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Cumulant expansion for fast 
estimate of non-Condon effects in 
vibronic transition profiles
Joonsuk Huh1,2,3 & Robert Berger2,3,4

When existing, cumulants can provide valuable information about a given distribution and can 
in principle be used to either fully reconstruct or approximate the parent distribution function. A 
previously reported cumulant expansion approach for Franck–Condon profiles [Faraday Discuss., 150, 
363 (2011)] is extended to describe also the profiles of vibronic transitions that are weakly allowed or 
forbidden in the Franck–Condon approximation (non-Condon profiles). In the harmonic approximation 
the cumulants of the vibronic profile can be evaluated analytically and numerically with a coherent 
state-based generating function that accounts for the Duschinsky effect. As illustration, the one-photon 
1 1Ag → 1 1B2u UV absorption profile of benzene in the electric dipole and (linear) Herzberg–Teller 
approximation is presented herein for zero Kelvin and finite temperatures.

Vibrationally resolved electronic spectra (e.g. one-photon absorption and emission spectra) are within the 
Born-Oppenheimer framework usually interpreted in terms of Franck–Condon (FC) factors (FCFs)1,2. 
Accordingly, one can try to obtain the shape of the spectral profile for a FC-allowed transition from computed 
FCFs in frequency domain. However, besides the electronic structure calculations, the evaluation of FCFs for large 
molecular systems is challenging even within the harmonic approximation if one has to take Duschinsky mode 
mixing (rotation)3 into account. This is because multi-variate Hermite polynomials have then to be evaluated for 
each FC integral, rather than only uni-variate Hermite polynomials as is the case for the comparatively simple 
parallel harmonic oscillator model. The computational task becomes more difficult as the molecular size and 
temperature increases because the number of FC integrals grows vastly. The evaluation of the multi-dimensional 
FC integral in the harmonic approximation is, at least for some cases with Duschinsky mode mixing, classified as 
a #P-hard problem in computational complexity theory4 and thus it recently became a topic in quantum computa-
tion. A quantum optical simulation (quantum computation) has been proposed theoretically for instance for the 
FC profile calculation and has been performed for the photoelectron spectrum of SO2 by a trapped-ion device5–7.

To describe FC-forbidden or weakly allowed transitions, one has to go beyond the Condon approximation 
and employ for instance a Herzberg–Teller (HT) expansion8 of the electronic transition moment with respect to 
the normal coordinates. As a result, the calculation of the vibronic spectrum for a non-Condon process is even 
more difficult than for a FC-allowed transition because one has to evaluate matrix elements of the non-Condon 
operators which require for each HT integral in general the calculation of combinations of several FC integrals.

The number of FC integrals and matrix elements of non-Condon operators to be evaluated in a sum-over-states 
approach can, in principle, be significantly reduced with the help of integral configuration selection strategies9,10. 
However, this time-independent (TI) calculation of the spectral profile in the frequency domain is still consider-
ably more expensive than an alternative time-dependent (TD) approach that exploits time-correlation functions 
(TCFs) (see e.g. ref.11–15), but offers the ability to directly assign individual peaks in the spectrum. As we have 
outlined earlier16, a unified coherent state-based generating function (CSGF) approach17 can be used both for 
rigorous integral prescreening strategies and TCF calculations which combine the strengths of both approaches 
and complement each other favorably. Even in the less demanding TD approach, however, one usually invests 
significant computational time for often unnecessary spectral details.
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Cumulants (or moments) of a distribution (see e.g. refs17–27) can deliver highly useful information. From this 
one can either attempt to reconstruct the spectral shape or try to estimate the relevant spectral profile, which 
can be exploited in subsequent TI and TD approaches16,28. Cumulants of the vibronic spectrum can be obtained 
from the CSGF directly without computing the total spectrum in frequency domain. This method was exploited 
already in ref.29 for FC-allowed transitions, and we report herein an extension of this method to incorporate 
non-Condon transitions. To illustrate the performance of the approach, we present the profile of the 1A1g → 1B2u 
transition of benzene, which frequently served as a prototypical example for multiple authors (see e.g. refs30–32 
and references therein). The transition is in the electric dipole approximation Franck–Condon forbidden and it is 
studied herein at various temperatures within the linear HT and harmonic approximation. Cumulant expansion 
is compared herein to the TCF approach.

Results
Theory. The spectral profile (ρ(ħ ω; T)) can be expressed via the Fourier transform (FT) of the TCF (χ(t; T)) 
that depends on the time t and temperature T, namely

  ∫ρ ω χ= ω ω−
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where ħω is the transition energy and ħω0 the 0′ − 0 transition energy. The corresponding occupancy representa-
tion for the TCF and the spectral profile can be obtained from Fermi’s Golden Rule, respectively, as
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where we have assumed an electric dipole transition with the electronic transition dipole moment µ̂ Q( ( )), which 
is a function of normal coordinates of the initial electronic state, and the harmonic approximation. The 
N-dimensional harmonic oscillator eigenstates of the initial and final electronic state are denoted by 
| 〉 = | … 〉v v v, , N1  and | ′〉 = | ′ … ′〉v v v, , N1  with the corresponding harmonic energy vectors ε ε ε= …( , , )N1  and 
ε ε ε′ = ′ … ′( , , )N1 , respectively. Ĥ and ′Ĥ  are the N-dimensional harmonic oscillator Hamiltonians belonging to 
the initial and final electronic states, respectively. kB is the Boltzmann constant. ε ε′E ,  is the vibronic transition 
energy with respect to the 0′ − 0 transition energy. The spatial representation of the TCF in closed form can be 
found by evaluating the following quantum mechanical traces
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The traces can be evaluated with any complete basis. In our work N-dimensional coherent states were used 
(see e.g. refs9,16) with the Duschinsky relation between initial and final state normal coordinates ( ′ = +Q Q dS  
where S and d are the Duschinsky rotation matrix and displacement vector, respectively and ′Q  are the normal 
coordinates of the final state) and the linear HT expansion of the electronic transition dipole moment 
(µ µ µ+ ∑ ′ Q̂(0) k k k where µ ′

k
 is the first derivative of µ with respect to Q̂k.).

The TCF is related to a probability density function (PDF). If all cumulants or moments of a PDF are defined 
and available, the PDF can be reconstructed as follows29
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c  is the k-th order cumulant at temperature T. The cumulants of the spectral density function are 
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2 16. Moments (cumulants and 
moments are inter-convertible33) can be obtained by partial derivatives of χ with respect to time,
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Thus, cumulants can be evaluated analytically or numerically by evaluating partial derivatives of χ in Eq. (4) 
with respect to the time variable at t = 0. Analytic evaluation of the cumulants to arbitrary order within the linear 
HT approximation can be performed along the lines of the development in refs16,28,29 for the cumulants of FC 
profiles to arbitrary order. For numerical evaluation of low-order cumulants one needs to compute χ at the first 
few time steps. To obtain the corresponding moments numerically, Re(χ(t, T)) and Im(χ(t, T)) as computed at 
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these time steps are used to determine low-order even and odd moments, respectively, because 
  = −ε ε ε ε

−
′ ′

ε ε′ E t E te cos( / ) i sin( / )E ti /
, ,

,  in Eq. (2) (see e.g. ref.23).
The closed form of χ(t, T) within the linear HT approximation can be found in refs14–16,28. In the present 

work, flexibility is used in the GF to obtain detailed information concerning individual contributions of different 
modes. This is achieved by assigning different time and temperature variables to each vibrational degree of free-
dom. The corresponding GF in an occupancy representation reads as follows
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where the general operators f̂  and ĝ , which can be products of momentum and position operators, are given 
instead of µ̂ Q̂( ); and different temperatures can be given to the initial and final vibrational degrees of freedom via

β β β β= … ′ = ′ … ′B Bdiag( , , ), diag( , , ), (9)N N1 1

where βk = 1/(kBTk) (with Boltzmann constant kB and temperature Tk). The parameter matrices are defined as 
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The temperature dependent parameters are defined as follow
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with the FC generating function,
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The electronic 1 1Ag → 1 1B2u transition of benzene is FC-forbidden in the electric dipole approximation 
µ =( (0) 0) such that only the HT terms contribute to the spectral function. The corresponding TCF for FCHT 

weighted density of states (FCHTW) is given as follows, here with same time (t) for all vibrational degrees of 
freedom and same temperature (Tk = T and Tk′ = ∞) for the initial and final modes, respectively,
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which can show the detailed vibronic structure.
The FCHTW profile is now approximated with a finite number of cumulants via the Edgeworth expansion 

with the order n35. Whereas for n = 2 a Gaussian distribution function is used, the Edgeworth expansion for order 
n ≥ 3 is employed as29
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The Edgeworth expansion with a finite number of cumulants and in the infinite series are related as
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( ) domain profile.

Computational detail. The vibronic profiles for benzene’s 1 1Ag → 1 1B2u transition at zero Kelvin and finite 
temperatures are calculated with the two methods, namely TCF and time-independent cumulant expansion (CE). 
We use herein the term time-independent CE, which was employed in ref.29, to distinguish this CE from the con-
ventional (time-dependent) CE (see e.g. refs20–24) which involves time integration for the cumulant calculation. To 
compute the vibronic spectra via the TCF method, the FFTW library36 is used for fast Fourier Transform (FFT). 
The approximate curves are generated for the CE with Edgeworth expansion29,35 using the computed low-order 
cumulants. Some of the problems related to this type of expansion for the description of FC profiles are discussed 
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in ref.29. The moments (Eq. 6) are calculated both analytically and numerically for comparison, the latter by 
approximating partial derivatives of χ in Eq. 4 with respect to time (see results section) via a central finite differ-
ence scheme with a truncation error being of order (Δt)2. When generating the data points in time, we exploit the 
time-reversal symmetry condition, i.e. χ(−t; T) = χ(t; T)*. Required input data from electronic structure calcu-
lations for benzene, i.e. molecular equilibrium structures and corresponding harmonic force fields for each elec-
tronic state (1Ag and 1B2u) as well as first derivatives of the electronic transition dipole moments are taken from 
ref.30 (CASSCF/DZV). These data have been compared to results obtained via analytical derivative techniques 
for electronic transition dipole moments within a time-dependent density functional theory framework in ref.32. 
The vibronic structure methods employed in the present work are implemented in a development version of our 
vibronic structure program package hotFCHT9,30.

Numerical simulation. The computed vibronic spectra are shown in Fig. 1. The left hand side in Fig. 1 
shows vibronic profiles from TCF-FFT which are convoluted by a Lorentzian line shape function with full width 
at half maximum (FWHM) of 50 cm−1 at temperatures elevating from 0 K to 1000 K. This FC-forbidden vibronic 
transition is mediated by the non-totally symmetric vibrational modes in the irreducible representation e2g of the 
D6h molecular symmetry group. The main feature of the vibronic spectrum is from progressions in the totally 
symmetric C-C stretching mode (963 cm−1) building on the so-called false origin from a single excitation of a 
non-totally symmetric (e2g) in-plane bending mode (575 cm−1) as indicated in the spectrum at zero Kelvin. The 
calculated spectrum at 300 K is compared with the experimental data of Fischer37. The two spectra agree fairly 
well in the low energy region but the computed peaks at higher energies are slightly shifted to larger wavenumbers 
due to the harmonic approximation. As temperature increases the vibrational structure becomes very congested 
and washed out. At 1000 K (only employed for testing the method) one can not see a resolved vibrational struc-
ture any longer, only the corresponding envelope.

On the right hand side of Fig. 1 the two methods (TCF-FFT and CE-Edgeworth) are compared for increasing 
temperatures. The spectra are convoluted in the TCF-FFT curves (dashed lines) with a Gaussian line shape func-
tion of 500 cm−1 for FWHM. The second moment (4.51 × 104 cm−2 (hc0)2) of the Gaussian line shape function is 
added to the second moments of the vibronic spectrum to take the line shape function into account (see ref.29 for 
the rationalisation and details). The relatively broad line shape function is used for the TCF-FFT curves to have 
vibrationally relatively structureless spectra for comparison. At 0, 300 and 500 K, the TCF-FFT curves still show 
vibrational structure and the CE-Edgeworth curves (solid lines) look like nonlinear regression curves of the cor-
responding TCF-FFT spectra. When the vibrational structures are also essentially smoothed out in the TCF-FFT 
curves at 1000 K, the two approaches agree with each other extremely well. Up to the 4-th order cumulants are 
used for 0, 300, 500 K and up to 8-th order cumulants are computed for 1000 K.

In Table 1 the moments computed numerically (via numerical derivatives) and analytically are compared. At 
low orders and all temperatures the two methods agree well and for higher orders still the agreement is satisfac-
tory. One of the advantages of the numerical method is that one only needs to compute the TCF for the first few 
time steps and it can be improved by controlling the time increment and the number of data points. The analytical 
method usually meets a combinatorial problem in high order cumulant calculations due to the analytic deriv-
atives of the inverse matrix29. The second advantage of the numerical method is that it is easy to include linear 
and nonlinear non-Condon effects. The third advantage is that one can incorporate general line shape functions 
which would not have well defined cumulants (see the discussion on page 415 of ref.29). Lastly, the computational 
cost of the numerical cumulant expansion method is that the number of data points to be evaluated is almost 
negligible comparing to the TCF-FFT approach, which is about three orders of magnitude more expensive.

Mean excitation wavenumbers (ε ′〈 ′〉v̂ hc/( )i i 0  with ′v̂i  being a number operator of i-th mode in the final elec-
tronic state) of individual modes are computed analytically for the HT active e2g symmetric vibrational modes of 
the final state, and are given in Table 2. The corresponding first derivative in Eq. (6) can be performed numerically 
or analytically by assigning z = diag(1, …, 1) and ′ = …  …ε ′z diag(1, , 1, e , 1, 1)ti /(2 )i   to Eq. 17. The mean excita-
tion energy can serve as a parameter for the individual vibrational degrees of freedom as an effective reorganisa-
tion energy or a Huang–Rhys factor (when normalised by its harmonic energy), which can be characterised as a 
function of structural deformation, frequency change, Duschinsky mode coupling and temperature both in the 
Condon and non-Condon approximation. One might naively expect a larger mean excitation energy as the tem-
perature increases but the mean values of high frequency modes (1665 and 3389 cm−1) in some intermediate 
temperature ranges are smaller than at zero Kelvin. This can be rationalised as follows: Because the Duschinsky 
mode mixing between low and high frequency modes is small in the present case, the high frequency modes can 
not obtain thermal energy from the low frequency modes efficiently. Thus the high frequency modes are almost 
thermally inactive, whereas the total integrated profile (ρtot) increases as temperature increases. In the mean 
energy calculation of the high frequency modes at finite temperatures the denominator (total intensity) increases 
because low frequency modes accept thermal energy while the numerator (excitation of high frequency modes) 
stays constant. Therefore the mean excitation energies of high frequency modes are reduced at finite tempera-
tures. If Duschinsky rotation couples the low and high frequency modes significantly, however, thermal energy 
can be transfered to the high frequency modes via the low frequency modes in the initial state, accordingly the 
mean excitation energies of high frequency modes can increase as temperature increases.

In closing the section, the moments or the cumulants of the vibronic excitation energy can provide intuitively 
useful information concerning the vibronic transition profile with almost no computation cost comparing to the 
TCF-FFT method. Furthermore, the mean excitation energy of individual mode opens a new interpretation for 
the vibronic transition with a single quantity incorporating the mode mixing and the non-Condon effects as well 
as the temperature, geometrical change and distortion effects.
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Conclusion and outlook
We have discussed a cumulant expansion method for describing non-Condon transitions and applied it to the 
prototypical one-photon electric dipole 1 1Ag → 1 1B2u transition of benzene, which is FC forbidden but HT 
allowed in the linear HT approximation. The method is particularly powerful when one does not require all the 
details of the vibronic structures, but rather only quantities such as peak maximum, mean and variance of the 
spectral shape. This method is computationally much cheaper than the sum-over-states and time-correlation 
function approach. Moreover, the information (e.g. on the spectroscopically relevant energy window) from the 
cumulant expansion method can be used in the calculation within the other two methods. For example, the rele-
vant vibronic transition energy domain obtained from the cumulant expansion method can be used for screening 
the excitation configurations to avoid the unnecessary integral calculations in the time-independent approach. In 
the time-dependent approach, the same information can be exploited to define via the reciprocal energy window 
the time increment for the numerical propagation of the wavepacket. The number of discrete time steps with 

Figure 1. Left part of the figure: The dashed lines are drawn for the TCF-FFT approach with a Lorentzian line 
shape function with FWHM of 50 cm−1. A time increment Δt of 0.51 fs and a grid with 216 grid points are used 
for the corresponding FFT calculations. The experimental UV absorption spectrum as reported by Fischer in 
ref.37 is additionally shown in red, which has been adapted from ref.37 and shifted to match approximately the 
position of the major peak in the region below the 0–0 transition wavenumber and rescaled to have similar peak 
height as the one computed for the 60

1 transition. Right part of the figure: The dashed lines are drawn for the 
TCF-FFT approach with a Gaussian line shape function of with FWHM of 500 cm−1. A time increment of 0.10 
fs and a grid with 215 grid points are used for the corresponding FFT calculations. Solid lines are drawn for the 
curve obtained by Edgeworth expansion using up to 4-th order cumulants and, for 1000 K by Edgeworth 
expansion using up to 8-th order cumulants.
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a given time increment determines the desired spectral resolution and the total wavepacket propagation time. 
Herein we compared a numerical approach for the calculation of cumulants with the results from an analyti-
cal scheme. The results obtained numerically are still fairly good. With this method, one can incorporate easily 
nonlinear non-Condon terms and various line shape functions. In the time-correlation function calculation the 
real part and imaginary part at each time step provide automatically the even and odd moments, respectively. In 
the first few time steps we already have the first few moments available and the probability distribution function 
(information) becomes complete as time progresses. The benzene example selected herein serves to illustrate 
the principle of the method for future routine applications for molecular systems with hundreds of atoms. As an 
outlook for the approach described herein, we would like to indicate that it can be generalized for the even more 
challenging anharmonic vibronic transition problem, because the method has a clear connection to the time 
correlation function approach. When the time correlation function can be evaluated only for the first few time 
steps, the cumulants can be determined numerically. The overall computational cost is only the evaluation of a 
few time correlation function.
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