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Prediction of genomic breeding 
values using new computing 
strategies for the implementation 
of MixP
Linsong Dong1, Ming Fang1 & Zhiyong Wang  1,2

MixP is an implementation that uses the Pareto principle to perform genomic prediction. This study was 
designed to develop two new computing strategies: one strategy for nonMCMC-based MixP (FMixP), 
and the other one for MCMC-based MixP (MMixP). The difference is that MMixP can estimate variances 
of SNP effects and the probability that a SNP has a large variance, but FMixP cannot. Simulated data 
from an international workshop and real data on large yellow croaker were used as the materials for 
the study. Four Bayesian methods, BayesA, BayesCπ, MMixP and FMixP, were used to compare the 
predictive results. The results show that BayesCπ, MMixP and FMixP perform better than BayesA for 
the simulated data, but all methods have very similar predictive abilities for the large yellow croaker. 
However, FMixP is computationally significantly faster than the MCMC-based methods. Our research 
may have a potential for the future applications in genomic prediction.

The advent of next generation sequencing technology has accelerated the development of the theory behind 
quantitative molecular genetics approaches, such as quantitative trait loci (QTL) mapping, genome-wide asso-
ciation (GWA) studies and genomic selection. Genomic selection was first proposed by Meuwissen et al. as an 
efficient method to predict animal breeding outcomes1. Recently, various implementations have been proposed 
for genomic prediction, such as genomic best linear unbiased prediction (GBLUP)2, ridge-regression BLUP 
(RRBLUP), BayesA, BayesB1, BayesCπ3, BayesLASSO4,5, BayesSSVS6, fast Bayesian methods7,8, MixP9, among 
others. GBLUP and RRBLUP assume a constant variance for all SNP loci, which may be an imprecise assumption 
if a trait is affected by a small number of QTL loci1. Bayesian methods propose more flexible prior assumptions 
for SNP effects (or variances). Generally, the prior distributions of Bayesian methods assume that there are large 
variances in some SNP loci and small or even zero variances at other loci, which seems to be more realistic. 
The implementations of Bayesian methods, such as BayesA, B, Cπ and LASSO, are mainly based on Markov 
chain Monte Carlo (MCMC) algorithms, requiring much more computation time to estimate SNP effects. To 
increase the computational speed, researchers have suggested some fast Bayesian methods, such as fast BayesB7 
and emBayesB8. Yu and Meuwissen proposed another fast Bayesian method using the Pareto principle to perform 
genomic prediction9.

The Pareto principle was proposed by the economist Vilfredo Pareto at the beginning of the 20th century10. 
This principle states that approximately 20% of the population possesses 80% of the wealth in a country. Similar 
theories have been further applied in various fields, such as in genomic prediction by Yu and Meuwissen9, result-
ing in the method termed MixP. The prior distribution of MixP is a mixture of two normal distributions, which 
assumes that x% of the SNPs cause (100 − x)% of the genetic variance, so the remaining (100 − x)% of SNPs 
decide the remaining x% of genetic variance. Here we assume γ = x%, and (1 − γ) = (100 − x)%. The large and 
small variances are proposed as follows9:
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where σ1
2 and σ2

2 represent the large and small variance of a SNP effect, respectively; Vg is the total additive 
genetic variance; M is the number of SNPs; and γ ≤ 0.5. The prior for MixP assumes that all SNPs have effects, 
but each SNP has only two possible variances: σ1

2 or σ2
2. This is similar but not completely identical to the 

assumptions found in two other Bayesian methods (BayesA and BayesCπ). In BayesA, the prior also assumes 
that all SNPs have effects but each SNP has its own variance. The variances of the SNP effects in BayesA follow 
an inverse-chi-squared distribution1,11. The prior for BayesCπ assumes that SNPs with non-zero effects have a 
common variance, which is similar to the assumption of MixP, which assumes that “large” SNPs have a common 
variance (σ1

2). However, SNP effects with small variance may be shrunk to zero in BayesCπ.
MixP is also a fast Bayesian method that is not based on a MCMC algorithm9. However, a multivariate normal 

density and an inverse matrix are included in the derivation, increasing the difficulty in understanding the der-
ivation. In the nonMCMC-based MixP, the γ is given but not estimated, such that the optimal value of γ should 
be searched using a cross-validation. However, the parameter γ can be estimated using the MCMC algorithm. 
For the sake of convenience in distinguishing different algorithms, the MixP not based on the MCMC algo-
rithm is termed fast MixP (FMixP), and the MixP based on the MCMC algorithm is termed MCMC-based MixP 
(MMixP) here.

In this study, we developed two new computing strategies for FMixP and MMixP, respectively. The first strat-
egy used a product of univariate densities instead of the multivariate normal density to estimate SNP effects for 
FMixP; the second strategy attempted to use the MCMC algorithm to derive the solutions for MMixP. In addition, 
the strategies were used to analyse the results on simulated data from an international workshop and real data on 
large yellow croaker, and compared the predictive abilities with estimations by BayesA and BayesCπ.

Results
Results for simulated data. The predictive results of various Bayesian methods for the simulated data 
are shown in Table 1. The predictive accuracies are very close in BayesCπ, MMixP, and FMixP (γ = 0.07). The 
accuracy of BayesA is lower than that of BayesCπ, MMixP, and FMixP (γ = 0.07), but higher than FMixP when 
γ = 0.5. BayesCπ and MMixP yield comparatively accurate estimates for π and γ, respectively. As there are 48 
QTLs simulated in the genome, the true value of π (or γ) is 48/5726 ≈ 0.0084, which is very close to the values 
estimated by BayesCπ and MMixP. The γ estimates in the Gibbs sampling cycles are shown in Fig. 1. We can find 
that the value converges when the Gibbs sampling runs at ~1000th cycle.

r(TBV,GEBV) b(TBV,GEBV)

BayesA 0.807 0.850

BayesCπ 0.885 (aπ = 0.0096) 0.896
bFMixP 0.882 (γ = 0.07) 0.980 (γ = 0.07)

FMixP (γ = 0.5) 0.753 0.851

MMixP 0.885 (cγ = 0.0092) 0.893

Table 1. Correlation and regression coefficients of TBV on GEBV for various methods in simulated data. aπ 
is the probability of a SNP with non-zero effect estimated by BayesCπ. bThe optimized result estimated by 
FMixP when γ equals the value in the parentheses. cγ is the probability of a SNP with large variance estilmated 
by MMixP. r(TBV,GEBV) and b(TBV,GEBV) represent the correlation and regression coefficients of TBV on GEBV, 
respectively.

Figure 1. γ estimates in the Gibbs sampling cycles of MMixP in simulated data.
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We compared the predictive results between MixP introduced by Yu and Meuwissen9 and our FMixP, and 
found that the two derivations could yield the same prediction accuracies. Graphs of the correlation and regres-
sion coefficients of TBV on GEBV (r(TBV,GEBV) and b(TBV,GEBV), respectively) against γ for FMixP are presented in 
Fig. 2. Both measures of accuracy follow a similar trend in response to γ. Overall, FMixP yields the highest accu-
racy when the value of γ is close to 0.07, but this value is higher than the true value (0.0084). The distributions 
of SNP effects estimated by FMixP and MMixP are shown in Fig. 3. All the QTLs with absolute effects >0.2 can 
be located by the nearby SNPs in both methods, indicating that the MixP may be a promising implementation in 
GWA study.

Results for real data. Table 2 shows the predictive abilities of various Bayesian methods for four quantita-
tive traits in large yellow croaker. The results estimated by BayesA, BayesCπ, MMixP and FMixP are very similar 
for all traits, with no within-trait difference in predictive ability greater than 0.01. The value of γ (the probability 
of a SNP with a large variance) estimated by MMixP is much higher than that estimated in the simulated data, 
indicating that there may be many QTLs affecting the phenotypes. The results of FMixP show that predictive abil-
ities are optimized when the probability of a SNP with a large variance in specific traits is 0.02 or 0.05. However, 
these optimal points are not obvious because the predictive abilities are still very close to the best results when 
γ = 0.5, which is not consistent with the results from the simulated data. Figure 4 shows graphs of the predictive 
ability against γ for FMixP for various traits. It shows that the value of γ barely affects the predictive ability as long 

Figure 2. Graphs of the correlation and regression coefficients of TBV on GEBV for FMixP against γ in 
simulated data.

Figure 3. Distributions of absolute SNP effects estimated by FMixP and MMixP in simulated data. (a) FMixP 
with γ = 0.07; (b) MMixP. ▲ represents the location and effect of QTL in genome.
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as γ is larger than 0.05 or even 0.02. The values of γ estimated by MMixP are 0.28, 0.32, 0.27 and 0.31 for the traits 
body weight, body length, body height and length/height, respectively.

Computation time. Table 3 shows the computation time of each method for the simulated data and the 
trait length/height in large yellow croaker. The Fortran90 codes were run in a computer with an Intel Xeon CPU 
E7-4820. The computation time of MMixP is the longest in all statistical methods. Compared with the BayesCπ, 
the computational speed of BayesA is slightly slower in the simulated data but slightly faster in the real data. 
However, all MCMC-based Bayesian methods show a much slower computational speed than FMixP. The com-
putation time for FMixP with γ = 0.5 is longer than that for FMixP with γ = 0.05 in the simulated data, but this 
difference is not obvious in the real data. We also compared the computation time between MixP introduced by 

Trait

Predictive ability (Mean ± SE)

BayesA BayesCπ aFMixP
FMixP 
(γ = 0.5) MMixP

Body weight 0.413 ± 0.040 0.413 ± 0.040 0.417 ± 0.041 (γ = 0.05) 0.415 ± 0.040 0.412 ± 0.040

Body length 0.431 ± 0.033 0.430 ± 0.033 0.432 ± 0.032 (γ = 0.02) 0.425 ± 0.033 0.432 ± 0.033

Body height 0.388 ± 0.037 0.388 ± 0.037 0.389 ± 0.038 (γ = 0.02) 0.387 ± 0.037 0.387 ± 0.037

Length/height 0.274 ± 0.038 0.273 ± 0.038 0.278 ± 0.036 (γ = 0.05) 0.275 ± 0.037 0.277 ± 0.038

Table 2. Predictive abilities of various methods for four traits in large yellow croaker. aThe optimized result 
estimated by FMixP when γ equals the value in the parentheses.

Figure 4. Graphs of the predictive ability of FMixP against γ for four traits in large yellow croaker. (a) Body 
weight; (b) Body length; (c) Body height; (d) Length/height.

Computation time (minute) BayesA BayesCπ MMixP FMixP (γ = 0.05) FMixP (γ = 0.5)

Simulated data 309.6 268.1 428.7 0.48 1.8

length/height 210.5 229.2 263.1 0.02 0.02

Table 3. Computation time of genomic prediction using various Bayesian methods for trait length/height.
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Yu and Meuwissen and our FMixP, and the results showed that the time of their MixP was approximately 20~25% 
longer than that of our FMixP.

Discussion
In this study, we compared the predictive abilities among BayesA, BayesCπ, MMixP and FMixP. When γ = 0.5, 
the results of FMixP are equivalent to those of GBLUP or RRBLUP, an observation which was also mentioned by 
Yu and Meuwissen9. Hence, the predictive result of FMixP when γ = 0.5 is the same as that of GBLUP in Shepherd 
et al.8, in which the same simulated data was used. Therefore, we actually compared the results of five methods 
(i.e., BayesA, BayesCπ, MMixP, FMixP and GBLUP) in this study. The results show that the ranking of the predic-
tive results among the different methods is not consistent between the simulated and real data. In the simulated 
data, the ranking according to predictive accuracy is: BayesCπ ≈ MMixP ≈ FMixP (γ = 0.07) > BayesA > GBLUP. 
However, all of the methods yield almost the same result within a given trait in real data from large yellow croaker. 
A reasonable explanation may be that there is a small number of QTLs in the simulated data but many more 
QTLs in the real data. There are two reasons that support this speculation: (i) The simulated results of Yu and 
Meuwissen showed that accuracy was not sensitive to γ when the number of QTL loci was large, but FMixP with 
γ < 0.5 performed better than GBLUP if there was a small number of QTLs9. The results shown in Figs 2 and 4 are 
consistent with the above two cases. (ii) The values of γ estimated by MMixP in simulated data are much lower 
than that estimated in the real data, indicating there may be many QTL loci affecting the phenotypes in large 
yellow croaker. Another explanation is that when the LD between markers is not strong, the accuracy may be due 
to the relationships captured by markers12,13. In this case, the GBLUP and various Bayesian methods may yield 
similar predictive results.

In addition to the predictive accuracy, computational speed is another important aspect in genomic predic-
tion. This study shows that FMixP is significantly faster than the MCMC-based Bayesian methods. The main 
reason for this difference is that FMixP is not based on MCMC algorithms which are sampling processes and 
require many cycles to obtain a precise solution. It shows that the computation time for BayesCπ is slightly longer 
than BayesA in the real data, but slightly shorter in the simulated data. This is because the computational speed 
of BayesCπ is based on the value of π. A smaller π means more SNPs have zero effects and thus do not need to 
be sampled from the posterior normal distribution. MMixP needs more computation time than BayesA and 
BayesCπ, because there are more variables that need to be sampled in MMixP. For example, the SNP effect with 
variance equalling zero is not sampled in BayesCπ. However, all SNP effects need to be sampled in each Gibbs 
sampling cycle in MMixP, because each SNP may have a large or small variance. The computational speed for 
FMixP with γ = 0.05 is faster than for FMixP with γ = 0.5 in the simulated data. The possible reason for this is that 
the number of QTLs is very small in the simulated data. FMixP with γ = 0.05 is closer to the real QTL distribu-
tion, so that FMixP with γ = 0.05 has a faster convergence speed. This also suggests that there may be more QTL 
loci in the real data, because there is no obvious difference in computation time for FMixP with γ = 0.05 or 0.5.

This study proposed two new computing strategies: one strategy for FMixP and the other one for MMixP. 
Compared with the derivation of Yu and Meuwissen9, we used a simpler derivation to obtain the solutions in 
FMixP. The advantage of FMixP is the extremely fast computational speed. However, the probability of a SNP 
having a large variance (represented as γ) and variances of SNP effects cannot be estimated by this implementa-
tion. Instead, using the MCMC algorithm can estimate the γ and various variances, but the computational speed 
is significantly slower than FMixP. The two strategies may provide some references to others who want to perform 
genomic prediction in the future.

Material and Methods
Ethics approval. This study and all experimental protocols were approved by the Animal Care and Use 
Committee of the Fisheries College of Jimei University (Animal Ethics no. 1067). All methods were performed in 
accordance with approved guidelines.

Analytical derivation for FMixP. The linear model for genomic prediction was as follows:

= + +y Xu Bg e, (2)

where y is a vector of phenotypic records, X is the design matrix for fixed effects, and u is a vector of fixed 
effects. In the simulated data, X = (1 1 … 1)′ and u is overall mean, whereas in the real data, the fixed effects were 
the sexual effects, Xi = (1 0) for male and (0 1) for female. B is the matrix of SNP genotypes (coded as 0 for geno-
type ‘A_A’, 1 for ‘A_a’ and 2 for ‘a_a’), g is a vector of SNP effects, and e is a vector of residual effects, where e ~ 
N(0, Iσe

2). Genotypic codes were standardised using the formula: ′ = − −( )B B p p p2 / 2 (1 )ij ij j j j
, where pj is the 

frequency of allele ‘a’ at locus j.
In this study, the prior distribution was the same as that described by Yu and Meuwissen9. According to the 

prior distribution for SNP variance, the prior for SNP effect gj can be written as a mixture of normal distributions:

π γφ σ γ φ σ= + −( ) ( ) ( )g g g0, (1 ) 0, , (3)j j j1
2

2
2

where gj is the effect of SNP j.
Here, we used an Iterative Conditional Expectation (ICE) algorithm7 to estimate the SNP effects. This algo-

rithm estimates E(g|y) for each SNP effect in turn, where the current effects of the other SNPs are assumed to be 
known values. For example, if E(gj|y−j) is estimated, the current effects of all other SNPs are used to calculate the 
y−j, i.e.,
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where Bk is a vector from the kth column of B. The expectation of SNP effect, E(gj|y−j), is estimated by a Bayesian 
model7,9:
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where the f(y−j|Bjgj, Iσe
2) is a multivariate normal density. Evaluating this multivariate density will be computa-

tionally intense because it involves calculating the determinant and inverse of variance-covariance matrix for the 
data y−j. However, the f(y−j|Bjgj, Iσe

2) is proportional to the product of univariate normal densities f(Y|gj, σ2), 
where Y = (Bj′Bj)−1Bj′y−j and σ2 = (Bj′Bj)−1σe

2 (See Appendix 2 of Meuwissen et al.7). Unlike the derivation of Yu 
and Meuwissen9, we did not calculate the multivariate likelihood but simplified the derivation using f(Y|gj, σ2) to 
replace f(y−j|Bjgj, Iσe

2). Thus, the equation (5) can be rewritten as:
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Combined with equation (3), the numerator of equation (6) can be split into two terms:
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The first term in formula (7) can be derived as follows:
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The last term in formula (8) can be taken as calculating the expected value of gj in the normal distribution with 
a mean Yσ1

2/(σ1
2 + σ2) and variance σ2σ1

2/(σ1
2 + σ2), so this term equals Yσ1

2/(σ1
2 + σ2). Thus, the first term of 

formula (7) becomes:
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Thus, the numerator of equation (6) equals:
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The derivation of the denominator in equation (6) is very similar to that of the numerator, but there is no gj in 
the integrand. Therefore, the integral is not to calculate the expected value, but rather to calculate the cumulative 
probability from −∞ to ∞, so this value is 1. Thus, the denominator in equation (6) can be written as:
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Thus, we derive the final form for equation (6),
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The fixed effects are estimated in each iteration by the formula: û  = (X′X)−1X′(y−Bĝ). We judged the con-
vergence of solutions at the tth iteration according to the formula (Gt−Gt−1)′(Gt−Gt−1)/(Gt′Gt) < 10−8, where 
G = ( û′ ĝ′)′.

Derivation for MMixP. FMixP does not estimate the parameter γ, such that a direct search should be used 
to obtain the optimal value of γ in genomic prediction. However, the value of γ can be estimated by the MCMC 
algorithm. With MMixP, the prior distributions of various variables, such as γ, u, g, σ1

2, σ2
2 and σe

2, are required. 
The priors for γ, u and σe

2 were assumed to follow uniform distributions. The prior for gj depended on the γ and 
variances:
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where γ is the probability that a SNP has a large variance, and σ1
2 and σ2

2 represent the large and small variance, 
respectively. The priors of σ1

2 and σ2
2 were assumed to follow the inverse-chi-squared distributions:
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 according to the properties of 
inverse-chi-squared distribution and Pareto principle. A similar method was used to set the parameter s2

2. An 
indicator variable δj was used to indicate whether SNP j had a large or small variance. The prior for δj was 

δ γ γ γ= −δ δ−p( ) (1 )j
(1 )j j , where δj = 1 and δj = 0 represent the σj
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2 with probability γ and σj
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ability (1 − γ), respectively.
The δj and gj are sampled from their joint conditional distribution, because the sampling strategy of gj is 

dependent on the value of δj. The joint conditional distribution can be written as:
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Note that f(y−j|σj
2, σe

2) is a multivariate density, the case of which is similar to that in FMixP. An efficient way 
is to use the product of univariate distributions of Bj′y−j instead of the distribution of y−j

13,14. The f(Bj′y−j|σj
2, σe

2) 
has zero mean and variance (Bj′Bj)2σj

2 + Bj′Bjσe
2. Thus, the equation (19) can be written as:
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where V1 = (Bj′Bj)2σ1
2 + Bj′Bjσe

2 and V2 = (Bj′Bj)2σ2
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2. After the δj has been updated, gj is sampled as:
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As the σ1
2 appears only in its own prior and the normal distribution of gj with δj = 1, the posterior distribution 

of σ1
2 can be derived as:
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where k is the number of SNP loci with δj = 1. Similarly, the posterior distribution of σ2
2 follows the 

inverse-chi-squared distribution χ
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, where m is the number of SNP loci with δj = 0.

The starting value of γ was set to 0.5, and the posterior probability is drawn from the Beta(k + 1, m + 1):

γ σ γ γ

γ γ

δ σ δ∝

∝ −
.

f f fy u g( , , , , , ) ( ) ( )
(1 ) (23)

e
k m

2 2

Note that if the sampling value of γ is larger than 0.5, we can switch the labels of the variance σ1
2 and σ2

2, and 
set value of γ to 1 − γ. The posterior distributions of fixed effect u and residual variance σe

2 are the same as 
BayesA, which has been described in many studies1,13,15.

Genomic prediction by other approaches. Two other Bayesian methods, BayesA1 and BayesCπ3, were 
used for comparison with MixP. The prior distribution of variances of SNP effects in BayesA follows an 
inverse-chi-squared distribution, i.e., σj

2 ~ χ−2(v, s2)1,11. In BayesCπ, SNPs with non-zero effects have a common 
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variance that also follows an inverse-chi-squared distribution3. The degree of freedom (v) of the 
inverse-chi-squared distribution was set to 5.0. As the SNP genotypes had been standardised, parameter s2 was set 
without ∑2pj(1 − pj) in the denominator, which was different from the formula derived by Habier et al.3 and 
Gianola et al.16. In this study, s2 = [(v − 2)Vg]/(vM) in BayesA and s2 = [(v − 2)Vg]/(πvM) in BayesCπ, where π 
represents the probability of a SNP with a non-zero effect and is estimated by the MCMC algorithm. Vg is total 
additive genetic variance which is estimated using the R-package “EMMREML” (Version 3.1) that is one of pack-
ages17–22 used to estimate genetic parameters. Before Vg estimation, a genomic relationship matrix (G matrix) was 
calculated using the formula2: = − − ′

∑ −
G

p p
B P)(B P( )
2 (1 )j j

, where the jth column of P is a vector of the frequency of allele 

‘a’ at the jth locus, i.e., = ... ′p p pP ( , , , )j j j j . Gibbs sampling was run for 20000 cycles, and the first 10000 cycles 
were discarded as burn in.

Simulated data. Both the simulated and real data were used to compare the predictive results of various 
statistical methods. The simulated data had been distributed to the participants of the QTLMAS XII workshop. 
The data was described in detail by Lund et al.23 and a summary is given as follows. Through a simulation of a 
historic population of 50 generations, 4665 and 1200 individuals were simulated in the training and testing data 
sets, respectively. Six-thousand biallelic SNP loci were evenly spaced on 6 Morgan chromosomes, and 5,726 SNPs 
with minor allele frequencies (MAF) ≥0.05 were used for research. Forty-eight QTL loci were simulated, and the 
effects were sampled from a gamma distribution with a scale parameter 5.4 and a shape parameter of 0.42. The 
residual values were sampled to obtain a heritability value of 0.3 for the trait.

Real data on large yellow croaker. The experimental materials were large yellow croaker (Larimichthys 
crocea), which is one of the most commercially important marine fish species in southeast China and Eastern 
Asia24. All fish were reared in a breeding nucleus farm named ‘Jinling Aquaculture Science and Technology Co. 
Ltd.’ in Ningde City, Fujian Province, P.R. China. In total, 30 males and 30 females were mated randomly in a pool, 
and a total of 500 progenies (237 males and 263 females) were randomly selected and measured in the experi-
ment. The trial was carried out in the Key Laboratory of Healthy Mariculture for the East China Sea when the fish 
were two years old. Four quantitative traits, body weight, body length, body height and the length/height ratio, 
were selected to perform genomic prediction. Growth rate and body shape (customers prefer purchasing fish with 
slender bodies) are the important traits for large yellow croaker, so these four traits were selected for research. The 
parameters of the four traits are shown in Table 4.

Next generation sequencing and genotyping. Fin samples from 500 individuals were collected for 
genotyping. The Genotyping-By-Sequencing (GBS) method was used to construct the libraries for next gen-
eration sequencing (NGS). Genomic DNA was incubated at 37 °C with EcoRI and NlaIII, CutSmart™ buffer 
and MilliQ water. Digestion reactions were heat-inactivated at 65 °C for 20 minutes and the reaction system was 
held at 8 °C. The digested DNA was ligated to adapter sequences with CutSmart™ buffer, ATP, T4 DNA ligase, 
adapter mix and MilliQ water at 16 °C. The restriction-ligation reaction was also heat-inactivated at 65 °C for 
20 minutes and the reaction system was held at 8 °C afterward. The PCR reaction was performed using diluted 
restriction-ligation samples, dNTP, Taq DNA polymerase (NEB) and IlluminaF and indexing primers. Fragments 
that were 200~300 bp in size were isolated using a Gel Extraction Kit (Qiagen). Then, pair-end sequencing was 
performed using an Illumina high-throughput sequencing platform. The raw sequencing reads were quality 
checked by FastQC25. The high-quality, filtered reads were mapped to the large yellow croaker reference genome 
sequence by BWA version 0.7.1026. The alignment files were then sorted and the duplicates marked by Picard 
(http://picard.sourceforge.net). Then, the GATK package27 was applied for SNP calling. As a result, 29,748 SNPs 
with a missing rate ≤20%, a MAF (minor allele frequency) ≥0.05 and genotypes in Hardy-Weinberg equilibrium 
were selected for further analysis. Beagle Version 3.3.2 software was used to impute the missing SNPs28.

Cross-validation. Genomic prediction by a replicated training-testing method was used to evaluate the pre-
dictive results of the real data. Cross-validation of 10 replicates was performed. All 500 individuals were randomly 
and evenly divided into 10 groups of 50 individuals each. In each replicate, one of the groups was selected as the 
testing data set while the remaining nine groups were used as the training data set. To observe the relationship 
between the predictive results of FMixP with γ, we varied the value of γ from 0.01 to 0.5 (50 levels were used with 
0.01 as a step size).

Predictive accuracy and predictive ability. In the simulation, the correlation coefficient between true 
genetic values and predicted genetic values, r(TBV,GEBV) was used to measure the predictive accuracy1, where 

Trait

Male Female Heritabilityb

Number Meana ± SE Number Meana±SE (Mean±SE)

Body weight 237 202.22 ± 5.01 263 247.41 ± 6.16 0.61 ± 0.11

Body length 237 227.19 ± 1.64 263 234.85 ± 1.79 0.59 ± 0.10

Body height 237 62.03 ± 0.53 263 66.61 ± 0.59 0.52 ± 0.11

Length/height 237 3.68 ± 0.01 263 3.54 ± 0.01 0.32 ± 0.10

Table 4. Statistical results of the phenotypic data for four quantitative traits in large yellow croaker. aThe units 
are gram (g) for body weight, and millimetre (mm) for body length and body height.

http://picard.sourceforge.net
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GEBV = Bĝ, ĝ is the vector of estimated SNP effects and B is the SNP genotypes; and an individual true breeding 
value (TBV) can be obtained by summing up all simulated QTL effects. We give a brief explanation below. If an 
individual GEBV is close to its TBV, the predictive accuracy is high. But if one aims to assess the predictive accu-
racies of a set of GEBV, one can use r(TBV,GEBV), and higher r(TBV,GEBV) suggests higher predictive accuracy.

In the real data analysis, because the true breeding values are unknown, we used the predictive ability to 
measure the predictive accuracy, which is described as the correlation coefficient between GEBV, and the phe-
notypes adjusted for the covariates (y − X û , where only genetic and residual effects are left), r(y−Xû, GEBV)

29. The 
higher correlation between them is, the higher genetic variance captured by the genetic SNPs is, leading to higher 
predictive ability.

All 500 individuals were added to the prediction model to estimate the computation time for various Bayesian 
methods. All of the calculation processes (except the REML process) were implemented in Fortran90 codes and 
run on the computer server of Jimei University.

Availability of data. Raw DNA sequencing reads were deposited in NCBI with the project accession 
PRJNA309464 and SRA accession SRR3114179.
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