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Stimulus expectation alters 
decision criterion but not sensory 
signal in perceptual decision 
making
Ji Won Bang & Dobromir Rahnev  

Humans are more likely to report perceiving an expected than an unexpected stimulus. Influential 
theories have proposed that this bias arises from expectation altering the sensory signal. However, 
the effects of expectation can also be due to decisional criterion shifts independent of any sensory 
changes. In order to adjudicate between these two possibilities, we compared the behavioral effects of 
pre-stimulus cues (pre cues; can influence both sensory signal and decision processes) and post-stimulus 
cues (post cues; can only influence decision processes). Subjects judged the average orientation of 
a series of Gabor patches. Surprisingly, we found that post cues had a larger effect on response bias 
(criterion c) than pre cues. Further, pre and post cues did not differ in their effects on stimulus sensitivity 
(d’) or the pattern of temporal or feature processing. Indeed, reverse correlation analyses showed no 
difference in the temporal or feature-based use of information between pre and post cues. Overall, post 
cues produced all of the behavioral modulations observed as a result of pre cues. These findings show 
that pre and post cues affect the decision through the same mechanisms and suggest that stimulus 
expectation alters the decision criterion but not the sensory signal itself.

When given an expectation about a forthcoming stimulus, human subjects report the expected stimulus with 
greater frequency1–5. What processes underlie this expectation effect? Two broad alternatives have been proposed.

First, it is possible that stimulus expectation alters the sensory signal itself 6–8. According to this view, the stim-
ulus is processed differently in the presence of expectation. This possibility is supported by popular theories such 
as predictive coding9,10 that postulate a process of top-down signals sent from downstream to upstream areas that 
affect how the forthcoming stimulus will be processed.

Second, it is possible that stimulus expectation alters the decision criterion6,11. According to this view, the 
sensory processing of the stimulus remains exactly the same but downstream areas change the response using the 
information from the cue. This possibility is tacitly assumed by more abstract theories such as Bayesian Decision 
Theory12 and Signal Detection Theory13,14 which typically treat stimulus expectation as affecting the decision rule 
rather than the stimulus distributions.

The sensory signal and decision criterion accounts of expectation are difficult to distinguish based on standard 
behavioral data15. Indeed, if one only analyzes subjects’ choices and applies Signal Detection Theory, then expec-
tation will manifest itself as a criterion change13–15. However, the reason for this change could be either a shift in 
the underlying sensory distributions with no change to the decision criterion (Fig. 1A), or a shift in the decision 
criterion with no change in the underlying sensory distributions (Fig. 1B). These two alternatives are mathemat-
ically equivalent and therefore cannot be distinguished without further manipulations.

The sensory signal and decision criterion accounts of expectation can, however, be adjudicated by varying the 
stimulus and employing reverse correlation analyses16,17. To demonstrate this point, we examined the results of 
reverse correlation analyses applied to simulated data generated via sensory signal or decision criterion changes. 
The simulations mirrored the parameters of our behavioral experiment, which presented a time-varying stim-
ulus consisting of 30 sequential Gabor patches with orientations spanning from −45° to 45° (see Methods). In 
our simulations, reverse correlation revealed signatures of various putative expectation effects. For example, a 
change in early but not late sensory signal created a characteristic pattern of L-shaped temporal information 
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usage for predictive cues (Fig. 1C), while a change in ambiguous but not unambiguous sensory signal created 
a characteristic central deflection in the pattern of feature-based information usage (Fig. 1D). On the other 
hand, a change in the decision criterion created its own pattern of temporal and feature-based information usage 
showing under-weighting of sensory information for predictive cues in temporal reverse correlation and of 
cue-incongruent information in feature-based reverse correlation (Fig. 1E).

Figure 1. Possible effects of stimulus expectation. (A,B) A change of the pattern of subjects’ responses can be 
accommodated by Signal Detection Theory as either a shift in the sensory distributions (A) or a shift in the 
decision criterion (B). These two options are mathematically equivalent and therefore cannot be distinguished 
based on the pattern of subjects’ responses alone. (C–E) Depiction of putative influences of expectation on 
temporal and feature-based reverse correlation analyses. For temporal reverse correlations, we plot separately 
the information usage following predictive vs. neutral cues; for feature-based reverse correlations, we plot 
separately the information usage following left, right, and neutral cues. Expectation may bias the early sensory 
signal such that early Gabor patches (in this example, the first 6 patches) with cue-congruent orientations are 
over-weighted in the decision. Such an effect would lead to an L-shaped curve of temporal information usage 
(panel C, left), as well as strong under-weighting of cue-incongruent information (panel C, right). Alternatively, 
expectation may bias ambiguous sensory signal (e.g., it could bias orientations close to 0° toward the cued 
direction). Such an effect would lead to an overall underuse of sensory information for predictive cues (panel 
D, left), as well as a characteristic deflection of information usage for left and right cues around 0° (panel D, 
right). Finally, expectation may simply change the decision criterion, resulting in under-weighting of sensory 
information for predictive cues (panel E, left) and under-weighting of cue-incongruent information (panel E, 
right). Negative/positive orientations correspond to left/right stimuli.
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These signatures of sensory signal vs. decision criterion changes can already be used to adjudicate between 
these two possibilities. However, the simulations above are based on the assumption that, except for the putative 
effects of expectation, subjects act as ideal observers. On the other hand, real subjects may not always treat sen-
sory information in mathematically optimal manner18–22. Furthermore, subjects’ biases may interact with the 
putative effects of expectation thus making it hard to distinguish sensory signal from decision criterion effects of 
expectation.

We addressed this problem by employing post-stimulus cues. Standard expectation cues presented before the 
stimulus (pre cues) can potentially affect both the sensory signal and the decision criterion. On the other hand, 
if information from individual components of a time-varying stimulus is not available after stimulus offset, then 
post-stimulus cues (post cues) can only affect the decision criterion. To prevent sensory information related to 
individual Gabor patches from persisting into the post-stimulus period, we presented the Gabor patches for a 
single computer frame in the same spatial location (at fixation) so that they backward-mask each other. Indeed, 
backward masking ensures that reverberation of sensory information in sensory circuits is interrupted23,24. Note 
that in the absence of such backward masking effects, reverberations can continue for a few hundred milliseconds 
and post cues can retroactively act to enhance these persistent sensory signals25. In addition to the backward 
masking, we revealed the post-stimulus cue a substantial amount of time after the stimulus offset (500 ms). These 
design features ensured that our post cues could not affect the sensory signal and allowed us to test whether pre 
cues act through altering the sensory signal or decision criterion.

To anticipate, we found that post cues were surprisingly more effective in influencing subjects’ choices than 
pre cues. At the same time, pre and post cues did not differ in their effects on stimulus sensitivity, temporal or 
feature-based information usage. Finally, the reverse correlation analyses for both the pre and post cues showed 
the signatures of decision criterion changes. Thus, our results show that both pre and post cues influence subjects’ 
choices through the same mechanism and suggest that the influence of stimulus expectation is due to decision 
criterion rather than sensory signal changes.

Results
We compared the influence of pre and post cues on subjects’ responses. The two types of cues were designed to 
be as equivalent as possible. Subjects performed left/right (i.e., counterclockwise/clockwise) discrimination judg-
ments (Fig. 2A) on the average orientation of a series of 30 oriented Gabor patches (Fig. 2B). In alternating blocks, 
either a pre or a post cue with 66.67% validity was presented. To aid comparison, both the pre and post cue blocks 
included neutral (uninformative) cues.

Post cues affect the criterion more than the pre cues. We first analyzed the influence of the cues on 
the response criterion. Left cues resulted in significantly positive criterion both when presented before (average 

Figure 2. Task. (A) An example trial. The stimulus was preceded by a pre cue and followed by a post cue. 
Fixation periods were inserted between the cues and the stimulus. In alternating blocks, either pre or post cues 
were relevant (the other cue consisted of an uninformative horizontal line). The relevant cues were valid with 
66.67% probability. On 25% of the trials, a neutral cue (consisting of a vertical line) was presented. The example 
trial above is drawn from a pre cue block. (B) The stimulus consisted of 30 Gabor patches with orientations 
drawn from a normal distribution determined for each subject using a staircase. Each Gabor patch was 
presented for one frame (16.7 ms).
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c = 0.18; t(29) = 2.8, p = 0.009) and after (average c = 0.37; t(29) = 5.53, p = 0.000006) the stimulus (Fig. 3A), 
indicating a bias for “left” choices. Similarly, right cues resulted in significantly negative criterion both when 
presented before (average c = −0.28; t(29) = −5.21, p = 0.00001) and after (average c = −0.45; t(29) = −6.14, 
p = 0.000001) the stimulus, indicating a bias for “right” choices. Finally, neutral cues did not significantly bias the 
criterion for either cue type (pre cues: average c = −0.03; t(29) = −0.45, p = 0.65; post cues: average c = −0.03; 
t(29) = −0.48, p = 0.64).

Critically, when comparing pre and post cues directly, we found that post cues had a larger influence on the 
criterion (i.e., induced a larger deviation from c = 0) for both left (t(29) = 4.87, p = 0.00004) and right (t(29) = 2.9, 
p = 0.007) cues but not for neutral cues (t(29) = 0.01, p = 0.99).

In other words, even though they could only affect the decision criterion, post cues influenced the pattern of 
subject responses more than pre cues. This effect is especially evident when the criterion difference for left minus 
right cues is directly compared for pre and post cues (average Δcpost = 0.82, average Δcpre = 0.46; t(29) = 5.07, 
p = 0.00002; Fig. 3B). The post cues had a larger effect on the criterion for 25 of our 30 subjects. It should be 
noted that, as in previous studies1,5,13,26, subjects adjusted their criterion less than optimal in response to both 
pre and post cues. Indeed, the optimal criterion shift between left and right cues across our pool of subjects was 
Δcoptimal = 1.13 (see Methods for how this value was computed), which is significantly larger than the criterion 
effect for post (t(29) = 2.91, p = 0.007) and pre (t(29) = 7.83, p = 1.2 * 10−8) cues.

Inter-subject correlation between pre and post cue usage. As noted in Fig. 1A,B, the criterion effects 
observed above can be due to either sensory distribution or decision criterion shifts. Importantly, if pre cues only 
induced a sensory signal shift, then one may expect zero correlation between the criteria effects of pre and post 
cues (that is, no correlation between Δcpre and Δcpost). Indeed, post cues necessarily acted through a decision cri-
terion shift and there is no a priori reason to assume that sensory signal shifts and decision criterion shifts within 
a subject will have comparable magnitudes.

Nevertheless, we observed a significant inter-subject correlation between the pre and post cue effects on cri-
terion (r = 0.75, p = 0.000002). This result indicates that at least 56% of the inter-subject variability of the pre 
cue criterion effect can be explained by the inter-subject variability in the post cue criterion effect. However, the 
correlation between the two effects is limited by the reliability with which each effect can be computed27. We 
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Figure 3. Behavioral effects. (A) Effect of pre and post cues on the decision criterion. Post cues had a larger 
effect on the criterion (larger bias away from zero) than pre cues. (B) Individual data for criterion effect. The 
criterion effect Δc was defined as the difference between the criterion for left and right cues. For the majority 
of subjects, this effect was larger for the post cues (points above the diagonal identity line). (C) Effect of pre and 
post cues on stimulus sensitivity d’. Pre and post cues did not differ in their effect on stimulus sensitivity. (D) 
Individual data for the d’ effect. As with the criterion, the d’ effect Δd’ was defined as the difference in d’ values 
between left and right cues. No difference in the effect was found for pre and post cues. Error bars show S.E.M. 
**p < 0.01, ***p < 0.001.
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estimated the reliability of each effect by re-computing each measure from the odd vs. even trials and applying the 
Spearman-Brown formula27 to correct for the fact that we used only half of the trials in each case (see Methods for 
details). We found that the maximum expected correlation between pre and post cues, given the reliability with 
which we estimated them, is r = 0.82. This value is only slightly greater than the observed correlation of r = 0.75 
and can be attributed to some subjects adopting slightly different decision criterion shift strategies for pre and 
post cues. These results suggest that, when taking the reliability of each measure into account, the correlation 
between the pre and post cue criterion effects is as high as one would expect had they been based on the same 
mechanisms.

Pre and post cues have the same effect on stimulus sensitivity. While post cues had larger effects 
on the response criterion, pre and post cues did not differ significantly in their effect on stimulus sensitivity (left 
pre vs. left post cues: t(29) = 1.04, p = 0.31; right pre vs. right post cues: t(29) = −1.14, p = 0.26; neutral pre vs. 
neutral post cues: t(29) = 0.17, p = 0.87; Fig. 3C).

Note that despite the appearance of a possible interaction between left/right vs. pre/post cues, the d’ differ-
ence between left and right cues did not differ significantly for pre and post cues (t(29) = 1.36, p = 0.19; Fig. 3D). 
Further, unlike for the response criterion, the effects on d’ (for left minus right cues) did not correlate across 
subjects for pre and post cues (r = 0.08, p = 0.69).

Pre and post cues have the same effect on temporal information usage. The analyses above sug-
gested that pre cues act through the same mechanisms as post cues. However, as demonstrated in Fig. 1C–E, 
subtle effects of expectation are best captured through the use of reverse correlation analyses. These analyses can 
reveal how the stimuli were processed in both the temporal and feature domains.

In the temporal domain, we investigated whether pre or post cues affected subjects’ information usage at any 
time throughout the 30 stimulus frames. We first combined all trials together and found that subjects’ informa-
tion usage was relatively constant throughout the trial (average beta value of first 28 frames = 0.78) but increased 
significantly for the last two stimulus frames (average beta value of 29th frame = 1.01, t(29) = 5.39, p = 0.000009; 
average beta value of 30th frame = 1.1, t(29) = 4.27, p = 0.0002; Fig. 4A). Thus, there was a strong recency effect28,29 
such that the last two frames influenced the decision more than the rest of the frames.

We further computed the ideal information usage for each subject by running the reverse correlation on the 
stimulus rather than on the response (Fig. 4A). The ideal information usage was higher than the actual. Indeed, a 
repeated measures ANOVA with factors usage type (actual vs. optimal) and frame showed significant main effects 
of usage type (F(1,29) = 87.43, p < 0.001) and frame (F(24.18,701.12) = 2.29, p < 0.001, Huynh-Feldt correction 
used), as well as a significant interaction between them (F(14.07,408) = 5.24, p < 0.001, Huynh-Feldt correction 
used). The difference between actual and optimal information usage was significant for each of the first 28 frames 
(all p’s < 0.0011; p values remain significant after Bonferroni correction for 30 multiple comparisons) but not for 
the last two frames (29th frame: t(29) = −1.3, p = 0.2; 30th frame: t(29) = 1.23, p = 0.23, both p values reported 
before correction).

Frame number
0 10 20 30

B
et

a 
va

lu
e

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3 actual information usage
optimal information usage

Frame number
0 10 20 30

B
et

a 
va

lu
e

0.8

1

1.2

1.4

1.6

1.8

2

2.2 pre predictive
pre neutral
post predictive
post neutral

A B

Figure 4. Temporal information usage. (A) The pattern of temporal information usage over the course of the 30 
stimulus frames shows a pronounced recency effect such that the last two frames influenced the decision more. 
The optimal information usage is displayed for comparison. The line of optimal usage is not flat (even though 
optimally each frame should be weighted equally) since it was computed from noisy data. Shaded areas show 
S.E.M. (B) Temporal information usage for predictive and neutral cues did not differ by cue time (pre vs. post). 
The lines for neutral cues are noisier since they are based on fewer trials. All timecourses are smoothed for 
display purposes using a two-frame sliding window.
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Critically, we tested whether the temporal information usage varies with the type of cue (Fig. 4B). We com-
puted separately the temporal information usage for predictive/neutral pre and post cues and performed a 2 (cue 
time; pre/post) × 2 (cue type; predictive/neutral) × 30 (frame number) repeated measures ANOVA. We found no 
significant effects related to cue time. Specifically, there was no main effect of cue time (F(1,29) = 0.98, p = 0.33), 
interaction between cue time and either cue type (F(1,29) = 0.14, p = 0.72) or frame (F(29,841) = 1.19, p = 0.23, 
Huynh-Feldt correction used), or interaction between cue time, cue type, and frame (F(29, 841) = 1.29, p = 0.14). 
Thus, pre and post cues resulted in the same pattern of temporal information usage.

Finally, we tested whether we can detect the signature of decision criterion shift, namely lower usage for pre-
dictive compared to neutral cues (Fig. 1E, left). Given that we found no difference between pre and post cues, we 
combined them together and averaged across the usage over the 30 frames. We found that the information usage 
was indeed higher for neutral compared to predictive cues (1.42 vs. 1.31, t(29) = 3.09, p = 0.004), thus confirming 
that our data are consistent with a decision criterion shift.

Pre and post cues have the same effect on feature-based information usage. The pre and post 
cues had equivalent effects on the temporal usage of information but it is possible that they induced different 
feature-based information usage. To understand how subjects used the different feature orientations, as with the 
temporal usage analyses, we first combined all trials together and examined how different orientations predicted 
subjects’ choices. Not surprisingly, right orientations predicted right choices, and this relationship was stronger 
for more extreme orientations, while the opposite was true for left orientations (resulting in positive slope of beta 
values as a function of orientation, t(29) = 9.9, p = 8.2 * 10−11, Fig. 5A).

When compared to the ideal information usage, orientations close to vertical (defined here as 0° orienta-
tion) were weighted optimally but orientations away from vertical were underweighted. A repeated measures 
ANOVA with factors usage type (actual vs. optimal) and orientation showed a significant main effect of orien-
tation (F(80,2320) = 110.54, p < 0.001) and interaction between usage type (actual vs. optimal) and orientation 
(F(80,2320) = 50.42, p < 0.001). Indeed, the actual and optimal curves were significantly different for orienta-
tions smaller than −12° and larger than 15° (all p’s < 0.05 after Bonferroni correction for 81 comparisons) but 
not different for orientations between −9° and 9° (all p’s > 0.05 even before correction). A similar tendency to 
down-weight extreme stimuli called “robust averaging” has been observed before in a variety of paradigms18–21.

Figure 5. Feature-based information usage. (A) The pattern of stimulus information usage across all trials. 
The graph shows the strength with which each stimulus orientation predicts a “right” (i.e., clockwise) response. 
The line of optimal usage shows that subjects underweighted the extreme stimulus orientations. (B) Feature 
information usage for each cue identity (left, right, and neutral) did not differ by cue time (pre vs. post). (C) The 
information usage differs between valid and invalid cues. (D) The difference between valid and invalid trials is 
larger for post compared to pre cues. In all panels, 0° indicates vertical orientation and negative (positive) angles 
indicate counterclockwise (clockwise) deviations from vertical that correspond to left (right) choices. Shaded 
areas show S.E.M.
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Critically, we tested whether the feature-based information usage varied between pre and post cues (Fig. 5B). 
We computed separately the feature-based information usage for left/right/neutral pre and post cues and per-
formed a 2 (cue time; pre/post) × 3 (cue identity; left/right/neutral) × 81 (orientation) repeated measures 
ANOVA. As with temporal information usage, we found no significant effects related to cue time. Specifically, 
there was no main effect of cue time (F(1,29) = 0.003, p = 0.96), interaction between cue time and either cue 
type (F(1.31,37.92) = 0.83, p = 0.4, Huynh-Feldt correction used) or orientation (F(80,2320) = 0.96, p = 0.57), or 
interaction between cue time, cue type, and orientation (F(160,4640) = 0.93, p = 0.73). Thus, pre and post cues 
resulted in the same pattern of feature-based information usage.

Just as with temporal information usage, we tested whether we can detect the signature of decision crite-
rion shift, namely under-weighting of cue-incongruent information (Fig. 1E, right). Indeed, there was a sig-
nificant interaction between cue identity and orientation (F(160,4640) = 1.452, p < 0.001). To highlight the use 
of cue-congruent and cue-incongruent information, we plotted information usage for valid and invalid cues 
(Fig. 5C). Invalid cues led to flatter curves (pre cues: t(29) = 3.85, p = 0.0006, post cues: t(29) = 5.4, p = 0.000008), 
indicating the presence of under-weighting of cue-incongruent information. The difference between valid 
and invalid trials was higher for post cues (as indicated by a steeper slope of the validity effect on orientation, 
t(29) = 4.47, p = 0.0001; Fig. 5D), which mirrors the larger post cue effects on criterion c.

Finally, we tested the extent to which a simple decision criterion adjustment can produce the effects in 
Fig. 5C,D. Similar to our simulations in Fig. 1C–E, we created a simple model in which the cues shifted the deci-
sion criterion with post cues inducing a larger shift (criteria for pre cues were set at +/−4°; criteria for post cues 
were set at +/−6°, criterion for neutral conditions was set at 0°; Fig. 6A). Unlike the simulations in Fig. 1C–E, we 
ran the model on the same trials that subjects experienced. Note that the model does not include mechanisms for 
down-weighting extreme stimuli. This simple model reproduced the effects of cue identity (left, right, and neutral 
cues; Fig. 6B; notice the lack of sigmoid shape in the curves due to the equal weighting of all features) and of cue 
validity (valid and invalid cues; Fig. 6C,D). These modeling results show that the effects of both pre and post cues 
can indeed be accounted for by a decision criterion shift independent of any effects on the sensory signal.

Figure 6. Modeling results. (A) Depiction of the model. The model gave responses based on how the average 
of the 30 Gabor orientations θi compared to condition-specific criteria. The criteria values used (+/−6° for 
post cues, +/−4° for pre cues, and 0° for neutral cues) are presented graphically together with a Gabor patch of 
that orientation. (B–D) As in Fig. 5B–D, we plot feature information usage for left/right/neutral cues (B), for 
valid and invalid cues (C), and for the difference between valid and invalid cues (D). The model reproduces the 
qualitative effects from Fig. 5B–D. In all panels, 0° indicates vertical orientation and negative (positive) angles 
indicate counterclockwise (clockwise) deviations from vertical that correspond to left (right) choices. Shaded 
areas show S.E.M.
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Discussion
We set to determine whether stimulus expectation alters subjects’ perceptual judgments by affecting the sensory 
signal or the decision criterion. To do so, we compared the effects of pre-stimulus cues (pre cues; can affect both 
the sensory signal and the decision criterion) and post-stimulus cues (post cues; can only affect the decision cri-
terion). Surprisingly, we found that post cues had a greater influence on subjects’ responses than pre cues. More 
importantly, we observed a substantial inter-subject correlation between the criterion effects of pre and post cues, 
indicating that the two cues acted via similar mechanisms. Further, pre and post cues did not differ in their effects 
on stimulus sensitivity, temporal or feature-based information usage. These results suggest that, at least in our 
experimental design, stimulus expectation affected subjects’ choices by altering the decision criterion rather than 
the sensory signal.

Our findings provide a strong challenge to claims by Balakrishnan and colleagues who claimed that deci-
sion criteria do not shift and used this claim to attack Signal Detection Theory30,31. Instead, these authors favor 
sequential sampling models in which the decision criteria are fixed and change in parameters such as the start-
ing point of the accumulation and drift rate lead to biased responding32. However, our results demonstrate that 
post cues presented significantly after the offset of the visual stimuli can bias the pattern of responses in ways 
that appear equivalent to pre cues. These findings cannot be accommodated by assuming stable decision criteria 
since post cues cannot change the starting point of the accumulation or induce a drift rate bias. Therefore, our 
results demonstrate that, contrary to Balakrishnan’s claims, decision criteria do shift as a result of expectation 
manipulations.

Previous demonstrations of sensory signal effects of expectation cues. Despite the apparent lack 
of sensory signal change in our experiment, it can be argued that several previous studies have shown such an 
effect. (Note that in most of these studies, the authors did not claim to distinguish between sensory signal and 
decision criterion.) In the first set of studies, expectation appeared to enhance stimulus sensitivity (d’). For exam-
ple, expecting the stimulus category (e.g., car vs. cat) allowed subjects to detect the stimulus location with greater 
accuracy33. Similarly, valid cues led to more accurate categorization of degraded objects34. However, while the 
cues in these studies consisted of probabilistic information, these cues also provided information about feature 
relevance. By giving information about the relevance of different features, these studies engaged feature-based 
attention35. Thus, it appears that previous studies showing expectation cues altering stimulus sensitivity did so by 
inducing attentional changes.

In a second set of studies, expectation did not affect stimulus sensitivity (d’) but altered how different stimulus 
features were used in the decision. For example, expecting a particular orientation enhanced visual sensitivity 
to off-channel orientations16. Similar effects of enhanced off-channel selectivity have been observed in atten-
tional manipulations of feature search36,37 suggesting that the expectation cue may have also altered subjects’ 
feature-based attentional strategy. Another study used a detection task that made attentional changes unlikely 
and still found a change of sensitivity induced by expectation cues17. Even though it is tempting to interpret this 
result as evidence for expectation altering the sensory signal, such interpretation would be premature. Indeed, 
the authors modeled their results as contrast gain, which can result from either a change in sensory signal or 
decisional processes. Thus, expectation-related shifts of stimulus feature usage could be due to decision criterion 
effects (see also Fig. 1E) and should not be automatically interpreted as evidence for sensory signal change.

Neural effects of expectation in sensory cortex. A wealth of studies has demonstrated that stimu-
lus expectation leads to changes in early sensory cortex3,38–48. It is possible that some of these studies induced 
a change in strategy thus engaging attention processes. Nevertheless, it is unlikely that all of the above studies 
can be explained in this manner. Instead, it appears that pure stimulus expectation genuinely affects activity in 
sensory cortex.

How can we reconcile the neural effects in sensory cortex (which appear to suggest altered sensory processing) 
and the lack of sensory signal effects in our study? One possibility is that the top-down expectation signals seen in 
early sensory cortex do not causally contribute to signal processing but simply reflect feedback signals regarding 
the choice formed in higher-level cortex11. Another possibility is that higher-level cortex sends top-down signals 
to enable sensory cortex to process the stimulus more efficiently47,49 but without altering the extracted sensory 
signal itself 50. This latter proposal allows for meaningful neural changes that do not, however, result in differences 
in the nature of the sensory signal.

Regardless of the exact function of the neural effects in sensory cortex, we agree with Mostert, Kok, and de 
Lange who argue that “merely recording from sensory areas may be insufficient to disentangle sensory processing 
from decision-related activity”51. As these authors point out, perceptual decision making is the result of com-
plex, reciprocal interactions between many brain regions, and therefore it is difficult (or, perhaps, impossible) to 
isolate brain activity anywhere in the brain as reflecting the pure sensory signal independent of any top-down 
decisional influences. Therefore, we believe that unambiguously establishing that expectations affect the sensory 
signal needs to involve behavioral demonstrations and cannot be purely based on neural activity.

Conclusion
Our study demonstrated that the effects of pre-stimulus expectation on subjects’ choices can be explained by a 
change in the decision criterion with no change in the sensory signal itself. Indeed, our model in which expecta-
tions only affected the decision criterion captured the effects of both the pre- and post-stimulus cues. Further, in 
all of our analyses, pre- and post-stimulus cues had equivalent effects. We propose that future studies adopt our 
pre/post cue design in order to isolate any putative effects of expectation on the sensory signal.
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Methods
Subjects. Thirty healthy subjects (18 to 24 years old, 13 females) with normal or corrected-to-normal 
vision participated in the study. All subjects gave written informed consent. The research was approved by the 
Institutional Review Board of Georgia Institute of Technology. All procedures were performed in accordance 
with the institutional guidelines. The experiment took approximately one hour to complete and participants were 
compensated at the rate of $10/hour.

Task. Subjects indicated whether the overall orientation of a series of Gabor patches was tilted clockwise or 
counterclockwise from vertical. The Gabor patches were of 100% contrast and appeared within an annulus sub-
tending 1° to 5° at the center of the screen against gray background. Each trial consisted of consecutively pre-
sented pre cue period (500 ms), first fixation period (500 ms), stimuli period (500 ms), second fixation period 
(500 ms), post cue period (500 ms), and untimed response period (Fig. 2A). During the stimulus period, 30 
Gabor patches of different orientations were presented for one frame each (one frame = 16.7 ms; Fig. 2B).

The Gabor orientations were drawn randomly from a normal distribution with a standard deviation of 22.5°. 
The mean of the distribution was determined separately for each subject using a staircasing procedure (average 
mean = 7.49°, SD = 3.85°). Thus, on average, clockwise/counterclockwise orientations were drawn from a distri-
bution with a mean of +/−7.49° from vertical. The distributions were truncated so that only orientations between 
−45° and 45° from vertical were shown.

Subjects completed blocks of pre cue and post cue trials. In the pre (post) cue blocks, only the pre (post) cue 
period contained relevant cues, while the post (pre) cue period contained the same, non-informative symbol “−”. 
This symbol was presented in order to make the pre and post cue trials as similar as possible to each other.

The relevant cues were either predictive or neutral. The predictive cues indicated that the stimulus is likely to 
have an overall orientation that is more likely to be left of vertical (i.e., counterclockwise) or right of vertical (i.e., 
clockwise). These two possibilities were signaled by the symbols “ < ” and “ > ”, respectively. The predictive cues 
were valid on 66.67% of the trials. The neutral cues were not predictive of the stimulus orientation and consisted 
of the symbol “|”. Neutral cues were presented on 25% of the trials.

Subjects were fully informed about all of these properties of the cues and were encouraged to take full advan-
tage of the information provided by the cues in their perceptual decisions. In addition, to help subjects use the 
cues, we provided them with trial-by-trial feedback.

Procedures. Subjects were first provided with training in which the difficulty of the task was gradually 
increased by decreasing the offset of the mean of the distribution from which orientations were drawn. At the end 
of the training, subjects engaged in a staicasing block to establish the individually-determined offset that controls 
the difficulty of the task. The staircasing block employed an adaptive 2-down-1-up method with decreasing step 
sizes. The block ended after ten reversals and the threshold was defined as the average of the offset values at the 
last six reversals. This threshold offset was used in the rest of the experiment.

The main experiment consisted of 480 trials organized in four runs, each consisting of four blocks of 30 trials. 
Subjects were given a 15-second break between blocks and untimed breaks between runs. For half of the subjects 
the odd numbered blocks from each run were pre cue blocks, while the even numbered blocks were post cue 
blocks. For the other half of the subjects, this order was reversed.

Apparatus. All visual stimuli were created in MATLAB (MathWorks) using Psychtoolbox 352. The visual 
stimuli were presented on Mac built-in display (1920 × 1080 resolution, 60 Hz refresh rate). Subjects performed 
the task in a dark room. They were positioned 60 cm away from the screen.

Analyses. To determine observers’ performance on the task, we computed the Signal Detection Theory meas-
ures d’ (a measure of stimulus sensitivity) and c (a measure of response criterion) by calculating the hit rate (HR) 
and false alarm rate (FAR). Then d’ and c were computed using the following formulas:

Φ Φ= −− −d HR FAR’ ( ) ( ) (1)1 1

and

= − . ∗ Φ + Φ− −c HR FAR0 5 ( ( ) ( )) (2)1 1

where Φ−1 is the inverse of the cumulative standard normal distribution that transforms HR and FAR into 
z-scores. HR and FAR were defined by treating the right orientation as the target. Therefore, negative c values 
indicate a bias for responding “right,” while positive c values indicate a bias for responding “left”.

We computed the optimal c value for each condition as the value that maximizes the percent of correct 
responses. The optimal c was derived separately for left and right cues using the formula a

d
log( )

’
 where a is the odds 

of presenting left vs. right stimulus (the 66.67% cue validity meant that a was 2 for left cues and 1
2

 for right cues). 
Then, to compute the optimal criterion shift, we subtracted the computed values for left and right cues.

Statistical tests were conducted using t-tests (one-sample and paired) and repeated measures ANOVAs. In 
cases in which the Mauchly’s test of sphericity was violated, we report the ANOVA results using the Huynh-Feldt 
correction and note it explicitly in the text.

To derive the maximum correlation between the criterion effects of the pre and post cues, we estimated the 
reliability of each effect. To do so, we re-computed each effect based only on the odd vs. even trials. However, since 
this analysis only uses one half of the available trials, it may underestimate the reliability of the measured effects 
when all trials are used. To correct for this issue, we applied the Spearman-Brown formula27 that computes the 
expected reliability of the full test based on the reliability of one half of it:
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The reliabilities for pre and post cue effects were 0.65 and 0.76 but after applying the Spearman-Brown correc-
tion, they were estimated as 0.79 and 0.86. We then computed the maximum predicted correlation between the 
pre and post cue criterion effects by applying the correction for attenuation27:

= ∗r r r (4)maximum measure measure1 2

where rmaximum is the maximum correlation between measures 1 and 2, and rmeasureX is the reliability of measure X 
(for X = 1, 2). Finally, we compared rmaximum with the correlation that we actually observed robserved.

Temporal reverse correlation analyses were performed on the raw orientation values in radians. Vertical ori-
entation was coded as 0° and clockwise (counterclockwise) offsets from vertical were coded as positive (negative) 
values. The orientation values were entered into a logistic regression that predicted subjects’ choices. Optimal 
information usage was determined by performing the same logistic regression on the stimulus identity instead. 
The logistic regression for each condition was performed separately on the orientations from each of the thirty 
frames.

The feature-based reverse correlation analyses were performed via a logistic regression on the orientation 
values in degrees. For each orientation (i.e., feature) θ between −40° and +40° (whole numbers only), we calcu-
lated the number of Gabor patches with orientation in the interval [θ − 5°, θ + 5°]. We obtained one such num-
ber per trial, and these numbers were used as predictors in logistic regressions performed for each orientation 
angle. Thus, for each condition, we performed 81 regressions. In three cases (out of a total of 24,300 regressions 
performed), subjects’ responses could be predicted perfectly resulting in extreme beta values (θ = −38° for the 
neutral pre cues condition in subject 15, and θ = 32° and 33° for the neutral post cues condition in subject 3). The 
beta values from these regressions were replaced with the weighted beta values derived from the regressions for 
the neighboring θ values for the same subject.

Simulations. We simulated three different possible effects of expectation cues in order to demonstrate that 
reverse correlation analyses are sensitive to such effects. In three analyses, we simulated a change in early but not 
late sensory signal (Fig. 1C), a change in ambiguous but not unambiguous sensory signals (Fig. 1D), and a change 
in the decision criterion (Fig. 1E). In each case, we simulated 1 million trials with each type of cue (left, right, and 
neutral) using the same parameters as in the main experiment.

In the first simulation (change in early signal), the information from the first six frames was weighted 8 − i 
times more than the rest of the frames, where i is the frame number. Importantly, this higher weighting was 
applied only for cue-congruent orientations. In the second simulation (change in ambiguous signals), orienta-
tions close to vertical were altered in the direction of the cue. For right (left) cues, an orientation of θ was trans-
formed to θ φ θ µ σ+ − ∗ |( ) 240 ( , )2 , where μ = 0, σ = 6, and φ θ µ σ|( , )2  is the probability density at θ of a 
Normal distribution with a mean of μ and standard deviation of σ. In the third simulation (change in decision 
criterion), the decision criterion was set to 4° (−4°) for left (right) cues. The decision was always made by com-
paring the average of the 30 orientations to the criterion (which was kept at 0° in the first two simulations, as well 
as the neutral cue condition of the third simulation). In all cases, the simulation parameters were chosen so that 
they produced similar average amount of bias as in the real data.

Modeling. We attempted to reproduce the feature-based reverse correlation effects by creating a simple model 
of the cuing effects. In our model, “right” (i.e., clockwise) choices were made if the average of the 30 orientations 
θi presented on a single trial exceeded a condition-specific criterion. Formally, “right” responses were given when:

θ∑ >= Criterion
30 (5)
i i

cond
1

30

Criterioncond was set to 4°/6° for pre/post left cues (the positive values ensure that “left” responses are more likely), 
−4°/−6° for pre/post right cues (the negative values ensure that “right” responses are more likely), and 0° for both 
pre and post neutral cues (ensuring unbiased responses). Even though in reality these criteria must have varied 
across subjects, we used the same criteria values for all subjects to avoid overfitting and since the model was 
designed as a simple proof-of-concept.

Rather than creating idealized predictions of the model (as in Fig. 1C–E), which would obscure the noise 
inherent in real data, we ran the model directly on the actual stimuli experienced by the subjects. We per-
formed the exact same logistic regressions as in our feature-based analyses. Just as with those analyses, a few 
logistic regressions resulted in perfect predictions and therefore extreme beta values. To correct for this, we 
excluded the data from 4 subjects where perfect predictions occurred for too many regressions and replaced 
individual extreme beta values for non-excluded subjects with the weighted beta values derived from the 
regressions for the neighboring θ values (using the same procedure as for the real data; overall, 10 such substi-
tutions we made).

Data and code availability. All data and codes for the analyses, including the modeling and simulations, 
are freely available online at: https://github.com/DobyRahnev/pre_post_cues.

https://github.com/DobyRahnev/pre_post_cues
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