
1ScIentIfIc RePORts | 7: 16907  | DOI:10.1038/s41598-017-16964-4

www.nature.com/scientificreports

Genetic Pleiotropy between 
Nicotine Dependence and 
Respiratory Outcomes
Jushan Zhang1,2, Shouneng Peng3,4, Haoxiang Cheng3,4, Yoko Nomura5,6, Antonio Fabio Di 
Narzo3 & Ke Hao1,3,4

Smoking is a major cause of respiratory conditions. To date, the genetic pleiotropy between smoking 
behavior and lung function/chronic obstructive pulmonary disease (COPD) have not been systematically 
explored. We leverage large data sets of smoking behavior, lung function and COPD, and addressed 
two questions, (1) whether the genetic predisposition of nicotine dependence influence COPD risk and 
lung function; and (2) the genetic pleiotropy follow causal or independent model. We found the genetic 
predisposition of nicotine dependence was associated with COPD risk, even after adjusting for smoking 
behavior, indicating genetic pleiotropy and independent model. Two known nicotine dependent loci 
(15q25.1 and 19q13.2) were associated with smoking adjusted lung function, and 15q25.1 reached 
genome-wide significance. At various suggestive p-value thresholds, the smoking adjusted lung 
function traits share association signals with cigarettes per day and former smoking, substantially 
greater than random chance. Empirical data showed the genetic pleiotropy between nicotine 
dependence and COPD or lung function. The basis of pleiotropic effect is rather complex, attributable 
to a large number of genetic variants, and many variants functions through independent model, where 
the pleiotropic variants directly affect lung function, not mediated by influencing subjects’ smoking 
behavior.

Chronic obstructive pulmonary disease (COPD) is the third cause of death in the US after cancers and cardio-
vascular diseases1 and is among the leading causes of hospitalization in industrialized countries2,3. It was recently 
estimated that the absolute number of COPD cases in developed countries will increase by more than 150% from 
2010 to 20304, yet there is no curative therapy for COPD1,5. A lack of understanding of the molecular mechanisms 
in the pathogenesis of COPD has hampered efforts to develop new biomarkers and effective therapies.

COPD has multiple risk factors and complex etiology, where cigarette smoking and genetic susceptibility 
are among the main risk factors1,6. Tobacco smoking accounted for about 5.1 million deaths globally in 2004, 
and it is observed recent increases in smoking prevalence in developing countries7. But only 20–25% of smokers 
develop clinically significant airflow obstruction8. Smoking behavior is partially genetically determined, and at 
least genome-wide significant associated loci were identified in European ancestry subjects9,10, where the strong-
est and most consistent association reported is at the 15q25.1 locus (CHRNA3-CHRNA5-CHRNB4 gene cluster). 
Genes associated with smoking quantity were enriched for cholinergic receptors, sensory perception of smell, and 
Retinoid Binding11.

In parallel, there is strong evidence that genetic variants (both common and rare) contribution to COPD 
and pulmonary function. Candidate gene and genome-wide association studies (GWAS) have identified genetic 
variants associated with COPD12–16. The latest GWAS was performed by the International COPD Genetics 
Consortium (ICGC)17 identified 22 COPD susceptibility loci at genome-wide significance. Exome sequencing 
study found rare variants on CHRNA3, CHRNA5, and CHRNB4 genes were associated with COPD18. Lung 
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function (e.g. FEV1, FVC and FEV1/FVC ratio) are traits closely related to COPD, in fact, lung function param-
eters are often used in defining COPD cases6. Three key parameters are commonly used in characterizing lung 
function: expired volume in 1st second (FEV1), forced vital capacity (FVC) and FEV1/FVC. FVC is the volume of 
air that can forcibly be blown out after full inspiration19, and is the most basic maneuver in spirometry tests. FEV1 
is the volume of air exhaled in the first second during forced exhalation after maximal inspiration19. FEV1/FVC is 
the ratio of these two values, where the ratio ≥ 80% is considered normal19. To date, 97 independent genetic loci 
were identified influencing lung function traits (FEV1, FVC and FEV1/FVC)6.

Genetic pleiotropy is the phenomenon where a DNA variant influences multiple traits20. Proposed by our 
group and others, available GWAS summary data can be used to detect genetic pleiotropy and pinpoint the vari-
ants, gene and pathways underlying the shared etiology21–23. Given smoking is a strong cause of COPD and lung 
function decline, genetic variants associated with smoking behavior or nicotine dependence (ND) are likely also 
in association with lung function (LF), which can be viewed as genetic pleiotropy. The genetic pleiotropy could 
have two possible mechanisms: (1) a genetic locus causes ND and then in turn causes LF decline (Fig. 1A); and (2) 
a genetic locus causes ND and LF decline independently (Fig. 1B). These two mechanisms can be distinguished 
by testing the association between genetic locus and smoking adjusted LF (ie, LFadj). If mechanism (1) is true, the 
ND locus will show no association with LFadj (Fig. 1C).

A recent GWAS meta-analysis employed 48,943 UK Biobank individuals in discovery phase and 95,375 indi-
viduals in follow-up phase, and increased the independent signals for lung function from 54 to 976. Importantly, 
the study carefully adjusted for smoking behavior, and among smokers, the pack-year was also adjustment6. The 
GWAS results of smoking-adjusted lung function offer a unique opportunity to decipher the genetic pleiotropy 
between nicotine dependence and function as well as the etiological mechanisms.

Results
Genetic predisposition of nicotine dependence is associated with COPD risk. We leverage the 
individual level phenotype (COPD affected status and smoking behavior) and genotype data of COPDgene 
cohort (Materials and Methods) to test association between genetic predisposition of nicotine dependence 
(quantitatively summarized as polygenic score, or PGS) and COPD risk. On each COPDgene study subject, we 
computed the PGS for ND CPD trait (i.e., PGSND-CDP). The PGSND-CDP compiled at 1e-3 and 1e-4 p-value thresh-
olds were associated with that COPD affected status at p-value 0.025 and 1.03e-6, respectively (Table 1), indicat-
ing significant pleiotropy of ND and COPD. The positive association coefficient indicate genetic predisposition 
of higher cigarettes per day leads to higher COPD risk (Table 1). PGS of former smoking (ie, PGSND-FORMER)  
were also associated with COPD, and the negative coefficient suggested the genetic predisposition of smoking ces-
sation reduced COPD risk. Next, we adjusted the smoking covariates and found the PGSND-CDP and PGSND-FORMER  
were still associated with COPD (Tables 2 and 3). Importantly, the association p value and coefficient were little 
changed before and after adjustment, indicating an independent pleiotropy model (Fig. 1B), where the effect of 
PGSND-CDP and PGSND-FORMER on COPD risk was not mediated by smoking behavior of the study participants.

Nicotine dependence genome-wide significant loci and their association with lung function 
(LF). Firstly, we retrieved six independent ND GWAS loci of genome-wide significance (p < 5e-8) in European 
ancestry24 from the NHGRI-EBI catalog25, and examined the association between these loci and smoking 
adjusted lung function (LFadj) in UKBB meta-analysis cohort (Table 4). In UKBB study, the smoking status was 
adjusted with the regression model in the form of indicator variables denoting current smoker, and denoting 

Figure 1. Models of genetic pleiotropy.
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former smokers; as well as quantitative variable denoting pack-year (in smokers). At nominal p value (≤0.05), 
two ND loci showed association with at least one LFadj traits (FEV1, FVC, and FEV1/FVC Ratio). The lead SNP, 
rs1051730, of the 15q25.1 locus was strongly associated with all three LFadj trait, and its association with smoking 
adjusted FEV1 reached genome-wide significant (p = 5e-8), further, the 19q13.2 locus, known in association with 
COPD26, is also associated with smoking adjusted FEV1 (Table 4), suggesting the 15q25.1 and 19q13.2 loci could 

PGS Training Trait

1e-3 p-value threshold in PGS construction 1e-4 p-value threshold in PGS construction
#SNPs β p.value #SNPs β p.value

Cigarettes Per Day 891 0.086 0.025495 116 0.190 1.03E-06

Ever Smoked 1110 0.082 0.030847 142 0.044 0.257046

Former Smoker 858 −0.138 2.37E-04 114 −0.069 0.078856

LogOnset 797 0.028 0.43318 76 −0.023 0.430121

Table 1. Polygenic score of nicotine dependence is associated with COPD case/control status Polygenic score 
(PGS) formulation is established based on TAG GWAS summary data using 1e-3 and 1e-4 p-value threshold on 
nicotine dependence (ND) traits. The ND PGS was computed on COPDgene dataset (sample size = 4903), and 
tested for association with COPD case-control status. #SNPs, the number of SNPs used in PGS computation, β, 
association coefficient (ie, log Odds Ratio).

PGS Training Trait

1e-3 p-value threshold in PGS construction 1e-4 p-value threshold in PGS construction
#SNPs β p.value #SNPs β p.value

Cigarettes Per Day 891 0.083 0.031482 116 0.185 2.07E-06

Ever Smoked 1110 0.090 0.017521 142 0.048 0.216163

Former Smoker 858 −0.143 1.49E-04 114 −0.066 0.091961

LogOnset 797 0.029 0.419497 76 −0.023 0.440345

Table 2. Polygenic score of nicotine dependence is associated with COPD case/control status adjusted for 
smoking status Polygenic score (PGS) formulation is established based on TAG GWAS summary data using 
1e-3 and 1e-4 p value threshold on nicotine dependence (ND) traits. The ND PGS was computed on COPDgene 
dataset (sample size = 4903), and tested for association with COPD case-control status, adjusted for smoking 
status (current smoker vs. non-smoker). #SNPs, the number of SNPs used in PGS computation, β, association 
coefficient (ie, log Odds Ratio).

PGS Training Trait

1e-3 p-value threshold in PGS construction 1e-4 p-value threshold in PGS construction
#SNPs β p.value #SNPs β p.value

Cigarettes Per Day 891 0.085 0.0376 116 0.197 1.82E-06

Ever Smoked 1110 0.072 0.070447 142 0.057 0.163214

Former Smoker 858 −0.132 9.46E-04 114 −0.067 0.106736

LogOnset 797 0.022 0.555505 76 −0.019 0.544609

Table 3. Polygenic score of nicotine dependence is associated with COPD case/control status adjusted for 
smoking duration Polygenic score (PGS) formulation is established based on TAG GWAS summary data using 
1e-3 and 1e-4 p value threshold on nicotine dependence (ND) traits. The ND PGS was computed on COPDgene 
dataset (sample size = 4903), and tested for association with COPD case-control status, adjusted for smoking 
duration. #SNPs, the number of SNPs used in PGS computation, β, association coefficient (ie, log Odds Ratio).

Locus* Lead SNP Chr Position Reported Genes ND P

Association with LF

FEV1 FVC RATIO

15q25.1 rs1051730 15 78894339 CHRNA3 3.0E-73 Y Y Y

10q23.32 rs1329650 10 93348120 LOC100188947 6.0E-10 N N N

8p11.21 rs6474412 8 42550498 CHRNB3, CHRNA6 1.0E-08 N N N

19q13.2 rs3733829 19 41310571 EGLN2, CYP2A6, RAB4D 1.0E-08 Y N Y

11p14.1 rs6265 11 27679916 BDNF 2.0E-08 N N N

9q34.2 rs3025343 9 136478355 DBH 4.0E-08 N N N

Table 4. Nicotine dependence loci and in lung function. *Genome-wide significant loci of nicotine dependence 
in European ancestry, 15q25.132, 10q23.3232, 19q13.210,32, 11p14.132, 9q34.232, 8p11.2110 were summarized by 
NHGRI-EBI GWAS catalog. The reported lead SNP was checked for association with smoking adjusted lung 
function in UKBB GWAS meta-analysis6. ND, nicotine dependence; LF, lung function.
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influence ND and LF independently (Fig. 1B). In contrast, four genome-wide significant ND loci (10q23.32, 
8p11.21, 11p14.1, 9q34.2) showed no association with LFadj traits (Table 4 and Fig S1), suggesting causal pleiot-
ropy model (Fig. 1 A), where the genetic variants influence LF, mediated by smoking behavior.

Identification of SNPs associated with lung function and nicotine dependence at suggestive 
threshold. There is a general consensus among GWAS studies that a p-value less than 5e-8 corresponds to 
genome-wide significance24. NHGRI-EBI GWAS catalog focuses on highly significant loci, but true association 
loci may only show suggestive p values given the limited power in GWAS. We leverage the summary data of with 
UKBB smoking adjusted LF (LFadj) and TAG ND (Materials and Methods). Applied various p thresholds (ranging 
from 1e-8 to 1e-2), we identified SNPs in associated with LFadj or ND (Table S1). The UKBB LFadj GWAS yield 
many SNPs highly significantly associated with smoking adjusted FEV1, FVC and FEV1/FVC Ratio. On the other 
hand, the TAG ND study captured strong genetic signals for CPD (cigarettes per day) and moderate signal for 
former smoking (Table S1). But no SNP associated ever smoking or log-onset at p < 1e-7 level, indicating these 
two traits either are not controlled by genetic factors or the TAG study did not have sufficient power (Table S1).

Among the ~2 million SNPs tested in both LFadj and ND GWAS studies, the proportion of associated SNPs 
at any given p-value threshold was greater than alpha level (Table 5). For example, at p-value ≤ 1e-3 threshold, 
11,716 SNPs and 2,791 SNPs were associated with FEV1 and CPD, respectively, and 71 SNPs were associated 
with both trait, which is substantially greater than random chance (enrichment fold = 4.61). In fact, we observed 
excess overlapping of FEV1 and CPD GWAS SNPs were across multiple p-value thresholds (Table 5 and Fig. 2). 
Further, at p value ≤ 1e-3 threshold, 139 SNPs were associated with both FEV1 and former smoking (Table 6), 
11.8 folds of enrichment than random chance. While, GWAS signals of ever smoking and smoking onset showed 
little or very modest overlap with LFadj GWAS (Tables S2 and S3). The SNPs associated with at least one of the 
nicotine dependence and lung function traits (cigarettes per day, former smoking, FEV1, FVC, FEV1/FVC) at p 
value ≤ 1e-3 level were listed in Table S4; while SNPs associated with all of the five nicotine dependence and lung 
function traits were detailed in Table S4.

Association direction of shared LFadj and ND SNPs. The shared LFadj/ND SNPs can be stratified into 
categories according whether the allele associated with higher LFadj trait is also associated with higher ND trait 
or ND event odds (ie, consistent direction SNP) or vice versa (ie, divergent direction SNP). We stratified the 
shared LFadj/ND SNPs by directions, and found all three LFadj traits primarily have divergent direction with CDP 
(Table 5). At 1e-3 threshold, 71 SNPs are shared by FEV1 and CPD, where 65 SNPs (91.55%) with divergent direc-
tions (binomial p value = 4.34e-13), indicating alleles lead to higher smoking quantity (cigarettes per day) tends 
to associated with lower LFadj traits. In contrast, the LFadj traits primarily have consistent direction with former 
smoking (Table 6). At 1e-3 threshold, 193 SNPs were shared by FEV1 and former smoking, and only 21 SNPs 
(10.88%) with divergent directions but 172 SNPs are of a consistent direction (binomial p-value = 4.34e-13), 
indicating alleles lead to smoking cessation tend to associated with higher LFadj traits.

Further, we stratified the SNPs into the consistent direction SNP and divergent SNP subcategories, regardless 
of GWAS test p-values criteria (Tables S5–S8). We found the overlap of CPD and LFadj GWAS signals primarily 
occur among the SNPs of divergent allele direction, and observed little overlap among the SNPs of consistent 

Lung Function 
Traits

GWAS P value 
threshold

Enrichment 
Fold

N of overlap 
SNPs

N of overlap SNPs of 
divergent risk direction

% SNPs of divergent 
risk direction

p-value of divergent 
risk direction

FEV1

1.0E-06 261 26 26 100 6.32E-08

1.0E-05 127 26 26 100 6.32E-08

1.0E-04 54.9 42 42 100 1.35E-12

1.0E-03 4.61 71 65 91.55 4.34E-13

1.0E-02 1.67 826 451 54.60 1.29E-2

1.0E-01 1.03 29,067 15,404 52.99 9.00E-24

FVC

1.0E-06 — 0 0 — —

1.0E-05 — 0 0 — —

1.0E-04 19.1 13 13 100 3.91E-04

1.0E-03 3.50 49 47 95.92 1.17E-11

1.0E-02 1.81 869 491 56.50 2.40E-04

1.0E-01 1.07 29,865 15,840 53.04 4.47E-25

FEV1/FVC Ratio

1.0E-06 — 0 0 — —

1.0E-05 63.90 14 14 100 2.08E-04

1.0E-04 14.60 14 14 100 2.08E-04

1.0E-03 2.28 39 39 100 9.80E-12

1.0E-02 1.31 669 407 60.84 5.23E-08

1.0E-01 1.03 28,468 14,474 50.84 6.70E-03

Table 5. Overlap of GWAS signals between nicotine dependence (cigarettes per day) and lung function traits. 
*Consistent direction allele, the SNPs where the same allele association with higher cigarettes per day and 
higher lung function trait (e.g. FEV1).
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allele direction. For example, at a GWAS p-value < 1e-3, SNPs of divergent allele direction for FEV1 and CPD 
showed substantial overlap (6.94 fold enrichment), in contrast, the overlap for SNPs of consistent allele direction 
were not different from random chance.

Gene ontology influenced by the shared SNPs of LFadj and ND. Shared LFadj/ND SNPs may 
undergo complicated pathways and lead to disease risk. Identifying the genes influenced by such shared SNPs 
would be the key step elucidating the SNPs’ function and pathogenic pathways. To investigate potential func-
tional impacts of LFadj/ND shared SNPs, we used a “relax” p-value threshold criterion of 1e-2 for GWAS. 
Among the 826 shared FEV1 - CPD SNPs, 375 are characterized by having consistent direction and 451 are 
characterized by divergent direction. Based on SNP position and dbSNP annotation27, we identified genes 
located with on or near the share GWAS SNPs of LFadj and ND, and then carried out the Gene Ontology (GO) 
cellular processes enrichment analysis using METACORE suite (Fig. 3). The top 10 enriched processes (p-value 
≤ 1e-6) were regulation of synapse vesicles as well as regulation of respiratory systems, highly relevant to lung 
function and nicotine dependence.

Co-localization of 15q25.1 locus underlying LFadj and ND. SNPs on 15q25.1 locus are associated with 
both LFadj and ND at genome-wide significant level (Table 4). Also, the CHRNA3-CHRNA5-CHRNB4 gene clus-
ter in this locus is functional relevant to both traits. However, given that neighboring SNPs were often in tight 
linkage disequilibrium (LD), the overlap of GWAS signals do not guarantee that the disease risks of the two 
traits are caused by the same variant. Recently developed methods allow more advanced integration of GWAS 
summary data to co-localize GWAS signals28. The co-localization methods28 evaluated 5 hypotheses (Materials 

Figure 2. QQplot showed SNPs associated with nicotine dependence are enriched for small p values in lung 
function GWAS. The y axis of the plot of the top row (plot A, B, C and D) denotes the observed p value of 
smoking adjusted FEV1 in UKBB study; the y axis of the plot of the middle row (plot E, F, G and H) denotes the 
observed p value of smoking adjusted FVC in UKBB study; the y axis of the plot of the bottom row (plot I, J, K 
and L) denotes the observed p value of smoking adjusted FEV1/FVC Ratio in UKBB study. In the 1st column 
(plot A, E and I), we investigated on SNPs associated with cigarettes per day (CPD) at ≤1e-2 (red dots), ≤1e-3 
(blue dots), ≤1e-4 (green dots), and ≤1e-5 (black dots); in the 2nd column (plot B, F and J), we investigated on 
SNPs associated with ever smoking (EVERSMK) at ≤1e-2 (red dots), ≤1e-3 (blue dots), ≤1e-4 (green dots), 
and ≤1e-5 (black dots); in the 3rd column (plot C, G and K), we investigated on SNPs associated with former 
smoking (FORMER) at ≤1e-2 (red dots), ≤1e-3 (blue dots), ≤1e-4 (green dots), and ≤1e-5 (black dots); in the 
4th column (plot D, H and L), we investigated on SNPs associated with log of smoking onset (ONSET) at ≤1e-2 
(red dots), ≤1e-3 (blue dots), ≤1e-4 (green dots), and ≤1e-5 (black dots).
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Lung Function 
Traits

GWAS P value 
threshold

Enrichment 
Fold

N. overlap 
SNPs

N of overlap SNPs of 
divergent risk direction

% SNPs of divergent 
risk direction

p-value of divergent 
risk direction

FEV1

1.0E-06 — 0 0 — —

1.0E-05 22.9 4 0 0 1.53E-01

1.0E-04 17.1 20 0 0 3.59E-06

1.0E-03 11.8 193 21 10.88 6.69E-30

1.0E-02 2.29 1202 290 24.13 5.74E-74

1.0E-01 1.07 30328 13490 44.48 4.54E-81

FVC

1.0E-06 — 0 0 — —

1.0E-05 — 0 0 — —

1.0E-04 8.24 8 0 0 1.13E-02

1.0E-03 9.68 144 21 14.58 3.94E-18

1.0E-02 2.14 1099 336 30.57 6.23E-38

1.0E-01 1.06 30050 13453 44.77 2.26E-72

FEV1/FVC Ratio

1.0E-06 — 0 0 — —

1.0E-05 23.5 4 0 0 1.53E-01

1.0E-04 17.3 23 0 0 4.77E-07

1.0E-03 9.35 168 3 1.79 3.49E-44

1.0E-02 1.98 1066 343 32.18 5.01E-31

1.0E-01 1.04 28980 13923 48.04 7.26E-11

Table 6. Overlap of GWAS signals between nicotine dependence (former smoking) and lung function traits. 
*Consistent direction allele, the SNPs where the same allele association with higher odds of former smoking (ie, 
smoking cessation) and higher lung function trait (e.g FEV1).

Figure 3. Genes harbor or close to share SNPs between cigarettes per day and smoking adjusted FEV1 are 
enriched for certain Gene Ontology cellular processes.
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and Methods), where we were particularly interested in hypothesis 4 (H4: the two phenotypic traits were caused 
by the same SNP in the locus), and H4 posterior probability over 0.75 was considered as supporting evidence to 
the corresponding hypothesis29,30. All the three LFadj trait (FEV1, FVC and FEV1/FVC Ratio) were co-localized at 
15q25.1 (Table 7), indicating they are controlled by the same genetic variant. The cigarettes per day and former 
smoking traits were also co-localized with LFadj (Table 8). For example, between CPD and FEV1, the coloc H4 
posterior probability was 0.908, and between former smoking and FEV1, the coloc H4 posterior probability was 
0.942. The clear co-localization of LFadj and ND at 15q25.1 suggested same genetic variant influence both nicotine 
dependence and lung function, through an independent pleiotropy model.

Discussion
In this report, we leverage the latest large GWAS data sets and investigated the genetic pleotropic effect between nic-
otine dependence and respiratory outcomes (ie, lung function and COPD). It is known smoking is a major cause of 
reduced lung function and COPD8. Smoking behavior is at least partially controlled by genetic factors7,9. To date, the 
pleiotropic effects of genetic risk of smoking behavior and lung function/COPD have not been systematically explored.

Employing several analytical approaches, this paper addressed two questions, (1) whether the genetic predis-
position of nicotine dependence influence COPD risk and lung function; and (2) the genetic pleiotropy follow 
causal or independent model (Fig. 1). On COPDgene cohort, we found the polygenic score of nicotine depend-
ence (ie, PGSND) was associated with COPD case/control status, demonstrating the genetic pleiotropy of the two 
conditions. We also investigated the association between PGSND and COPD while adjusting smoking behavior. 
Interestingly, the crude and adjusted results were very similar, indicating a mainly independent pleiotropy model. 
That is the shared genetic factors directly modify COPD risk, not mediated by influencing the individual’s smok-
ing behavior.

We zoomed in the known ND loci of genome-wide significance (Table 4), and found both causal and inde-
pendent pleiotropy models may exist in certain loci. Two genome-wide significant ND loci (15q25.1 and 19q13.2) 
were associated with LFadj (smoking adjusted lung function), supporting independent pleiotropy model. While, 
four ND loci (10q23.32, 8p11.21, 11p14.1 and 9q34.2) were not associated with smoking adjusted lung function. 
At various p value threshold (1e-6 to 1e-1), we found the LFadj traits share association SNP with cigarettes per 
day and former smoking substantially more than random chance, indicating a large number of genetic variants 
contribute to the genetic pleiotropy. Importantly, the lung function and cigarettes per day mainly share SNPs of 
divergent direction, meaning genetic predisposition of higher smoking dosage leads to lower lung function. In 
contrast, the lung function and former mainly share SNPs of consistent direction, meaning genetic predisposition 
of smoking cessation leads to higher lung function.

In summary, we used empirical data of largest cohorts to date and showed the genetic pleiotropy between 
nicotine dependence and COPD or lung function. The pleiotropic effect exist even COPD status or lung func-
tion is adjusted for smoking behavior. Further, we found the pleiotropic effect is attributable not only to the 
genome-wide significant loci, but also loci associated to ND and COPD/LF at suggestive p value (e.g. 1e-3), 

Trait 1 Trait 2 N SNPs PP.H0 PP.H1 PP.H2 PP.H3 PP.H4

FEV1 FVC 13040 0.000149 0.0653 0.000266 0.115461 0.818824

FEV1 FEV1/FVC Ratio 13041 4.85E-06 0.002121 9.77E-05 0.041758 0.956019

FVC FEV1/FVC Ratio 13040 0.004064 0.007236 0.081852 0.144994 0.761854

Table 7. Co-localization of lung function GWAS signal at 15q25.1 locus*. *chr15:77,801,394-79,801,394 (HG19). 
Five COLOC hypothesis (H0~H4) were evaluated (Materials and Methods).

Trait 1 Trait 2 N SNPs PP.H0 PP.H1 PP.H2 PP.H3 PP.H4

FEV1

Cigarettes Per Day 1764 8.56E-32 1.46E-29 0.000537 0.091025 0.908438

Ever Smoked 1762 0.005381 0.920954 0.000401 0.068663 0.004601

Former Smoker 1758 9.76E-05 0.016708 0.000502 0.084986 0.897706

LogOnset 1760 0.005601 0.95857 0.000172 0.029406 0.006252

FVC

Cigarettes Per Day 1764 2.52E-29 1.24E-29 0.157898 0.077069 0.765033

Ever Smoked 1762 0.622132 0.306675 0.046387 0.022864 0.001942

Former Smoker 1758 0.048471 0.023889 0.249148 0.122238 0.556253

LogOnset 1760 0.648552 0.319665 0.0199 0.009806 0.002077

FEV1/FVC Ratio

Cigarettes Per Day 1764 1.17E-30 8.20E-30 0.007371 0.050554 0.942076

Ever Smoked 1762 0.116032 0.810657 0.008652 0.060439 0.00422

Former Smoker 1758 0.002055 0.01436 0.010565 0.072912 0.900107

LogOnset 1760 0.120759 0.843642 0.003705 0.02588 0.006014

Table 8. Co-localization of lung function and nicotine dependence GWAS signal at 15q25.1 locus*. 
*chr15:77,801,394-79,801,394 (HG19). Five COLOC hypothesis (H0~H4) were evaluated (Materials and 
Methods).
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suggesting a large number of variants influence both ND and respiratory outcome, and among which many vari-
ants functions through independent genetic pleiotropy model.

Materials and Methods
Genome-wide meta-analyses on nicotine dependence (ND). The Tobacco and Genetics (TAG) 
Consortium conducted GWAS meta-analyses across 16 studies10. We examined four carefully harmonized 
smoking phenotypes: smoking initiation (ever versus never been a regular smoker), age of smoking initia-
tion, smoking quantity (number of cigarettes smoked per day, CPD) and smoking cessation (former versus 
current smokers) among people of European ancestry. Smoking cessation contrasted former versus current 
smokers, where current smokers reported at interview that they presently smoked and former smokers had 
quit smoking at least 1 year before interview. Smokers who had quit smoking for less than 1 year at interview 
were excluded from the analysis to minimize misclassification. Genotype imputation resulted in a common 
set of ~2.5 million SNPs that entered the GWAS and meta-analysis, where summary statistics were used in 
this report.

COPDGene dataset. Individual level genotype and phenotype data of COPDgene study were retrieved from 
dbGap (accession: phs000179.v1.p1). COPD case/control status, indicator variable of current smoking, indicator 
variable of former smoking, quantitative variable of smoking duration, and SNP genotype data were available on 
4,903 individuals. We conducted genotype imputation using HRC reference31, and in total, 19,932,879 SNPs of 
high quality score entered the current study. In polygenic score analysis, the smoking status variable (indicator 
and quantitative variables) were adjusted within the regression model.

UK Biobank Lung Function (LF) GWAS. Recently we reported a large GWAS study on lung function 
using the UK biobank samples6. Genome-wide association analyses of forced expired volume in 1 s (FEV1), 
forced vital capacity (FVC) and FEV1/FVC were undertaken in 48,943 individuals from the UK BiLEVE study7 
who were selected from the extremes of the lung function distribution in UK Biobank (total n = 502,682). 
Association tests were conducted on 27,624,732 variants, where linear regression of age, age2, sex, height, the 
first ten principal components of genetic ancestry and pack-years of smoking (in smokers), and summary 
statistics were used in this report.

Polygenic Score. We analyzed GWAS summary statistics data from the TAG nicotine dependence 
study, COPDgene dataset case control status, and COPDgene dataset smoking related covariate: smoking sta-
tus (binary variable) and smoking duration (continuous variable). We computed the nicotine dependence 
polygenic score (PGS) on each COPDgene study subject in following steps: (1) identify shared SNPs in TAG 
GWAS summary data and COPDgene imputed genotype; (2) align alleles strands to the 1000 G panel (hg19), 
and adjust β coefficients TAG nicotine dependence GWAS accordingly; (3) filter TAG GWAS data by p value 
threshold (1e-3 and 1e-4 as shown in Table 5) and prune the SNPs by linkage disequilibrium (LD) based on 
1000 G EUR reference; lastly (4) for each ND traits, and for each p value threshold, we computed a PGS for 
every subject as a linear combination of the imputed doses of the selected coefficients. Then we tested the asso-
ciation between nicotine dependent PGS and COPD case/control status using a logistic regression model with 
or without adjusting for smoking covariates.

Identification of SNPs associated with both LF and ND. The effect size attributable to individual 
genetic variants for a given complex disorder is typically modest, suggesting that individual genetic variants 
may only explain a very small amount of the genetic risk and heritability of complex disorders21,31. Therefore, 
genetic contributions to complex conditions such as LF and ND are likely derived from a large number of 
genetic causal variants, each contributing a small genetic risk. We surveyed a number of p value thresholds, 
and identified SNPs that are associated with LFadj and ND in order to more comprehensively capture SNPs with 
modest effect sizes. For a shared SNP, we term it “consistent allele direction” if a specific allele that is associated 
with increased LFadj traits and that specific SNP allele is also associated with higher ND trait value or event 
odds. We term “divergent allele direction” for SNP where a specific allele associated with increased lung func-
tion, and lower ND trait value or ND event odds.

Pathway Enrichment Analyses. To further characterize the regulatory nature, enrichment analysis of the 
genes influenced by shared SNPs were performed using the METACORE integrated software suite (http://thom-
sonreuters.com/metacore/).

Co-localization of lung function and nicotine dependence GWAS top SNPs. LFadj and ND 
GWAS results were used in co-localization analysis, which is performed using COLOC version 2.3–6 in R28. 
Our analysis focuses on the 15q25.1 locus. Default priors of the software were used. In total, 5 hypotheses 
were evaluated. H0: No association with either trait 1 or trait 2; H1: Association with trait 1, not with trait 
2; H2: Association with trait 2, not with trait 1; H3: Association with trait 1 and trait 2, two independent 
SNPs; H4: Association with trait 1 and trait 2, one shared SNP. Genes that demonstrated a high posterior 
probability of hypothesis 4 (PP.H4 > 75%) indicate the disease risk and placenta gene expression were con-
trolled by the same genetic variant; and genes that demonstrated a high posterior probability of hypothesis 
3 (PP.H3 > 75%) indicate the disease risk and placenta gene expression were controlled by distinct genetic 
variant at the locus.

http://thomsonreuters.com/metacore/
http://thomsonreuters.com/metacore/


www.nature.com/scientificreports/

9ScIentIfIc RePORts | 7: 16907  | DOI:10.1038/s41598-017-16964-4

References
 1. Martinez, F. D. Early-Life Origins of Chronic Obstructive Pulmonary Disease. The New England journal of medicine 375, 871–878, 

https://doi.org/10.1056/NEJMra1603287 (2016).
 2. Sanchez, M., Vellanky, S., Herring, J., Liang, J. & Jia, H. Variations in Canadian rates of hospitalization for ambulatory care sensitive 

conditions. Healthc Q 11, 20–22 (2008).
 3. The Human and Economic Burden of COPD: A Leading Cause of Hospital Admission in Canada. Canadian Thoracic society (2010).
 4. Khakban, A. et al. The Projected Epidemic of COPD Hospitalizations Over the Next 15 Years: A Population Based Perspective. Am 

J Respir Crit Care Med, https://doi.org/10.1164/rccm.201606-1162PP (2016).
 5. Sly, P. D. & Bush, A. From the Cradle to the Grave: The Early-Life Origins of Chronic Obstructive Pulmonary Disease. Am J Respir 

Crit Care Med 193, 1–2, https://doi.org/10.1164/rccm.201509-1801ED (2016).
 6. Wain, L. V. et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci 

and potential druggable targets. Nat Genet 49, 416–425, https://doi.org/10.1038/ng.3787 (2017).
 7. Wain, L. V. et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease 

(UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med 3, 769–781, https://doi.org/10.1016/S2213-
2600(15)00283-0 (2015).

 8. Lokke, A., Lange, P., Scharling, H., Fabricius, P. & Vestbo, J. Developing COPD: a 25 year follow up study of the general population. 
Thorax 61, 935–939, https://doi.org/10.1136/thx.2006.062802 (2006).

 9. Liu, J. Z. et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42, 436–440, https://
doi.org/10.1038/ng.572 (2010).

 10. Thorgeirsson, T. E. et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42, 448–453, 
https://doi.org/10.1038/ng.573 (2010).

 11. Harari, O. et al. Pathway analysis of smoking quantity in multiple GWAS identifies cholinergic and sensory pathways. PloS one 7, 
e50913, https://doi.org/10.1371/journal.pone.0050913 (2012).

 12. Bossé, Y. Updates on the COPD gene list. Int J Chron Obstruct Pulmon Dis 7, 607–631, https://doi.org/10.2147/COPD.
S35294copd-7-607 (2012).

 13. Cho, M. H. et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 42, 200–202, https://
doi.org/10.1038/ng.535 (2010).

 14. Cho, M. H. et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet 
21, 947–957, https://doi.org/10.1093/hmg/ddr524 (2012).

 15. Pillai, S. G. et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major 
susceptibility loci. PLoS Genet 5, e1000421, https://doi.org/10.1371/journal.pgen.1000421 (2009).

 16. Cho, M. H. et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet 
Respir Med 2, 214–225, https://doi.org/10.1016/S2213-2600(14)70002-5 (2014).

 17. Hobbs, B. D. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and 
pulmonary fibrosis. Nat Genet 49, 426–432, https://doi.org/10.1038/ng.3752 (2017).

 18. Zhao, Z. et al. Exon sequencing identifies a novel CHRNA3-CHRNA5-CHRNB4 variant that increases the risk for chronic 
obstructive pulmonary disease. Respirology 20, 790–798, https://doi.org/10.1111/resp.12539 (2015).

 19. Ranu, H., Wilde, M. & Madden, B. Pulmonary function tests. The Ulster medical journal 80, 84–90 (2011).
 20. Gratten, J. & Visscher, P. M. Genetic pleiotropy in complex traits and diseases: implications for genomic medicine. Genome medicine 

8, 78, https://doi.org/10.1186/s13073-016-0332-x (2016).
 21. Hao, K. et al. Shared genetic etiology underlying Alzheimer’s disease and type 2 diabetes. Molecular aspects of medicine 43–44, 

66–76, https://doi.org/10.1016/j.mam.2015.06.006 (2015).
 22. Han, B. et al. A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to 

autoimmune and neuropsychiatric diseases. Nat Genet 48, 803–810, https://doi.org/10.1038/ng.3572 (2016).
 23. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet 48, 709–717, https://doi.

org/10.1038/ng.3570 (2016).
 24. Stranger, B. E., Stahl, E. A. & Raj, T. Progress and promise of genome-wide association studies for human complex trait genetics. 

Genetics 187, 367–383, https://doi.org/10.1534/genetics.110.120907 (2011).
 25. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42, D1001–1006, https://

doi.org/10.1093/nar/gkt1229 (2014).
 26. Ryan, D. M. et al. Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. PloS one 9, e88051, 

https://doi.org/10.1371/journal.pone.0088051 (2014).
 27. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29, 308–311 (2001).
 28. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS 

Genet 10, e1004383, https://doi.org/10.1371/journal.pgen.1004383 (2014).
 29. Peng, S. et al. Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Hum 

Mol Genet 26, 3432–3441, https://doi.org/10.1093/hmg/ddx265 (2017).
 30. Huang, K. L. et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nature 

neuroscience 20, 1052–1061, https://doi.org/10.1038/nn.4587 (2017).
 31. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48, 1279–1283, https://doi.

org/10.1038/ng.3643 (2016).
 32. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42, 441–447, https://doi.

org/10.1038/ng.571 (2010).

Acknowledgements
We thank Drs. Alison Goate and Manav Kapoor for the valuable discussions and suggestions. This work is 
partially supported by NIH 1R41DA042464–01, NIH 1U01HD079068-01, National Natural Science Foundation 
of China (Grant No. 21477087, 91643201) and by the Ministry of Science and Technology of China (Grant No. 
2016YFC0206507).

Author Contributions
Z.J., P.S., C.H., D.N.A. and H.K. are responsible for designing and conducting the study. Z.J., P.S., Y.N., D.N.A., 
and H.K. wrote the manuscript. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-16964-4.
Competing Interests: The authors declare that they have no competing interests.

http://dx.doi.org/10.1056/NEJMra1603287
http://dx.doi.org/10.1164/rccm.201606-1162PP
http://dx.doi.org/10.1164/rccm.201509-1801ED
http://dx.doi.org/10.1038/ng.3787
http://dx.doi.org/10.1016/S2213-2600(15)00283-0
http://dx.doi.org/10.1016/S2213-2600(15)00283-0
http://dx.doi.org/10.1136/thx.2006.062802
http://dx.doi.org/10.1038/ng.572
http://dx.doi.org/10.1038/ng.572
http://dx.doi.org/10.1038/ng.573
http://dx.doi.org/10.1371/journal.pone.0050913
http://dx.doi.org/10.2147/COPD.S35294copd-7-607
http://dx.doi.org/10.2147/COPD.S35294copd-7-607
http://dx.doi.org/10.1038/ng.535
http://dx.doi.org/10.1038/ng.535
http://dx.doi.org/10.1093/hmg/ddr524
http://dx.doi.org/10.1371/journal.pgen.1000421
http://dx.doi.org/10.1016/S2213-2600(14)70002-5
http://dx.doi.org/10.1038/ng.3752
http://dx.doi.org/10.1111/resp.12539
http://dx.doi.org/10.1186/s13073-016-0332-x
http://dx.doi.org/10.1016/j.mam.2015.06.006
http://dx.doi.org/10.1038/ng.3572
http://dx.doi.org/10.1038/ng.3570
http://dx.doi.org/10.1038/ng.3570
http://dx.doi.org/10.1534/genetics.110.120907
http://dx.doi.org/10.1093/nar/gkt1229
http://dx.doi.org/10.1093/nar/gkt1229
http://dx.doi.org/10.1371/journal.pone.0088051
http://dx.doi.org/10.1371/journal.pgen.1004383
http://dx.doi.org/10.1093/hmg/ddx265
http://dx.doi.org/10.1038/nn.4587
http://dx.doi.org/10.1038/ng.3643
http://dx.doi.org/10.1038/ng.3643
http://dx.doi.org/10.1038/ng.571
http://dx.doi.org/10.1038/ng.571
http://dx.doi.org/10.1038/s41598-017-16964-4


www.nature.com/scientificreports/

1 0ScIentIfIc RePORts | 7: 16907  | DOI:10.1038/s41598-017-16964-4

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Genetic Pleiotropy between Nicotine Dependence and Respiratory Outcomes
	Results
	Genetic predisposition of nicotine dependence is associated with COPD risk. 
	Nicotine dependence genome-wide significant loci and their association with lung function (LF). 
	Identification of SNPs associated with lung function and nicotine dependence at suggestive threshold. 
	Association direction of shared LFadj and ND SNPs. 
	Gene ontology influenced by the shared SNPs of LFadj and ND. 
	Co-localization of 15q25.1 locus underlying LFadj and ND. 

	Discussion
	Materials and Methods
	Genome-wide meta-analyses on nicotine dependence (ND). 
	COPDGene dataset. 
	UK Biobank Lung Function (LF) GWAS. 
	Polygenic Score. 
	Identification of SNPs associated with both LF and ND. 
	Pathway Enrichment Analyses. 
	Co-localization of lung function and nicotine dependence GWAS top SNPs. 

	Acknowledgements
	Figure 1 Models of genetic pleiotropy.
	Figure 2 QQplot showed SNPs associated with nicotine dependence are enriched for small p values in lung function GWAS.
	Figure 3 Genes harbor or close to share SNPs between cigarettes per day and smoking adjusted FEV1 are enriched for certain Gene Ontology cellular processes.
	Table 1 Polygenic score of nicotine dependence is associated with COPD case/control status.
	Table 2 Polygenic score of nicotine dependence is associated with COPD case/control status adjusted for smoking status.
	Table 3 Polygenic score of nicotine dependence is associated with COPD case/control status adjusted for smoking duration.
	Table 4 Nicotine dependence loci and in lung function.
	Table 5 Overlap of GWAS signals between nicotine dependence (cigarettes per day) and lung function traits.
	Table 6 Overlap of GWAS signals between nicotine dependence (former smoking) and lung function traits.
	Table 7 Co-localization of lung function GWAS signal at 15q25.
	Table 8 Co-localization of lung function and nicotine dependence GWAS signal at 15q25.




