supported by the results of the 8° novice group. This group, with no previous experience with the task, was trained 
during one session with the target at 8°, that is, the transfer condition of the 4–8° eccentricity group. The average 
novice-group threshold was 118 ± 20 ms (mean ± SE, compared with 110 ± 11 ms of the trained 4–8° eccentricity 
group; 2-tailed t-test: t(9) = 0.37, p = 0.72), which confirms that the learning of the eccentricity group was specific 
to the trained location, that is, training at 4° has no effect on performance at 8°. Therefore, unlike previous reports 
showing generalization across equi-eccentric locations of learning with reduced adaptation training, here, when 
the target eccentricity is changed, the learning is specific.

Additional support for the specificity of learning is provided by learning at the new location. Three observers 
of the 4–8° eccentricity group continued training with the target at 8° eccentricity (Fig. 3). Thresholds decreased at 
the new location (8°) during sessions 5–8, showing re-learning (102 ± 17 to 76 ± 9 ms, mean ± SE,pairwise t-test: 
t(2) = 3.09, p = 0.045). We have also trained at 8° eccentricity observers previously trained at 5° eccentricity25. The 
5–8° training group had an initial threshold of 102 ± 10 ms at 8° (mean ± SE), comparable to the initial thresholds 
of the other two groups at that eccentricity (8°). This threshold improved during the four training sessions at 8° 
to a level of 67 ± 10 ms (mean ± SE, pairwise t-test: t(3) = 2.75, p < 0.035; Fig. 4), comparable to that of the 4–8° 
eccentricity group (76 ± 5 ms; 2-tailed t-test between means of sessions 7–8: t(5) = 0.43, p = 0.68). Although the 
initial threshold of this group, though in complete agreement with the present results (see also Fig. 4), does not 
clearly indicate the specificity vs generalization issue, due to the diverse training methods experienced by this 
group (multiple locations, varied pre-training), we believe that their final threshold, obtained using the same 
method used with the present experimental groups, expresses the full training potential at this eccentricity.

Figure 4 presents more detailed data. Shown are the individual observers’ thresholds at three time points 
along each session (computed from 90 trials each), and their corresponding means. Learning at 4° is evident by 
the improvement in threshold between the first testing and the last at that eccentricity (mean of 34 ms, range of 14 
to 71 ms, pairwise t-test: t(4) = 3.43, p = 0.013). Specificity is indicated by the increased threshold at 8°, on day 5, 
where, for all observers, the first measurement yielded an increased threshold relative to the last measurement at 
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4° (mean of 98 ms, range of 44 to 247 ms, pairwise t-test: t(4) = 2.41, p = 0.037). The fast within session learning 
on day 5 is in agreement with previous experiments showing specificity in texture discrimination learning17, 
and with the phenomenology of perceptual learning42. Specificity is supported by the quasi-equality between 
thresholds of the 4–8° eccentricity group (N = 5) and a novice group (N = 6) trained only at 8° (shown here 
on day 5, the visible difference between the initial thresholds on that day is not statistically significant; 2-tailed 
t-test: t(9) = 0.57, p = 0.58). This result indicates perfect specificity, where learning at the first location (4°) does 
not facilitate, or speeds up17,43, training at the new location (8°). At the end (day 8), the last measurements show 
no statistical difference (p = 0.78, 2-tailed t-test, t(5) = 0.3) between the experienced group (N = 4) and the 4–8° 
eccentricity observers (N = 3) that made it to the end (there is also no significant difference between the other 
two measurement pairs corresponding to these two groups on day 8, p = 0.7, t(5) = 0.41, and p = 0.36, t(5) = 1.01, 
2-tailed t-test).

Discussion
Observers trained under reduced adaptation conditions failed to generalize their learning to a new eccentricity. 
At the new eccentricity, their mean performance equaled that of a previously untrained (novice) group. Specificity 
is supported by renewed learning at the new eccentricity, converging to a level corresponding to that of highly 
trained observers (the experienced group). Previous results obtained with this method (training trials interleaved 
with uniform textures tilted 45 from the target, relatively short sessions) showed complete transfer of learning to 
a new location when having eccentricity equal to that of the trained location17,25.

The results agree with predictions made by a theory assuming learning involves acess to low-level visual 
representations, before location invariant object-features are abstracted (see Introduction). Specificity of learn-
ing is predicted in the absence of sensory adaptation if the trained neuronal representation differ from the 
tested representation at transfer. This limitation of learning is expected from any learning mechanism which 
learns from examples, more so when the number of examples is small as in a typical perceptual learning exper-
iment. Perhaps the most general rule can be derived from statistical learning, in the form of overfitting1. The 
task of modeling visual inputs, as required in learning experiments, is largely similar to a statistical mode-
ling problem. Overfitting happens when a limited discrimination set is employed during training, allowing to 
model the data using parameters highly useful for the specific training set but of limited generality (not useful 
with untrained samples). Here, one wants to fit a model to the visual data using stimulus and task relevant 
parameters, however other incidental parameters29 introduced by the training paradigm, and by neuronal 
encoding, may facilitate discrimination and enter the model. This would lead to a model that represents train-
ing dependent features rather than stimulus- and task-relevant features. For example, training with a stimulus 
at a fixed location4, or of a fixed contrast44,45, may encourage the learning mechanism to base discrimination on 
properties of neuronal representations specific to that particular location or contrast trained45. On the other 
hand, variations in stimulus parameters during training, such as with multiple targets, may force the learning 
mechanism to base discrimination on more general representations46. Importantly, overfitting does not impose 
any neural implementations in terms of the site of learning, but rather refers to the encoded information avail-
able to learning. Within this theoretical framework, our current results imply that learning can access low-level 
eccentricity dependent information.

Retinal and cortical (CMF) inhomogeneity imposes dissimilar representations (i.e. cortical response pat-
terns) for different retinal eccentricities, and correspondingly generates eccentricity-dependent encoding. With 
repeated training at one eccentricity, the learned model (template, classifier) becomes strongly fitted to the spatial 
characteristics of that location, leading to overfitting. Therefore, a classifier trained at one eccentricity is useless 
when dealing with information encoded using a different receptive-field structure, as with a different eccentricity. 
Our results suggest that generalization is constrained by the receptive field size and cortical magnification factor 
(CMF) at an early stage of visual processing where the visual field topography is preserved. Another possibility is 
that lateral interactions underlying texture discrimination47 vary with eccentricity48,49. Importantly, these results 
indicate that adaptation does not necessarily play a unique role in determining specificity. Although we believe 
that adaptation is a leading source of variability in the neuronal representations stimulated during training, and 
consequently, of specificity of learning, here we provide evidence for other sources of variability.

Our results suggest the possibility of independent learning of stimulus/task-related information and of CMF. 
Of particular interest here are reports showing transfer of Vernier learning across locations of different eccen-
tricity using the double-training method15. Wang et al.15 found such a transfer for a Vernier task coupled with 
a motion-direction discrimination task, but not when coupled with a contrast discrimination task. Thus, when 
training with two tasks, generalization is constrained by the less specific task (e.g., motion-direction discrimina-
tion), implying that the extended CMF properties available to the less specific task can be applied to the more spe-
cific task. Similarly, transfer of orientation discrimination learning across different eccentricities after pre-testing 
at the eccentricity to be transferred to14, can also be explained by a learning process that captures the CMF corre-
sponding to the new location during the pre-test.

Here we address learning and cortical organization by testing transfer across different eccentricities in the 
visual field. Previous work suggested that the specificity of visual learning results from sensory adaptation. 
Generalization was obtained across symmetrical retinal locations for a given eccentricity. According to the pro-
posed adaptation-dependent learning model, learning involves a low-level adaptable visual network representing 
stimuli features, and a higher level classifier performing the discrimination task. Unadapted networks can gener-
alize learning, whereas adaptation adds variability to the lower-level visual networks. A readout mechanism that 
learned (and was overfitted to) one adapted location will fail to generalize. According to this view, local adaptation 
is suggested to increase spatial variability within the encoding stage, leading to distinct neuronal populations 
encoding stimuli differently. However, there may be other sources of variability in visual training. Whereas adap-
tation is a functional source of variability (a consequence of the repetitive training), eccentricity is an anatomical 
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source of variability. The CMF accounts for a considerable amount of performance variation in several visual 
tasks50,51, but the induced scale variations are thought to be dynamically corrected, though not perfectly, for object 
size52–54 (size constancy). Our results here suggest that some eccentricity dependent neuronal parameters, masked 
by perceptual constancies, are available to visual learning.
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