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Majorana zero modes and 
long range edge correlation in 
interacting Kitaev chains: analytic 
solutions and density-matrix-
renormalization-group study
Jian-Jian Miao1,2, Hui-Ke Jin1,2, Fu-Chun Zhang1,2,3 & Yi Zhou1,2

We study Kitaev model in one-dimension with open boundary condition by using exact analytic 
methods for non-interacting system at zero chemical potential as well as in the symmetric case of 
Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest 
neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana 
fermions to characterize the long range order in the topological superconducting states and study the 
phase diagram of the interating Kitaev chain.

Majorana1 zero mode (MZM) has attracted a lot of attention in the recent years2–4, which may emerge as a novel 
excitation in some topological condensed matter systems. MZMs obey non-Abelian statistics and have potential 
application to build robust qubits against decoherence in quantum computation5,6. The emergence of MZMs 
has been theoretically proposed in a number of condensed matter systems, including chiral p-wave supercon-
ductors7,8, ν = 5/2 fractional quantum Hall system9, the interface between a topological insulator and an s-wave 
superconductor10, proximity-induced superconductor for spin-orbit coupled nanowires11,12, spin-orbit coupled 
semiconductor with externally applied Zeeman field13–15, and ferromagnetic atoms in proximity to superconduc-
tors16,17. There also exist various experimental efforts to realize and detect MZMs in these proposed systems18–27.

Among these candidates, the one-dimensional (1D) systems are of special theoretical interest for possible 
generalization to interacting systems. The interaction may change properties drastically in 1D systems. The Fermi 
liquid description of the interacting Fermi gas usually works in 2D or 3D. However, it breaks down in 1D and the 
systems become Luttinger liquids. Fortunately, there have been a number of many-body techniques suitable to 
study various 1D problems28, which make the generalization of the MZMs in 1D models accessible. On the other 
hand, the interaction will modify topological systems violently, e.g. the non-interacting classification of fermionic 
systems29–31 will “collapse” and there exists a continuous path connecting trivial and topological phases in 1D32.

Kitaev chain7 is a prototype of 1D systems possessing MZMs at the two edges. The non-interacting Kitaev 
model was initially solved in a ring with periodic boundary condition. The edge state was then proposed to 
exhibit MZM. The model has been generalized to interacting case with nearest neighboring repulsive interac-
tion. The interacting Kitaev model does not have analytic solutions in general cases except for a set of specially 
tuned parameters33,34. The model can also be studied by numerical methods34–36. In general, interacting effects on 
MZMs have been investigated in various systems, e.g. nanowires35,37–40, multiband nanowires41, helical liquids42, 
two-leg ladders43, Josephson junctions44, Abrikosov vortex lattice45 and topological insulator/superconductor het-
erostructure46. The interplay of disorder and interaction has also been analyzed47,48. The MZM is stable against 
weak perturbations including the interaction and disorder. However, the generic interaction effect remains an 
open question, although lots of efforts have been made, which includes the exact solution49, topological classifica-
tion32,50, entanglement entropy investigation51, many-body MZM operator52,53, super-symmetry approaches34,54–56 
and parafermion edge zero mode57–61.
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In this paper, we shall first study non-interacting Kitaev chain of length L with open boundary condition by 
using an analytic method, which is accessible at the symmetric points with zero chemical potential and equal 
pairing and hopping amplitudes, Δ = t. We propose a correlation function of the two Majorana operators as a 
long range order parameter to describe non-trivial topological state with edge MZMs and calculate the long range 
correlation function explicitly. We then study Kitaev model with nearst neighboring repulsion interaction in open 
boundary condition by using density matrix renormalization group (DMRG) method. We show that the qualita-
tive feature of the long range correlation remain unchanged in the interacting systems provided that the system 
is in the topological non-trivial phase. The phase diagram in the interacting model will also be discussed. This 
work is a generalization of our previous work on exact solution for interacting Kitaev chain at symmetric point62. 
The exact solution can be obtained only at special point and we have to resort to numerical methods for generic 
parameters. In this paper we explore the phase diagram with a generic chemical potential μ, and demonstrate that 
the edge correlation is not only valid in the non-interacting system but also in more generic interacting systems.

This paper is organized as follows. In Section 2, the model Hamiltonian are presented and Majorana fer-
mion representation is introduced. In Section 3, we study non-interacting models by using analytic solutions. 
A single-particle correlation function is introduced and its edge component is used to describe the topological 
order. In Section 4, numerical DMRG analysis is carried out to study interacting systems. Section 5 is devoted to 
discussions.

Model
Without loss of generality, we consider a chain of spinless fermions with open boundary condition. The 
Hamiltonian of such an interacting Kitaev chain is

∑ ∑μ= 

− + . . + − − − Δ + . . 
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where †c c( )j j  is fermion annihilation (creation) operator on site j, = †n c cj j j is the fermion number operator, t is the 
hopping matrix element, and Δ is the p-wave superconducting pairing potential induced by the proximity effect, 
μ is the chemical potential controlling the electron density, and U is the nearest neighbor interaction. One can 
always choose Δ real and non-negative by the global transformation → φc e cj

i
j. Similarly, one can study the case 

of t ≥ 0 and μ ≥ 0 only, since the parameter transformations t → −t and μ → −μ can be realized by by the gauge 
transformation → −c i c( 1)j

j
j and particle-hole cojugation → − †c c( 1)j

j
j  respectively. Note that all these transfor-

mations will keep other parameters unchanged. In this paper, we only consider repulsive nearest neighbor inter-
action with U ≥ 0. When U = 0, this model will reduce to the usual (non-interacting) Kitaev chain7.

The Hamiltonian has the fermion number parity Z f
2  symmetry, which is defined as

= = −∑π ˆ
Z e ( 1) , (2)f i n N

2 j j

where = ∑N̂ njj  is the total fermion number, and it is obvious that =Z( ) 1f
2

2  and =H Z[ , ] 0f
2 . Z f

2  conserves in 
the whole parameter space. In the presence of the pairing potential Δ, the total fermion number is not conserved 
but only conserved modulo 2.

Majorana fermion representation.  We shall use the Majorana fermion representation to investigate the 
interacting Kitaev chain. Following Katsura et al.33, we split one complex fermion operator into two Majorana 
fermion operators

λ λ= +( )c i1
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, (3a)j j j
1 2

λ λ= − .† ( )c i1
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The Majorana fermion operators are real
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†( ) , (4)j

a
j
a

and satisfy the anticommutation relations

λ λ δ δ={ }, 2 , (5)j
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ab jl

where a, b = 1, 2. In the Majorana fermion representation, the Hamiltonian of the interacting Kitaev chain 
becomes
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Non-interacting Kitaev chains
In this section, we consider the non-interacting Kitaev chains with open boundary condition and discuss the 
relations among the topological degeneracy, the Majorana zero mode, and the edge correlation functions. We 
shall use analytic method to exactly solve the two non-interacting cases with Δ = t, U = 0 and μ = 0, U = 0 by the 
singular value decomposition (SVD) in Majorana fermion representation.

Non-interacting chains with Δ = t.  In this case, the transition between the topological superconductor 
and the trivial superconductor can be studied by tuning the chemical potential μ. The non-interacting 
Hamiltonian Hμ is quadratic in λ j

1 and λ j
2 and is given by
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where B is a L × L real matrix,
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With the help of SVD, B = UΛVT, where Λ is a real diagonal matrix, U and V are real orthogonal matrices, Hμ 
can be diagonalized as follows,

∑ ∑λ λ= Λ = Λ
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where Λk ≥ 0 are singular values of the matrix B, λ λ= +c i( )k k k
1
2

1 2  and λ λ= −†c i( )k k k
1
2

1 2  are the complex fer-
mion operators.

In the weak pairing region, μ < 2t, we find that (See Appendix A for details) the smallest singular value Λk is 
nonzero given by
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and the corresponding matrix elements

= + −U A v L jsinh ( 1 ), (11a)jk k00

=V A vjsinh , (11b)jk k00

where = −− −A e e2 (1 )k
vL v2 1/2

0
 is the normalization factor, and v is a positive real number determined by Eq. A12.

It is worth noting that a similar model has been solved by Katsura et al.33 using SVD. In their case, the chemi-
cal potential is half of the bulk’s value at edge, μ1 = μL = μ/2, resulting in Λko = 0.

Topological degeneracy and the edge mode.  It is well known that there exist two topologically distinct phases in 
the non-interacting Kitaev chain model7,64,65. For strong pairing μ > 2t, the system is in the trivial superconduct-
ing state, while for weak pairing μ < 2t, the system is in the topological superconducting state.

In the trivial superconducting state, the energy spectrum is gapped and the ground state is non-degenerate. 
However, in the topological superconductor, the energy gap between the ground state |0〉 and the first excited 
state ≡ †c1 0k0

 is Λk0 given in Eq. 10, approaches to zero with the exponential factor e−Lln(2t/μ) in the large L limit. 
Thus, the k0-mode is a zero mode and the topological superconductor has two-fold degenerate ground states in 
thermodynamic limit. In other words, it is a gapped system with two-fold topological degeneracy.

Now we shall check that the first excited state |1〉 is an edge mode. It is a single particle (hole) excited state. The 
particle and hole parts of the wavefunction read

= = + = + − +† ( )c c c U V
A

v L j vj0 1 0 0 1
2 2

[sinh ( 1 ) sinh ] (12a)j j k jk jk
k

0 0 0
0

and

= = − = + − −† † † ( )c c c U V
A

v L j vj0 1 0 0 1
2 2

[sinh ( 1 ) sinh ] (12b)j j k jk jk
k

0 0 0
0

respectively, where Eqs 11 and A2a have been used in the derivation. It is easy to see that this zero mode has a 
complex wave vector k0 = π + iv and the wavefunction is well localized at edges with localization length v−1 as 
demonstrated in Fig. 1.
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Now we would like to examine that the k0 mode is indeed a Majorana mode, say, = ±†c ck k0 0
, namely, it coin-

cides to its antiparticle. Using Eq. A2a, we have
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By Eq. 11, we find that
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So that there exists one Majorana mode with =†c ck k0 0 at the edge j = 1 and another Majorana mode with 
= −†c ck k0 0 at the edge j = L.

Fermion number parity and edge correlation function.  There are two characterizing features for topological 
ordered systems, (base-manifold dependent) ground state degeneracy and gapless edge states.

We note the ground state |0〉 and the excited state |1〉 have opposite fermion number parity

= = − .†Z c Z c Z1 1 0 0 0 0 (15)
f

k
f

k
f

2 2 20 0

In the thermodynamic limit, the first excited |1〉 is degenerate with the ground state |0〉.
We define the following single-particle correlation function at two sites j and l,

λ λ=G i , (16a)jl j l
1 2

where the imaginary i is introduced to make Gjl Hermitian. Especially, the edge component of Gjl is given when 
j = 1 and l = L,

λ λ= .G i (16b)L L1 1
1 2

Note that the correlation function Gjl is a block of single-particle(hole) density of matrix, which can be gen-
eralized to interacting systems and reflects the site-distribution of single-particle component in a many-particle 
wavefunction. As long as the bulk is uniform, the finite value of G1L in the thermodynamic limit reflects the 
existence of edge modes.

The edge correlation function G1L is easy to calculate in the case of Δ = t and U = 0, and is given for the ground 
state |0〉 by

∑λ λ= = − .G i U V0 0
(17)L L

k
k Lk1 1

1 2
1

When μ ≥ 2t,

∑λ λ δ= = − .G i A kL0 0 sin
(18)L L

k
k k1 1

1 2 2 2

As proved by Lieb et al.63, this summation is of order of O(1/L). When μ < 2t,

Figure 1.  The particle wavefunction †c c0 0j k0  for the k0-mode with L = 500 and v = 0.2.
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The nonvanishing value of G1L for μ < 2t in the thermodynamic limit reflects the topological order in the 
topological superconductor state. In this topological phase, we can also calculate edge correlation function G1L 
for the topological degenerate state |1〉.
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Thus, for a generic ground state GS , the edge correlation function in the thermodynamic limit is given by

μ μ

μ
∝
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Note that the nonzero contribution U Vk Lk1 0 0 comes from the Majorana zero mode k0. Other modes mainly 
distribute in the bulk and the contributions to G1L is of order of O(1/L), which is neglectable in the thermody-
namic limit. At the quantum critical point μ = 2t, we have v = 0 and the wave vector of the Majorana zero mode 
becomes real k0 = π. The k0-mode is no longer localized at edges but merges into the bulk, resulting in vanishing 
edge correlation function G1L. In the quantum critical region,

μ∝ −G t(2 ) , (22)L
z

1

with critical exponent z = 1.
Now we would like to examine the behavior of Gij inside the bulk, which can be done numerically. Two top-

ologically distinct examples are investigated and shown in Figs 2 and 3 respectively. The first example is given by 
Δ = t, μ = 3t, U = 0, which is in the topologically trivial phase, where a peak appears at short range with i~j while 
long range correlation is absent. The second example is given by Δ = t, μ = t, U = 0, which is in the nontrivial 
topological superconductor phase. There exhibits a long range peak at i = 1 and j = L, and long range correlation 
is still absent inside the bulk. We note the edge correlation is not symmetric or antisymmetric, i.e. G1L ≠ ±GL1. 
Hence there is no peak at i = L and j = 1. If we use parameters with t < 0, the peak will appear at i = L and j = 1. So 
it is a matter of choice. The point is there is a edge correlation function corresponding to the Majorana zero mode.

Therefore, we propose to use the edge correlation function G1L to characterize the topological order and 
emerged edge states. We shall examine this for the non-interacting systems with different parameters in the next 
subsection and for the interacting systems in the next section.

Figure 2.  Correlation function |Gij| for a topologically trivial state, Δ = t, μ = 3t, U = 0.
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Non-interacting chains with μ = 0.  In this subsection, we utilize non-interacting Kitaev chains with μ = 0 
to study how topological order will vanish as the superconducting gap Δ approaches zero. The Hamiltonian now 
reads

∑ λ λ λ λ= 
− + Δ − − Δ 

.Δ
=

−

+ +H i t t
2

( ) ( )
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L

j j j j
1

1

1
1 2 1

1
2

We are able to diagonalize the Hamiltonian HΔ by SVD as before. There exist two kinds of modes in this situ-
ation. For the first kind of modes, the two orthogonal matrices U and V are found to be
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The second kind of modes is given by

=





+ − =
=

U A k L j j odd
j even

sin ( 1 ), ,
0, , (25a)

jk
k

II
II

II

δ
=






=

− = .
V

j odd
A k j j even

0, ,
sin , (25b)

jk
k k

IIII
II II

Here the normalization factors are given by

=






+ −
+ 





−

A L k L
k

2 1 sin2 ( 1)
sin2

,
(26)k

1/2

and

δ =




 +





.sgn k

k L
cos

cos ( 1) (27)
k

Corresponding singular values are given by
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The wave vector kI’s are given by the following equation,
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and kII’s are determined by

Figure 3.  Correlation function |Gij| for a topologically nontrivial state, Δ = t, μ = 0, U = 0.
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Besides L − 1 real kI’s, there exists a single complex kII in the second kind modes,
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Then the normalization factor can be written explicitly,
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and the singular value reads
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It is easy to see that the singular value of k II
0  mode vanishes in the thermodynamic limit,

Λ = .
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The (single particle) wavefunction of this zero mode is given by

† ( )c c U V
A v L j j odd

vj j even
0 0 1

2 2
( 1) sinh ( 1 ), ,

( 1) sinh , , (37)
j k jk jk

k
L j

L j

1
2

2

II II II
II

0 0 0
0= + =







− + − =

− − =

+ −

−
−

which has nonzero value only near the edge in the thermodynamic limit. Similarly, one can verify that = ±†c c
k kII II

0 0
 

at edges. Hence the k II
0 -mode is the Majorana zero mode localized at edges. When Δ → 0, the wave vector of the 

zero mode becomes real = πk II
0 2

 and the Majorana zero mode is no longer localized at edges. This is consistent 
with the condition for the boundary Majorana fermion argued by Kitaev7, i.e. the presence of an arbitrary small 
superconducting gap Δ.

Now we compute the edge correlation function G1L for the ground state |0〉,
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For small but finite Δ, we have
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∝ ΔG , (40)L
z

1

with critical exponent z = 1. Thus the edge correlation function vanished as Δ → 0.

Interacting Kitaev chains: DMRG analysis
In this section, we shall study interacting Kitaev chains by carrying out DMRG calculations in the language of 
matrix product states66 with various model parameters in Hamiltonian 1 and system size up to L = 140. We com-
pute the energy of low lying states, local particle density, as well as the single-particle correlation function Gij.

Phase diagrams.  Figure 4 displays the phase diagram at Δ = t obtained from the combination of exact solu-
tions and DMRG calculations. As a function of μ and U, there are five distinct phases, trivial superconductor 
(SC), topological superconductor (TSC), commensurate charge density wave (CDW), incommensurate charge 
density wave (ICDW) and Shrödinger-cat-like state (CAT). The five different phases are separated from each 
other by critical lines. Such a phase diagram is consistent with previous studies33–35 except the CAT states at μ = 0 
obtained by exact solution62.

The TSC phase is detected by the two-fold degenerate ground states with opposite fermion number parity Z f
2  

and CAT phase is the two-fold degenerate ground states with opposite particle-hole symmetry Z p
2 . In contrast, 

the two ground states of CDW and ICDW phase have the same Z f
2 . In practice, we compute the matrix elements 

for Z f
2  or Z p

2  in the subspace spanned by the two lowest lying states, |0〉 and |1〉, and diagonalize the 2 × 2 matrix 
to obtain two eigenvalues. The distinction between ICDW and CDW can be made through local particle density 
and its Fourier transformation. For a CDW state, there exists a single peak at Q = π, while for a ICDW state, there 
appear two peaks in the Fourier spectrum.

When μ = 0, as U increases, the ground state changes from CAT to TSC and to CDW directly via the critical 
point U = ± t. When μ > 0, as U increase, the ground state changes from SC to TSC, ICDW and to CDW in the 
large U limit.

Single-particle correlation function Gij.  We also compute the single-particle correlation function Gij 
defined in Eq. 16 for ground states. Similar to exactly solvable systems shown in Figs 2 and 3, long range cor-
relation is absent inside the bulk. When the system is in the TSC phase, there exists a single long range peak at 
i = 1 and j = L. Figures 5 and 6 demonstrate two TSC states with Δ = t, μ = 0, U = 0.5 t and Δ = t, μ = t, U = 0.5 t 
respectively. So that Gij serves an efficient measurement for edge states and thereby the topological order.

Edge correlation function G1L.  The nonvanishing edge correlation function G1L characterizes the topolog-
ical order. We fix Δ = t and study G1L as a function of μ and U. The result is plotted in Fig. 7. The value of G1L is 
finite in TSC phase and vanishes in other topologically trivial phases. Thus this order parameter is valid both in 
the non-interacting and interacting systems to study the topological order.

Local density of states.  We can distinguish the ICDW and CDW phases by observing their local density 
distribution and corresponding Fourier spectrum. When the ground state is a CDW, its Fourier spectrum will 
have a single peak at Q = π; while for a ICDW state there are two peaks.

Figure 4.  Phase diagram for the interacting Kitaev chain with Δ = t. SC stands for trivial superconductor, TSC 
stands for topological superconductor, CDW stands for charge density wave, ICDW stands for incommensurate 
charge density wave and CAT stands for Shrödinger-cat-like (CAT) state. Data points are obtained within 
DMRG for different system sizes. Rhombuses denote SC states, circles denote TSC states, up-triangles denote 
ICDW states, down-triangles denote CDW states and squares denote CAT states.
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Figure 5.  Single-particle correlation function Gij for the TSC ground state with Δ = t, μ = 0 and U = 0.5t. The 
system size is L = 100.

Figure 6.  Single-particle correlation function Gij for the TSC ground state with Δ = t, μ = t and U = 0.5t. The 
system size is L = 100.

Figure 7.  Ground state edge correlation function G1L as function of μ and U. Δ = t and the system size is 
L = 140. Squares denote SC states, circles denote TSC states, up-triagnles denote ICDW states, and down-
triangles denote CDW states.
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For various model parameters, we use the DMRG method to obtain the ground state |0〉 and local density 
〈 | | 〉n̂0 0j  for each site j. The Fourier spectrum is obtained by taking fast Fourier transformation of the local density 
distribution, whose average value has been subtracted. Here we show two typical figures of ICDW and CDW in 
Fig. 8.

Conclusion
In summary, we have studied in this paper the Kitaev chains with open boundary condition by using analytic 
exact solution method for the non-interacting model and by using DMRG method for the interacting model.

We study a locally defined single-particle correlation function Gij and find that there exists a long-range edge 
correlation G1L in the topologically nontrivial phase which is absent in topologically trival phases, while long 
range correlation is always absent inside bulk for all the phases. Thus, we propose that G1L can be used to charac-
terize the topological order in 1 + 1D fermionic systems and use it to describe quantum phase transitions between 
topologically trivial and nontrivial phases. It is found that G1L ∝ wz with z = 1 near the critical point, where w = Δ, 
μc − μ, etc. is a control parameter that drives the system from a topologically nontrivial phase to a topologically 
trivial phase.

Figure 8.  Local density distribution and density spectrum. In up figure the local density of ICDW oscillates 
nonuniformly and its Fourier spectrum has two peaks near Q = π. In bottom figure the local density of CDW 
forms a bipartite lattice and the Fourier spectrum has single peaks at Q = π.

Appendix A
Exact diagonalization of non-interacting Kitaev chains with Δ = t

In this appendix, we provide details in exact diagonalization of the matrix B in Eq. 8. We write the matrix B in 
the SVD form33,

= ΛB U V , (A1)T

where the matrix Λ = Λk is diagonal. The matrices U and V are orthogonal transformations

∑λ λ=
=

U ,
(A2a)

k
j

L

jk j
1

1

1

∑λ λ=
=

V ,
(A2b)

k
j

L

jk j
2

1

2

which satisfy = =UU VV 1T T  and keep the anticommutation relations of the Majorana fermion operators

λ λ=†( ) , (A3)k
a

k
a

λ λ δ δ= .{ }, 2 (A4)k
a

q
b

ab kq

The energy spectra of the Hamiltonian H  are given by the singular values of the matrix B. We note the orthogonal 
matrices U and V  diagonalize BBT  and B BT , respectively

= ΛU BB U , (A5a)T T 2
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= Λ .V B BV (A5b)T T 2

The singular values Λk are the non-negative square roots of the eigenvalues of BBT. Similar diagonalization was 
found by Lieb et al. in the study of Heisenberg-Ising model63. The orthogonal matrices U and V are found to be

= + −U A k L jsin ( 1 ), (A6a)jk k

δ=V A kjsin , (A6b)jk k k

where the normalization constant is

=






+ −
+ 





−

A L k L
k

2 2 1 sin (2 1)
sin

,
(A7)k

1/2

and

δ =






sgn k

kL
sin

sin
,

(A8)k

where sgn denotes the sign function. The singular values are

μΛ = + + .t k t k( 2 cos ) (2 sin ) (A9)k
2 2

The k’s are the roots of

μ
+

= − .
k L

kL
tsin ( 1)

sin
2

(A10)

The graphical solution is shown in the Fig. A1. For μ ≥ 2t, there are L real roots, including all the normal modes. 
For μ < 2t, there are L − 1 real roots and one complex root

π= +k iv, (A11)0

with v determined by

μ
+

= .
v L

vL
tsinh ( 1)

sinh
2

(A12)

We consider a large open chain, i.e. vL ≫ 1

μ μ
μ μ

−



 −











 .e t t

t t
2 2

2 2 (A13)
v

L2

Then for this special mode we have

= + −U A v L jsinh ( 1 ), (A14a)jk k0 0

=V A vjsinh , (14b)jk k0 0

Figure A1.  +k L kLsin ( 1)/sin  for L = 6 (blue), −2t/μ = − 0.6 (red), −2t/μ = −1.4 (black).
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Note added.  After this and related paper62 were posted (arXiv:1608.08382 and arXiv:1610.04485), there 
appeared several followed works, where the extension to disordered67 and dimerized systems68–70 were studied.
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