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Graph theory reveals amygdala 
modules consistent with its 
anatomical subdivisions
Elisabeth C. Caparelli1, Thomas J. Ross  1, Hong Gu1, Xia Liang1,2, Elliot A. Stein1 & 
 Yihong Yang1

Similarities on the cellular and neurochemical composition of the amygdaloid subnuclei suggests 
their clustering into subunits that exhibit unique functional organization. The topological principle 
of community structure has been used to identify functional subnetworks in neuroimaging data that 
reflect the brain effective organization. Here we used modularity to investigate the organization of 
the amygdala using resting state functional magnetic resonance imaging (rsfMRI) data. Our goal was 
to determine whether such topological organization would reliably reflect the known neurobiology of 
individual amygdaloid nuclei, allowing for human imaging studies to accurately reflect the underlying 
neurobiology. Modularity analysis identified amygdaloid elements consistent with the main anatomical 
subdivisions of the amygdala that embody distinct functional and structural properties. Additionally, 
functional connectivity pathways of these subunits and their correlation with task-induced amygdala 
activation revealed distinct functional profiles consistent with the neurobiology of the amygdala 
nuclei. These modularity findings corroborate the structure–function relationship between amygdala 
anatomical substructures, supporting the use of network analysis techniques to generate biologically 
meaningful partitions of brain structures.

The amygdala is involved in a series of emotional processes and cognitive functions including learning, memory, 
attention and perception1. Although small in total size, its complex composition of structurally and functionally 
heterogeneous subnuclei supports these multiple functions. Histological studies suggest that the amygdala may 
be composed of at least twenty subnuclei2 that share cytoarchitecture, myeloarchitecture and chemoarchitecture 
features. Based on these similarities, schemas have been proposed to segregate these nuclei into subunits based on 
their functional and anatomical characteristic3. Although the boundaries and even the names of these subunits 
remain unsettled, one of the most widely accepted classification schemas classifies them as the superficial (SF) 
(corticoid) amygdaloid nucleus, the centromedial (CM) group and the laterobasal (LB) complex4–6. A stereotaxic 
probabilistic map of the human amygdala, based on the superposition of cytoarchitectonic mapping of cell-body 
stained histological sections, has been developed by Amunts and colleagues5 and classifies the SF group to include 
the anterior amygdaloid area, the amygdalopyriform transition area, the amygdaloid-hippocampal area and cor-
tical nuclei (intermediate, dorsal, ventral and posterior), the CM group combines the central and medial nuclei, 
while the LB group incorporates the lateral, basolateral, basomedial and paralaminar nuclei. This mapping is quite 
consistent with the cellular and neurochemical composition of the amygdaloid nuclei, since the CM, which is 
continuous with the bed nucleus of stria terminals, is comprised of cells that are morphologically similar to those 
in the striatum, while the LB and SF resemble cortical area7–10. Additionally, the LB is the main amygdala division 
that receives efferent projections from basal forebrain cholinergic neurons projecting mostly to the basolateral 
nucleus4,11.

The neurobiological composition of these main subdivisions indicates a potentially exclusive functional/
anatomical neural interaction that may be captured either in synchronized fluctuation of the fMRI signal, as 
in rsfMRI, or through anatomical connections, such as, diffusion tensor imaging (DTI). For this reason, differ-
ent functional and structural MRI based approaches have been proposed to parse the amygdala architecture. 
As a result, while some studies found the amygdala subdivided in two main regions, which were identified as 
superior12/superficial-cluster13 and inferior12/deep-cluster13, representing the LB and smaller nuclei (inferior/
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deep-cluster) and the CM and cortical nuclei (superior/superficial-cluster)14, others found the amygdala subdi-
vided into four main subregions, dividing LB into lateral and basal regions and the CM into central and medial, 
leaving the cortical nuclei undifferentiated15. Therefore, these findings are not fully in agreement with the amyg-
dala subdivisions shown in the stereotaxic probabilistic map5.

Two recent studies16,17, using imaging approaches, found three subdivisions of the amygdala forecasted by 
the probabilistic atlas5. The first study proposed a method that started from a hypothetical topographic model, 
based on the functional-anatomic organization of brain networks subserving social cognition, by defining three 
social networks: perception, which would be associated with the ventrolateral sector of the amygdala; affiliation, 
related to the medial section of the amygdala; and aversion, linked with the dorsal sector of the amygdala16. 
As a result, three amygdala regions were pre-defined in those locations (spherical ROIs) and using an iterative 
seed-target-seed methodology, the border of these subdivisions were established. The second study proposed 
an imaging-parcellation method based on meta-analysis, where three amygdala subdivisions were identified by 
computing whole-brain co-activation patterns for each amygdala seed voxel and grouping these seeds based on 
similarities between their co-activation patterns17. This method required a systematic analysis of a broad range 
of associated experiments (6,500 fMRI and PET studies) to increase the robustness of parcellation results and to 
avoid dependence on any particular user-specified parameter. Therefore, while the first approach16 predefine the 
initial number of subdivisions, the second approach was a meta-analysis requiring a significant amount of data 
from different imaging sources.

In this work, we propose to use resting state BOLD data and the topological principle of community structure 
to identify the main subdivisions of the amygdala. Our approach is based on global topological characteristics 
that has been shown to produce stable brain structural and functional networks, suggesting that the observed 
hierarchical modular organization coincide with the underlying anatomical communities at different scales18. 
Furthermore, by using hierarchical modularity analysis to explore the community structure of brain networks19,20, 
previous studies have shown that functionally and anatomically related brain regions are more densely inter-
connected, with relatively few connections between these clusters, indicating that these networks are intimately 
related and share common topological features, such as modules and hubs21. Therefore, based on these concepts, 
we employed the principle of modularity to identify subnetworks within the amygdala. We hypothesized that the 
modular organization of the amygdala will reflect its internal functional segregation and integration consistent 
with the neurobiological properties of its nuclei. For this purpose, we applied the community structure algorithm 
to a high spatial and temporal resolution rsfMRI data from the Human Connectome Project (HCP)22,23. We fur-
ther assessed the functional consequence of each identified subnetwork by determining their functional connec-
tivity and then by correlating these circuits with amygdala activation during an emotional processing task. Our 
findings validate the association between the modular structure of the amygdala and the biological characteristics 
of amygdala subdivisions.

Results
Modularity. Modular analysis of the amygdala revealed three distinct modules (Fig. 1A and B) that are con-
sistent with the probabilistic anatomical subregion maps5, displayed in the Juelich histological atlas (50% proba-
bilistic mask, FSL - Fig. 1C). However, the borders of the atlas, as implemented in FSL, do not completely coincide 
with macro-anatomical landmarks of the amygdala5 (Fig. 1D; Juelich atlas volume, left: 2968 mm3, right: 2904 
mm3 6, making direct comparison of the modularity results and the anatomical subdivisions difficult, since the 
amygdala template is smaller (left: 1608 mm3, right: 1512 mm3), but better represents the average amygdala size in 
healthy adults24. Despite size discrepancies, the synergy between the relative size of the subdivisions found in the 
Juelich atlas (LB > SF > CM) and the modules obtained from our modularity approach (lateral > medial > dor-
sal), together with the closeness between the subdivision location, suggest labeling the dorsal module as CM, the 
medial as SF and the lateral as LB.

FC maps. Patterns of significant correlation for each amygdala subdivision reveal unique connectivity circuits. 
MRI signal at the CM was mainly correlated with the signal in the middle and anterior cingulate cortices, frontal 
cortex, striatum, insula, cerebellum and precuneus, while a negative correlation was observed at the occipital 
gyrus (Fig. 2, Table 1). However, an overall reduction in the connectivity strength was observed for the right when 
compared with the left CM, which was not seen for other amygdala subdivisions (Figs 2 and 2S). In spite of this 
reduction in strength, the connectivity pattern is preserved between the two sides of this amygdala subdivision. 
Direct comparison with correlation results from the other seed regions highlight this unique path of connections 
when contrasting the functional connectivity results of the CM with either the combined results from LB and SF 
(Fig. 3, Table 2) or the connectivity results from each of the others subdivisions (Fig. 1S, Table 1S).

The LB nuclei was positively correlated with the superior, medial and inferior frontal gyri, precentral gyrus, 
paracentral lobule, middle temporal gyrus and cerebellum, and negatively correlated with the parietal lobule, 
precuneus and cingulate gyrus (Fig. 2, Table 1). Further, when compared with the circuit strength from the other 
two amygdala subdivision, the LB seems to be uniquely associated with inferior and middle temporal gyrus and 
middle occipital gyrus (Fig. 3, Table 2). Pairwise comparisons also show unique correlations of LB with the infe-
rior temporal gyrus and the middle frontal gyrus when contrasted with CM and with cerebellum, and the middle 
frontal gyrus and the inferior parietal lobule when compared with SF (Fig. 1S, Table 1S).

Activity in the SF correlated with signal fluctuations in the orbitofrontal cortex, posterior insula, olfactory cor-
tex, precentral gyrus, paracentral lobule and posterior cingulate, and was anti-correlated in the anterior cingulate 
cortex, superior and middle frontal gyrus, cerebellum, parietal lobule, inferior temporal gyrus and precuneus 
(Fig. 2, Table 1). Unique connectivity path of the SF subdivision is observed at the paracentral lobule, posterior 
cingulate cortex (PCC) and orbitofrontal cortex (OFC) when contrasting with the combined correlation results 
for the other two subdivisions (Fig. 3, Table 2).
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Figure 1. Modularity results for the amygdala subdivisions. (A) Correlation matrix for the amygdala template 
with modules overlaid in semi-transparent colors, greyscale values indicate r-values, (B) modularity results: LBL 
(696 mm3), LBR (640 mm3), SFL (472 mm3), SFR (464 mm3), CML (440 mm3), CMR (408 mm3), are displayed 
on coronal slices located at y-axis values: -2, -4, -6, -8 (L/R suffix = left/right). The maximum modularity factors 
obtained for this parcellation were QL = 0.26, QR = 0.25; (C) Juelich atlas overlaid on a coronal anatomical image 
(D) Juelich atlas superimposed on the amygdala template (shown in white, under the Juelich atlas); radiological 
convention.

Figure 2. FC maps for the amygdala subdivisions, CM, LB and SF, obtained from modularity results. MNI 
standard space; radiological convention; significance: p < 0.05 FWE corrected. Left/Right indicate seed locations.
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Subdivision x y z Brain region cluster size T-score

CML
−24 −6 −14 left Amygdala 71314 >13
22 −80 28 right Superior occipital gyrus 477 −5.9
−14 −92 24 left Superior occipital gyrus 397 −5.9

CMR

24 −2 −14 right Amygdala 24511 >15
−8 90 36 left cuneus 2277 −6.6
−16 −68 −46 left cerebellum (VIIIa) 2244 6.8
2 58 28 left superior frontal gyrus 1488 7.7
0 −4 48 cingulate Gyrus 1394 7
16 −72 −52 right cerebellum (VIIb) 533 7.6
4 −62 32 right precuneus 355 6.5
50 −46 −24 right inferior temporal gyrus 293 5.7

LBL

−28 −8 −20 left amygdala 58058 >13
0 58 36 superior frontal gyrus 1383 8.8
50 −50 56 right inferior parietal lobule 856 −7.6
4 34 38 right medial frontal gyrus 658 −7
2 52 −16 right Mid. Orbital gyrus 629 8.1
−8 −70 34 left precuneus 525 −7.6
−38 −56 46 left inferior parietal lobule 473 −7.6
2 −22 30 right cingulate gyrus 454 −8.7
40 10 24 right inferior frontal gyrus 398 6.1
58 28 2 right inferior frontal gyrus 307 6

LBR

30 −6 −22 right amygdala 42326 >13
0 58 −10 medial frontal gyrus 2564 9.2
32 −82 −36 right cerebellum (Crus I) 931 8.7
50 −46 42 right inferior parietal lobule 870 −6.6
−26 −82 −36 left cerebellum (Crus I) 665 9.2
2 32 40 right medial frontal gyrus 591 −7.6
−6 −72 38 left precuneus 387 −6.6
0 −26 28 cingulate gyrus 310 −6.6

SFL

−16 −6 −18 left amygdala 68153 >13
38 −52 −32 right cerebellum (Crus I) 3118 −11.5
30 56 18 right superior frontal gyrus 2793 −8.8
−32 58 16 left middle frontal gyrus 1434 −9.1
2 28 40 right medial frontal gyrus 1286 −9.1
54 −44 42 right inferior parietal lobule 1087 −10.2
−40 −30 −10 left inferior temporal gyrus 793 −7
−8 −68 38 left precuneus 733 −8.4
−50 −52 40 left inferior parietal lobule 641 −7.3
36 −46 0 right middle temporal gyrus 623 −7.4
4 −24 28 right cingulate gyrus 451 −8.5
14 −12 6 right thalamus 308 −7.5

SFR

20 −6 −20 right amygdala 65553 >13
−40 −60 −30 left cerebellum (Crus I) 1579 −9.7
2 38 22 right anterior cingulate 1541 −8.4
−30 54 24 left middle frontal gyrus 1335 −8
30 56 28 right superior frontal gyrus 1166 −7.7
26 −70 −26 right cerebellum (VI) 1050 −8.8
56 −44 36 right supramarginal gyrus 916 −8.7
−54 −48 36 left inferior parietal lobule 895 −9.4
2 −22 28 right cingulate gyrus 639 −10.5
−8 −72 40 left precuneus 303 −8.5
46 18 0 right inferior frontal gyrus 302 −6.6
12 −70 42 right precuneus 297 −10
−14 −12 10 left thalamus 290 −7.2

Table 1. Cluster locations for the functional connectivity maps calculated for each amygdala subdivision. 
T-test results from partial correlation for each subset are corrected for multiple comparisons, pcorrected < 0.01; 
cluster’s peak locations are in Montreal Neurological Institute (MNI) coordinates, locations for the cerebellum 
subdivisions are from MNI-SUIT space (AFNI-SUIT atlas92), cluster size in number of voxels, XL(R) = X 
left(right), X = CM, LB, SF.
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Pairwise comparisons show that the connectivity strength of the SF subdivision is higher when compared 
with CM based circuits in the occipital lobe, PCC, precentral and postcentral gyrus, paracentral lobule, superior 
frontal gyrus and OFC and higher than the connectivity path of the LB at medial and inferior frontal gyrus, 
precuneus, PCC, precentral and postcentral gyrus, middle temporal gyrus, precentral gyrus and OFC (Fig. 1S, 
Table 1S).

Connectivity across sessions. A two-way ANOVA (session x seed location), comparing the connectivity 
pattern obtained for each amygdala subunit and for each session (subseries), revealed a main effect of the seed 
location in the striatum, insula, OFC, ACC, superior medial gyrus, occipital gyrus, medial, middle and inferior 
frontal gyrus, cingulate gyrus, inferior parietal lobule, cerebellum, superior and middle temporal gyrus (Fig. 3SA, 
Table 3). There was no main effect of session and no interaction between seed location and session. ICC test-retest 
results of brain connectivity data also show fair to moderate reliability for the functional connectivity across ses-
sions (ICC > 0.4). Intersession consistency was highest from the FC maps obtained for the SF, followed by those 
from CM and LB (Fig. 3SB).

Altogether, these results indicate a stable pattern of brain connectivity for each modularity based amygdala 
substructure across sessions (Fig. S2) that generally reproduced those obtained with the entire time series (Fig. 2), 
highlighting the consistency of the connectivity over time.

Amygdala activation and rsfMRI. As expected, the entire amygdala was significantly activated when sub-
jects performed the face/shape matching task (Fig. 4A1). However, raising the threshold (T > 13) indicated that 
the most significant activated voxels were located within the CM and the SF subdivisions (Fig. 4A2). Average 
BOLD signal in each amygdala subdivision shows the LB as the least activated during the fear/anger faces task, 
while the superficial subdivision was the most active during the task (Fig. 4B); there were no significant differ-
ences in activation between subdivisions in the left and right hemisphere. Notably, only the CM showed sig-
nificant correlation between the average BOLD signal in this amygdala subdivision and its mean connectivity 
strength with the entire brain (Figs 4C and 5S), while no significant correlation between BOLD and correspond-
ing connectivity maps was observed for the others two amygdala subdivisions.

Discussion
By using the community structure algorithm to evaluate the topological organization of the amygdala, we iden-
tified three subdivisions, which is congruent with previous findings16,17, but with a method that did not require 
an extended meta-analysis. Moreover, modularity has shown to be very reliable, even with small datasets; the 
results from the HCP dataset (98 subjects) reproduced our previous pilot findings from a group of just 18 subjects, 
acquired in our center with different EPI sequences and different set of parameters (see Supplemental Material 
Fig. 4S). Additionally, our method is free of initial hypotheses related to the number of modules, which is auto-
matically established by the algorithm based on the principle of modularity. Finally, our method was able to 
identify the CM and SF based only on information about node connections, despite the poor separation of these 
modules as illustrated in Fig. 1A, which may explain why previous data driven work12,13 were not able to separate 
the CM from SF.

Our work further supports that topological properties may have an impact on the study of structural-function 
relations in brain networks. Whilst it helps to understand the fundamental architecture of connections within 
and between brain regions, it also provides a way to elucidate how this architecture supports neurophysiological 
dynamics. Modularity approaches can be either top-down, such as the Newman’s method25, where a network 
is repeatedly subdivides into smaller portions until there is nothing to be gained in modularity value (Q), or 
bottom-up, as in Louvain’s method26,27, which is a hierarchical clustering approach, where nodes are progressively 
merged to others nodes becoming larger and larger sets of nodes, a process that is repeated iteratively until no 
increase of modularity is possible28. By using the Louvain’s method, we were able to identify amygdala modules 
that resemble the most accepted classification schemes for its anatomical subdivision5, suggesting a degree of 
functional segregation of these subunits that is consistent with the biological characteristics of the amygdala 
substructures.

Different methods have been proposed to find small communities in large networks, such as the Surprise 
method29 and Optimal Compression method30, each having particular strengths and weaknesses. For example 
the Surprise method29 is best suited for the study of binarized networks. However, it is vulnerable to noise errors 
that affect small modules, and in the case of the amygdala, located in a brain area with low SNR, it may not 
necessarily improve the quality of the partitions. The Optimal Compression method30, on the other hand, is not 
recommended when “community structure are considered as statistical deviation from the null model in which 
the degree sequence is held constant but links are otherwise equiprobable among all nodes, wherein the modularity 
optimization methods by definition provides the optimal partitioning”30. In contrast, by construction, the Louvain 
method26 is able to unfold a complete hierarchical community structure for the network, with each level of the 
hierarchy being given by the intermediate partitions found at each pass. In our work, we considered only the top 
level of this hierarchy, namely the final partition found by the algorithm, since no further meaningful sub-module 
was found in the amygdala (additional sub-modules mostly consisted of single voxels, as tested on dataset from 
Fig. 4S) when lower levels of modular hierarchy were evaluated.

Regional connectivity. Temporally correlated patterns of low-frequency fluctuations during rest revealed 
regions of distinct functional networks associated with each of the three amygdala subdivisions, which were 
maintained across sessions, demonstrating the robustness and stability of our findings. Notably, their combi-
nation reproduces the previously reported16,31 connectivity pattern for the entire amygdala, as areas from the 
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ventro-temporal-limbic network (described by Glerean and colleagues31) are identified in the connectivity path-
way of the amygdala subdivisions.

Signal variation at the LB subdivision was positively correlated with activity in the superior temporal gyrus, 
middle frontal and precentral gyri, supporting the involvement of similar circuits in associative learning and 
emotion regulation32,33. In particular, the connection between the LB and the temporal lobes was previously 
observed using rsFC6,12,16 and probabilistic DTI34, and is supported by axonal tracing studies in non-human pri-
mates, where a connection between the superior temporal gyrus and the ventrolateral nucleus of the amygdala 
was identified35.

Significant correlation was found between the SF region and posterior insula, OFC, subgenual ACC, inferior 
parietal lobule, olfactory cortex, middle temporal gyrus and PCC. This correlation pattern suggests an involve-
ment of SF in olfaction-related affective processes, consistent with a meta-analysis of human imaging data17 and 
rat anatomy36,37. Similarities of the connectivity pattern of the LB and SF mainly with the temporal lobe38, suggests 
that these two amygdaloid nuclei may share a common functional organization. Comparative architectonic stud-
ies have also suggested a separation of the SF from the CM group, assigning it to the LB group39, which is justified 
by the fact that these two nuclei also contain similar cortical –like neuronal composition7,9.

Despite the biological resemblance between the SF and LB, we also observed unique connectivity patterns 
between SF and areas of the default mode network (DMN), although anatomical projections from the amygdala 
to the PCC has not been verified40, suggesting a possible indirect connection between these regions through the 
sACC, as previously reported in monkeys41. Nevertheless, a functional connection between the amygdala and 
the PCC has also been reported42, suggesting an involvement of SF in self-awareness related emotional processes, 
autobiographical memory, past self-relevant stimuli and future prospection43. The SF was also anti-correlated 
with the more dorsal part of the precuneus, which is consistent with the pattern of positive correlations, pre-
viously observed, between the DMN and the ventral, but not the dorsal precuneus44. In addition, a decrease in 
regional cerebral blood flow in the PCC, medial frontal cortex and ventral but not dorsal precuneus during a 
working memory task45, suggests that dorsal precuneus (BA 7) may not be part of the DMN46. Furthermore, the 
connection between the SF and the precuneus may corroborate an amygdala-precuneus pathway that has been 
anatomically observed in tract tracing studies in monkeys47,48. Lastly, our findings showing the SF amygdala as 
the most activated in response to an emotional task that elicited either fear or anger, corroborates its involvement 
in directing attention towards affective stimuli49.

The significant correlation between resting activity of the CM nuclei and signal fluctuation from areas attrib-
uted to the salience network (SN), e.g., anterior insula, ACC and middle cingulate cortex (MCC)50, is consistent 
with the central nucleus involvement in facilitating attention to salient stimuli51. In addition, the CM was the 
only amygdala subdivision in which the rsFC pattern predicted activation in response to fear and angry faces, 
thus indicating its association with adverse feelings. Even though the SF had the highest average activation for 
this task, its BOLD signal did not correlate with the mean functional connectivity pattern of this subdivision. 
Moreover, the most activated voxels occurred not only in the SF, but also in the CM subdivision. Therefore, our 

Figure 3. FC-differential maps contrasting the connectivity map of each amygdala subdivision, CM, LB and 
SF, against the average connectivity pattern of the other two subdivisions, LB + SF, CM + SF, CM + LB. MNI 
standard space; radiological convention; significance: p < 0.05 FWE corrected.
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findings suggest an involvement of CM and its connected areas (SN and striatum) with negative emotion and is 
consistent with previous findings. For example, the strongest amygdala functional connectivity within the SN is 
seen in those with the greatest amygdala activation to and aroused by negative pictures52, which is sustained by 
the role of the amygdala, SN and ventral striatum on the identification of the emotional significance of environ-
mental stimuli and the production of affective states53. Multiple fMRI studies have also reported activation in the 
ACC/MCC in anger and fear emotional tasks54, while monkey studies show that this part of the cingulate cortex 
receives input from the amygdala41,55 and has been implicated in fear56. The anterior insula has also been linked 
with such emotional experiences as fear and anger57, supported by a projection from the central nucleus of the 
amygdala35. The striatum has been associated with anger58, such that functional connections between the CM 
and the striatum are enhanced during stress59. The CM participates not only in the expression of conditioned 
fear10 but also in the learning and consolidation of fear conditioning60. Experiments in rats show that lesions of 
the central, medial and cortical amygdala nuclei markedly increase the number of contacts a rat will make with a 
sedated cat, demonstrating a decrease of fear in these lesioned animals61. The involvement of CM in anger has also 

Subdivision x y z Brain region cluster size Z-score

CML > LBL + SFL

−18 −8 −10 left amygdala 33154 >13

10 −28 74 right paracentral lobule 20900 −10.0

0 26 32 left middle cingulate cortex 4865 10.6

−36 54 20 left middle frontal gyrus 1691 8.0

−68 −22 24 left postcentral gyrus 1656 8.7

30 40 28 right middle frontal gyrus 1398 6.5

68 −32 36 right supramarginal gyrus 1195 6.8

28 −6 −20 right hippocampus 817 −11.2

CMR > LBR + SFR

48 −74 2 right middle temporal gyrus 23328 −8.2

30 −4 −24 right amygdala 6105 <−13

−52 −48 8 left middle temporal gyrus 2288 −7.3

60 −4 −10 right superior temporal gyrus 2129 −7.2

−36 −46 −34 left cerebellum (VI) 2122 7.4

2 42 20 left anterior cingulate cortex 1498 7.1

LBL > CML + SFL

−34 −4 −26 left amygdala 12381 >13

0 4 30 left anterior cingulate cortex 1870 −7.0

30 −84 20 right middle occipital gyrus 1487 6.0

−18 −92 16 left middle occipital gyrus 1079 5.4

LBR > CMR + SFR
34 −2 −24 right amygdala 2731 >13

−30 −8 −20 left hippocampus 1007 12.3

SFL > CML + LBL

−14 −4 −18 left amygdala 13575 >13

−30 −70 −24 left cerebellum (VI) 9287 −10.1

0 −20 62 left paracentral lobule 8517 10.1

−30 54 16 left middle frontal gyrus 7197 −9.2

0 40 −22 left rectal gyrus 2460 9.9

56 −66 22 right middle temporal gyrus 1549 7.1

−24 −80 34 left superior occipital gyrus 1470 6.9

16 −104 −4 right calcarine gyrus 1390 −6.1

0 −54 18 left precuneus 1186 7.1

58 −44 36 right supramarginal gyrus 922 −7.6

−62 −42 30 left supramarginal gyrus 832 −6.7

SFR > CMR + LBR

12 −20 76 right paracentral lobule 13240 10.1

14 −2 −16 right amygdala 11217 >13

−10 −54 6 left calcarine gyrus 3912 8.3

−20 −82 −30 left cerebellum (Crus I) 1793 −8.8

26 −70 −26 right cerebellum (VI) 1517 −8.1

−10 30 26 left anterior cingulate cortex 1428 −6.7

−12 −16 10 left thalamus 885 −7.1

−56 −48 36 left inferior parietal lobule 828 −7.3

40 24 10 right inferior frontal gyrus 803 −6.4

Table 2. Locations of the significant clusters obtained from the direct comparison of the functional 
connectivity pattern of each amygdala subdivision with the average connectivity pattern of the other two 
subdivisions. Results are corrected for multiple comparisons, pcorrected < 0.01; cluster’s peak locations are in MNI 
coordinates, cluster size in number of voxels, XL(R) = X left (right), X = CM, LB, SF.
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been demonstrated in cats, with stimulation of the central nucleus suppressing defensive rage, while stimulation 
of the medial nucleus enhances aggressive behavior62. Overall, our findings reinforce the previously observed 
participation of the CM and connected areas (SN and striatum) in fear and anger.

Validation and reproducibility. The functional connectivity circuits for the modularity defined amygdala 
subdivisions reproduce the major findings obtained by Bickart et al.16 and by Roy et al.6, which used the Juelich 
atlas as a template. Both found that the CM nucleus correlated with the striatum and insula, that the LB complex 
correlated with the temporal lobe, and activity of the SF mainly correlated with activity of the OFC. Additionally, 
Roy and colleagues6 also reported laterality differences of the CM connections, as observed here, that is consistent 
with those previously reported63. For example, right amygdala lesions in rats have been shown to generate greater 
deficits in contextual fear than left sided lesions64. Previous electrophysiological studies also showed hemispheric 
lateralization of pain processing by CM neurons. Specifically, neurons in the left latero-capsular division of the 
central nucleus of the amygdala (CeLC) did not develop increased responsiveness in a rodent model of arthritis 
pain, while the right CeLC played a major role in the processing of prolonged nociceptive inputs and develops 
sensitization65. This suggests a tonic inhibitory mechanism from the prefrontal cortical areas over the left CeLC, 
which exert a top-down inhibitory influence on the amygdala66. In our work, the lower connectivity strength 
observed for the CM, besides being consistent with previous work, may also indicate a diminished inhibitory 
effect from the prefrontal cortical areas over the right CM, since this was the amygdala subregion most connected 
to these cortical areas. This may explain the unique correlation of its connectivity pattern and the activity on this 
area during the faces task, once more being consistent with a predominant role of the right amygdala in negative 
emotions. Finally, while the anatomical and functional basis for this lateralization remains unclear, taken together, 
these findings highlight the role of the CM on amygdala lateralization.

The functional connectivity between the LB and SF with the SMA differ from the results obtained by Roy and 
colleagues6, although they are consistent with another resting state study that identified connectivity between 
the LB and SF with motor areas38. Structural connections between the amygdala and motor areas has also been 
previously observed in a DTI study34. Studies in cats67 and monkeys68 have shown that the projections to the 
motor system arise from the magnocellular division of the basal nucleus of the amygdaloid complex. In addition, 
disruption of the amygdala-motor pathway has been suggested to be responsible for the inability of those with 
Autism to react to social stimuli69, which is consistent with data from both monkeys70 and humans71 reporting 
that the LB and SF subregions are especially sensitive to social stimuli. Therefore, together with previous findings, 
our work indicate that a direct amygdala-motor pathway might provide a mechanism by which the amygdala can 
influence more complex motor behaviors34.

Finally our results benefited from using high spatial and temporal resolution data from the HCP22. The high 
spatial resolution improves the assessment of small brain regions, such as the amygdala, by limiting partial vol-
ume effects, reducing dephasing artifacts and improving in-plane MRI signal uniformity72, while the high scan 
rate has the further advantage of minimizing the aliasing of physiological artifacts over the low frequencies of 
interest73. Even though smaller voxels always carry the disadvantage of lower SNR, it was compensated by the 
large sample size and multiple long rsfMRI runs.

Conclusions
In conclusion, we have applied a community structure approach to characterize the modular organization of the 
amygdala using resting state fMRI data from the HCP. The anatomical and functional specificity of the results 
provide compelling evidence of the structure–function association between the subnuclei identified herein and 

x y z Brain region
cluster 
size F-score

−30 −8 −24 right amygdala 10817 >20

2 30 32 left superior medial gyrus 6615 19

−50 −72 0 left middle occipital gyrus 2498 13

16 −92 22 right cuneus 2333 12

2 38 −18 right medial frontal gyrus 1449 19

28 −84 −32 right cerebellum (Crus I) 1438 15

−40 −54 −30 Left cerebellum (Crus I) 1362 20

−28 52 16 left middle frontal gyrus 1233 13

30 54 18 right middle frontal gyrus 902 14

−58 −34 40 left inferior parietal lobule 827 9.7

−52 0 −20 left middle temporal gyrus 780 12

62 −36 36 Right inferior parietal lobule 450 10

62 −4 −10 right superior temporal gyrus 371 17

40 32 −14 Right inferior frontal gyrus 278 19

−2 −28 26 Left cingulate gyrus 270 7.9

Table 3. Significant clusters for the main effect of seed location obtained from the two-way ANOVA. Results are 
corrected for multiple comparisons, pcorrected < 0.01; cluster peak locations are in MNI coordinates, locations for 
the cerebellum subdivisions are from MNI-SUIT space (AFNI-SUIT atlas92), cluster size in number of voxels.
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histological anatomical substructures, demonstrating that graph theory based network analysis techniques can 
generate biologically meaningful partitions of brain structures. Finally, our findings suggest that characterization 
of regional modular organization may be useful to evaluate disease- or age-induced abnormalities.

Methods
Subjects. Analyses were performed on 100 adult healthy volunteer (46 males and 54 females; age range 22 to 
36 years; mean age 29.4 ± 3.6 years), randomly selected through the 100-unrelated option from the WU-Minn 
Consortium HCP (WU-Minn HCP 500 Subjects + MEG2 Data Release), obtained through the Open Access 
agreement. Data is publicly available at the HCP online database (http://www.humanconnectome.org/documen-
tation/S500/). All experiments were performed in accordance with the relevant guidelines and regulations of the 
Human Connectome Project74. Detailed description on the standard operating procedures of the protocol is avail-
able at the WU-Minn HCP 500 Subjects + MEG2 Data Release: Reference Manual Appendix IV. Subject recruit-
ment procedures and informed consent forms, including consent to share de-identified data, were approved by 
the Washington University (WU) institutional review board75. The use of the HCP data was approved by the 
Office of Human Subjects Research Protections at the NIH. All data presented in this paper is not identifiable, 
only group results are presented overlaid on a MNI template.

Data acquisition. MRI. Images were acquired on a 3 Tesla Skyra Siemens system using a 32-channel head 
coil, a customized SC72 gradient insert (100 mT/m) and a customized body transmit coil. Resting state fMRI 

Figure 4. (A) Amygdala activation for the threshold of T ≥ 6 (A1), location of the most significant activated 
voxels (T > 13, peak value T = 17) (A2) overlaid over the amygdala subdivisions, CM, LB and SF (color pattern 
from Fig. 1), radiological convention; (B) Average BOLD signal for each amygdala subdivision (*p < 0.0001); 
(C) ROI analysis correlating the mean BOLD signal at the CMR with the mean positive and significant 
(p < 0.05) Fisher transformed correlation values of the CMR connectivity pathway.

http://www.humanconnectome.org/documentation/S500/
http://www.humanconnectome.org/documentation/S500/
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data were acquired in four runs on two different days (two runs per day); task-evoked fMRI was acquired in two 
runs on the same day after completion of the rsfMRI. Both used a multi-band gradient-echo EPI sequence22,76 
(TE/TR 33.1/720 ms, resolution 2 mm isotropic, 72 oblique-axial slices, 1200 images/rsfMRI run, 176 images/
task-evoked fMRI run, MB acceleration factor = 8, BW = 2290 Hz/Pix). Within each day, acquisitions alter-
nated between phase encoding in the right-to-left (RL) direction in one run and the left-to-right (LR) direc-
tion in the other run. Anatomical images were acquired with a high-resolution (0.7 mm isotropic) T1-weighted 
magnetization-prepared rapid gradient echo (3D-MPRAGE) sequence. Anatomical and functional imaging 
sequences covered the whole brain. Subjects were given a simple instruction to rest and keep their eyes open with 
relaxed fixation on a projected bright cross-hair on a dark background (presented in a darkened room)77.

fMRI task – Emotion Processing. Participants performed a block design modified face-shape matching 
task33 wherein they were asked to match which of two faces/shapes presented on the bottom of the screen with 
the face/shape at the top of the screen; faces exhibited either an angry or fearful expression. Each of the two 
runs includes 6 blocks (3 face blocks and 3 shape blocks), each block was composed of 6 trials of the same task 
type (face or shape), with trials presented for 2000 ms and an inter-trial interval of 1000 ms. Shape blocks were 
presented interleaved with face blocks and each block was preceded by a 3000 ms task cue (“shape” or “face”); 
8 seconds of fixation was presented at the end of each run77.

Data analysis. Preprocessing - 1st level fMRI analysis. The datasets underwent an initial preprocessing by the 
HCP consortium. Anatomical images were distortion corrected, co-registered and averaged across runs, AC-PC 
registered, brain extracted, B1 bias field corrected and normalized to MNI152 space. FMRI runs (rsfMRI and 
task-evoked) underwent gradient distortion correction, motion correction, registration to the T1w image, spatial 
normalization to the MNI standard space, 4D global mean-based intensity normalization, B1 bias field correction; 
rsfMRI were also subject to independent component analysis (ICA)-based artifact removal. Finally, both task 
and resting data were whole brain masked23,77. Local data processing was performed in AFNI78 and MATLAB 
(The MathWorks Inc, Natick, Massachusetts). The pre-processed task-evoked fMRI time series were smoothed 
(FWHM = 4 mm) to improve signal-to-noise ratio (SNR)79, censored for time points that exceed a Euclidean dis-
tance of 0.3 mm and then modeled in a fixed effect analysis, two runs per subject, with canonical hemodynamic 
responses time-locked to the shape-face epochs, contrasting face with shape condition; head motion parameters 
(3 translations and 3 rotations) were also entered into the model as regressors of no interest. Time-series datasets 
were scaled so that beta weights could be interpreted as percent signal-change. Each pre-processed rsfMRI run 
had the first four EPI volumes removed to ensure signal equilibrium, following by band-pass filtering (0.01–
0.10 Hz) to minimize instrument induced drifts80 and physiological noise81. Multi-linear regression with the 6 
time-varying realignment parameters was performed to minimize motion related fluctuations in the MRI signals. 
The first three principal components (using PCA) of white matter (WM) and cerebrospinal fluid (CSF) signals 
were also regress out to preclude non-neuronal induced signal fluctuations82,83. The WM and CSF masks were 
generated by segmenting the preprocessed high-resolution anatomical images using SPM884 and down-gridding 
the obtained masks to the same resolution as the pre-processed functional data. Individual subject rsfMRI time 
series were smoothed (FWHM = 4 mm) to improve SNR79, and censored for time points that exceed a framewise 
displacement (FD) threshold >0.5 mm and the root mean square variance across voxels (DVARS) > 0.5%85. Time 
series with excessive number of time points censored (more than 30% for rsfMRI, 20% for task-evoked fMRI) 
were discarded; two subjects were excluded from resting BOLD and another two from the task BOLD data.

Modularity. Modularity analysis of the amygdala was performed using a weighted-connectivity conserving null 
model in fully connected, undirected networks with positive and negative weights27 from the Brain Connectivity 
Toolbox (https://sites.google.com/site/bctnet/) on the remaining 98 subjects. More specifically, Pearson correla-
tion coefficient was computed for each voxel (node) inside of the anatomically pre-defined left and right amygdala 
templates in MNI space (from Jerne Volumes of Interest database86,87), which was resampled to 2 mm isotropic 
to reproduce the image resolution of the processed functional data. Individuals’ correlation matrices were then 
averaged across subjects and runs to obtain the final connectivity matrix, M. Following, after removing the 
auto-correlation values from M, a Louvain algorithm26, was used to find the community affiliation vector (C) cor-
responding to the undirected and weighted correlation matrix (M)27, accounting for the contribution of positive 
and negative edges. The algorithm finds the optimal number of clusters by aggregating the nodes in the network 
into groups of modules. More specifically, Louvain method starts from a set of nodes that, through subsequent 
passes of the algorithm, are clustered to others nodes becoming larger and larger sets of nodes (it is optimized by 
allowing only local changes of communities); next the found communities are aggregated in order to build a new 
network of communities, finally it is repeated iteratively until it reaches a number of modules that have a maximal 
possible number of within group connections, and a minimal possible number of between-group connections88, 
i.e., until the modularity factor, Q, is maximized26,27. Therefore, no initial information regarding the number of 
modules is needed. However, the algorithm is non-deterministic, and may produce different solutions each run, 
so to address this limitation, the calculation was repeated 100 times (the calculation of Q is independent in each 
repetition) and the maximum modularity factor, QM, was registered (by considering precision of 4 decimal places 
only one Q value was found), then it was repeated another 100 times and another modularity factor was selected, 
Qm; these two values were compared and if they are different the latest is kept to compare with the results from 
the next iteration. This process was repeated until no change to the maximum Q was observed (QM = Qm). Note 
that for every step (every QM and Qm) the number of modules remained constant varying only their size. Next the 
final community affiliation, vector (C) was entered into the fine-tuning27 modularity algorithm, in order to refine 
the modules borders. Here, again the process was repeated iteratively, as before, until no change in the maximum 
modularity factor, Q, was observed; this allowed for the number of optimal partitions (modules) to be determined 

https://sites.google.com/site/bctnet/
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automatically. The modularity factor, Q, ranges between 0 and 1, and represents the goodness in which a network 
is optimally partitioned into functional modules27.

Functional Connectivity (FC) maps. Seed-voxel partial correlation was used to calculate the FC maps. The final 
subdivisions of left and right amygdala were used as seeds and correlated with the entire brain for each subject, 
regressing out the signal contribution from the neighbor seeds. The cross-correlation coefficient maps were then 
converted to z-score maps using the Fisher’s r-to-z transformation. Final FC maps for each subject were generated 
by averaging the results across runs. In order to evaluate temporal variations in the connectivity pattern generated 
for each amygdala seed, the original time-series were divided into four equal subseries (sessions) and FC maps 
were calculated for each session and averaged across runs for each subject.

One sample t-tests were performed independently on the FC maps generated for each amygdala subset. 
Differential assessments of the FC maps were conducted to evaluate differences in functional connectivity across 
amygdala subdivisions by contrasting the connectivity path of one seed against the combination of the others 
and by pairwise comparison (see results in the supplemental materials) using a linear mixed-effects modeling 
approach (3dLME)89. The FC pathways for the different sessions (subseries) and each amygdala subdivision were 
calculated with t-test, and the difference between sessions across seed location (amygdala subdivisions) was eval-
uated with two-way analysis of variance (ANOVA) using 3dLME89. Results were corrected for multiple compari-
sons using 3dClustSim, based on Monte Carlo simulations90, including voxels of the entire brain and considering 
a conservative imaging smoothing (FWHM) of 10 mm; statistical significance was set for pcorrected < 0.05 (see 
Supplemental material).

The reliability of the connectivity maps obtained for the four sessions (subseries) was also evaluated using a 
two-way mixed single measures intra-class correlation (ICC(3,1))91; specifically the between subject and residuals 
mean square values were computed for each voxel using the function 3dICC_REML89 on the FC maps generated 
for each amygdala subdivision, considering all sessions (see Supplemental material).

fMRI group analysis. One sample t-tests were performed on the beta weights generated for each subject pro-
viding a group activation map for the angry/fear faces contrasted against shapes. In addition, region-of-interest 
(ROI) analyses were carried out on the beta weights using the modularity results as a mask to extract the average 
BOLD signal in each amygdala subdivision for each subject. Results from the ROI analyses were compared with 
the average of the positive and significant (p < 0.05) Fisher transformed correlations obtained from the FC maps 
generated from seed-voxel partial correlations for each amygdala subdivision. Both analyses were carried out for 
the 96 subjects that survived head motion criteria for both resting and task-evoked datasets.

Availability of materials and data. All data analyzed in this manuscript were obtained from the 
WU-Minn Consortium HCP (WU-Minn HCP 500 Subjects + MEG2 Data Release), which is publicly available at 
the HCP online database (http://www.humanconnectome.org/). Detailed description of the analysis is included 
in the methods section and in the supplemental material.
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