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Published online: 03 November 2017 . The present study investigated the effect of acute stress on attentional bias to threat using behavioral

:and ERP methods. Sixty-two male participants were randomly assigned to a stress condition (Trier

Social Stress Test) or a control condition. To examine the impact of stress-induced cortisol on attentional
bias to threat, participants in the stress group were split into Low- and High cortisol responders. All
participants were then administered a modified dot probe task in which the cues were neutral and angry
faces. Behavioral results showed a pattern of attentional bias toward threat in the Control group but not
in the stress group. For the ERPs, the P100 peaked earlier for the angry-cued targets than the neutral-
cued targets in the Control group, which suggests a rapid, adaptive response toward threat. However,
this effect was not observed in the stress group, suggesting a suppressed attentional bias under stress.
In addition, the stress group (including both Low and High cortisol responders) showed reduced P300
amplitude to target onset than the Control group. These results suggest that acute stress disrupts
attentional bias to threat including a reduction in early bias to threat in addition to a subsequent change
of attention allocation.

People can detect and respond rapidly to threats in their environment. In contrast to a neutral stimulus, this
hypervigilance to a threatening stimulus is called attentional bias toward threats'. However, this enhanced atten-
tion to threat can be altered by stress. Previous studies have found an attentional bias toward threat stimuli in
non-stressful contexts. However, the bias may disappear under acute stress. For example, the attentional bias
toward threat disappeared when socially anxious individuals were asked to perform public speaking?. Likewise,
the attentional bias to masked angry face for patients with psychogenic non-epileptic seizures was abolished when
they experienced the Trier Social Stress Test (TSST)?. Furthermore, researchers have revealed that an increase in
cortisol after acute psychological stress is associated with less attentional bias for threat words in a dot probe task*.
Helfinstein, White, Bar-Haim, and Fox (2008) found that socially anxious individuals showed an attentional bias
toward angry faces after a neutral prime, but no attentional bias was found after a threatening prime®. However,
these studies have solely focused on behavioral outcomes; thus, the exact stage of information processing in which
these effects operate remains unknown.

Event-related potentials (ERPs) can be used to distinguish the neural sub-processes that are involved in com-
plex cognitive functions. To our knowledge, only one study has examined the effects of acute stress on attentional
bias using ERPs®. In this study, social drinkers performed an oddball task under acute stress or control conditions.
The results showed that there was an increased P300 for target alcohol-related images compared to neutral dis-
tracters in the control condition, and this effect disappeared under stress. However, it still unclear how acute stress
affects the distinct cognitive steps in attentional bias in healthy populations.

The dot probe task is frequently used to measure attentional bias and has received considerable empirical sup-
port as an index of attentional bias for threat”=. In the dot probe task, participants are instructed to respond to a
target when it replaces one of two cue locations that are simultaneously presented’. Attention to emotional stimuli
can be assessed using emotional facial expressions as stimuli in a dot probe task'’. In this task, a faster response
to the targets that replace a negative stimulus compared to the targets that replace a neutral stimulus suggests
attentional bias toward threatening stimuli®. In addition, research has reported greater accuracy to targets that
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Figure 1. Means and standard errors for negative affect (A), cortisol (B) and heart rate (C) over time for the
Control group, the Low and High cortisol responders.

appear in the same location as negative stimuli compared to neutral stimuli in dot probe attention tasks. Such a
response pattern is considered an indication of enhanced attention to the location of negative stimuli’, which may
also suggest an attentional bias toward threat-inducing stimuli.

Performance on the dot probe task entails two different stages: (a) processing the emotional cues and (b) pro-
cessing the subsequent targets'!. In the cue presentation stage, the P100 peaks at approximately 100 ms after the
stimulus is presented and reflects the processing of low-level stimulus features and the mobilization of automatic
attentional resources'?. The N170 is a face perception component that occurs approximately 170 ms after the face
is presented, with the largest peak amplitude appearing at lateral posterior electrode sites'’. When processing
subsequent targets, most researchers agree that the attentional bias to threat primarily manifests in the P100
component in response to the target!®!*!>. These studies have consistently reported an increased P100 ampli-
tude for targets replacing threat stimuli compared to targets replacing neutral stimuli, suggesting an enhanced
attention to threats. Previous studies using the cue-target paradigm have also revealed enhanced contralateral
attention-related modulation in the target-evoked occipital P100 component'®”. In addition, targets elicit a P300
component, which indicates the allocation of attention resources'®. Furthermore, the finding that the larger ERP
(C1) amplitude evoked by the face pair in the cue stage and the larger validity effect on P100 evoked by the target
was reported'?, suggesting potential associations between the processing of the cue and the target.

This study aimed to investigate the effects of acute psychological stress on attentional bias to threat-related
stimuli using both ERP and behavioral methods in healthy participants. Acute psychological stress was induced
using a modified Trier Social Stress Task (TSST)'**. When faced with acute stress, two systems, the autonomic
nervous system (ANS) and hypothalamo-pituitary-adrenocortical (HPA) axis become activated?!. Further, stress
is accompanied by negative affect?>. The ANS provides the most immediate response to stressor exposure, caus-
ing rapidly increased heart rate (HR) and blood pressure within seconds. Cortisol is the final effector of the HPA
axis; the activation of the HPA axis is relatively slow and requires several minutes to reach peak levels?!. Thus, HR
and subjective emotional state were used to evaluate the fast reactions to stress and cortisol was used to evaluate
the slow reaction to stress. In addition, researchers have found considerable individual differences in cortisol
response to acute stress?>*%, In two studies, low cortisol responders became avoidant and high cortisol responders
became vigilant to angry faces?>?¢. The present study examined the relation of stress and attentional bias toward
threat, thus, stressed participants were split post hoc into Low and High cortisol responders according to the
median of cortisol increase induced by stress?’. Attentional bias was measured with a modified dot probe task.
According to previous behavioral studies, we expected that attentional bias to threat would be suppressed under
acute stress which was measured via behavioral and ERP components. Furthermore, considering the potential
links between the processing of the cue and target!', we were also interested in how these associations were altered
under acute stress.

Results

Self-Report Results. No significant Group difference was found for trait anxiety (p > 0.05). For state anxiety,
there was a significant main effect of Time, F (1, 53) = 606.87, p < 0.001, 1, =0.92, indicating that participants
had a higher state anxiety score at the end of the experiment compared with the baseline measurement. The
Group differences and the interaction of Group x Time were nonsignificant. For negative affect, there was a sig-
nificant main effect of Time, F (2.35, 124.27) =7.88, p < 0.001, 1,>=0.13, and a Group x Time interaction, F (6,
159) =3.69, p < 0.01, m,>=0.12. The LSD post-hoc tests revealed that both the Low and High cortisol responders
had higher scores on negative affect than the Control group immediately after the stress induction (ps < 0.01).
The Group differences were not significant at other time points (see Fig. 1A). For positive affect, a main effect of
Time was significant, F (2.23, 118.41) =10.25, p < 0.001, n,*=0.16. Participants had higher positive affect score
at the baseline than at 0 min (p < 0.10), 15min (p < 0.01) and 30 min (p < 0.001) and higher positive scores were
also found at 0 min compared to 30 min post-treatment (p < 0.05). The main effect of Group and Group x Time
interaction was nonsignificant.

Physiological Measurement Results.  Cortisol Results. The ANOVA for cortisol levels revealed signifi-
cant main effects of Group, F (2, 53) =11.60, p <0.001, n,>=0.31, and Time, F (2.51, 132.91) = 18.35, p < 0.001,
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Figure 2. Mean accuracies and standard errors for the Control group, the Low and High cortisol responders in
valid and invalid nogo trials (reflects the correct percentage of non-responses on these trials). Valid: when the
target replaces an angry faces; Invalid: when the target replaces a neutral faces. 'p=0.07.

mp* = 0.26. There was also a significant Group x Time interaction, F (6, 159) =17.27, p < 0.001, n,> = 0.40. The
LSD post-hoc tests revealed that (1) the group differences were nonsignificant at baseline; (2) the High corti-
sol responders had higher cortisol levels than the Control group (p < 0.001) and the Low cortisol responders
(p<0.01) at 0min post-stress induction, while the difference between the latter two groups was nonsignificant;
(3) the High cortisol responders had a higher cortisol levels than the Low cortisol responders (ps < 0.01), that
was, in turn, higher than the Control group at 15min and 30 min post-stress induction (p, =0.05, p,=0.10; see
Fig. 1B).

Heart rate results. 'The ANOVA indicated that the main effect of Time, F (2.76, 146.17) = 67.55, p < 0.001,
mp*=0.56, and the Group x Time interaction were significant, F (8, 212) = 6.47, p < 0.001, n,>=0.20. Simple
effects analysis revealed that the High cortisol responders had higher heart rates than the Control group only
during the stress induction (p < 0.001), and the differences between Low cortisol responders and the Control
group were nonsignificant (see Fig. 1C).

Behavioral Results. 'The ANOVA results showed that no significant main effects of Group, Cue Validity, or Visual
Field, nor were there significant interactions related to these three variables on RTs and accuracy on go trials.

For the nogo trials, the results showed a Group x Cue Validity interaction on the correct rejection rate, F (2,
53)=3.49, p < 0.05, 1> =0.12. Post-hoc tests revealed that the Control group showed marginally higher accuracy
in valid trials (M & SE: 97.06 £ 0.42%) than invalid trials (M & SE: = 95.97 + 0.49%; p =0.07), while this trend
was not found in the Low and High cortisol responders (see Fig. 2). The main effects of Group, Cue Validity and
Visual Field as well as other interactions related to the three variables were nonsignificant.

ERP Results.  ERPs to the face pair.

P100. Neither the main effects of Group, Laterality, nor their interaction significantly affected P100 amplitudes
or latencies (all ps > 0.05).

N170. The results revealed that the Group x Laterality interaction for N170 amplitudes was significant, F (2,
53)=3.78, p < 0.05, 1);* =0.13. Post-hoc tests showed that the Control group only had marginally greater N170
than the Low cortisol responders (ps = 0.05) and the difference between the Control group and the High cortisol
responders was nonsignificant (ipsilateral: p =0.10; contralateral: p=0.17; see Fig. 3). The main effects of Group
and Laterality on N170 amplitudes were nonsignificant. For N170 latencies, we did not find any significant main
effects of Group or Laterality or their interaction.

ERPs to the target. P100 amplitudes. No significant main effects of Group, Cue Validity or Laterality, nor inter-
actions related to these variables were noted.

P100 latencies. There was a marginally significant Group x Cue Validity interaction for P100 latencies, F (2,
53) =2.92, p=0.06, n,>=0.10. Further analysis showed that the P100 peaked earlier in the valid trials (M + SE:
110.31 £ 4.39 ms) compared to the invalid trials (M = SE: 121.84 4 4.80 ms) in the Control group, F (1, 53) = 6.60,
P <0.05, > =0.11, however, this effect did not occur in the Low and High cortisol responders (see Fig. 4). The
main effect of Laterality was significant, F (1, 53) =23.96, p < 0.001, np* = 0.31. The contralateral P100 peaked
earlier (M = SE: 110.36 £ 2.50 ms) than the ipsilateral P100 (M = SE: 122.54 & 2.68 ms). No other significant
effects were noted.

P300. The main effect of Group was significant, F (2, 53) =5.01, p =0.01, 1> =0.16. Post-hoc tests showed
that the Control group (M = SE: 15.80 4 1.19 pv) had larger P300 amplitudes than the Low (M £ SE: 11.75+£1.15
pv, p=0.05) and High cortisol responders (M = SE: 10.87 £ 1.15 pv, p < 0.05). The differences between the latter
two groups were nonsignificant. There was a marginally significant Group x Cue Validity interaction for P300
amplitudes, F (2, 53) =2.63, p=0.08, 1> = 0.09. Further analysis revealed that this interaction was mainly driven
by the main effect of Group (see Fig. 5). No other significant main effects or interactions for P300 amplitudes were
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Figure 3. The ipsilateral/contralateral N170 based on pooled activity recorded at PO5/PO7-PO6/POS8 sites,
time-locked to the onset of the face pair for the Control group (black line), the Low (blue line) and High
cortisol responders (red line). Ipsilateral/Contralateral: electrodes ipsilateral/contralateral to the location of the
emotional face.

found. The main effects of Group and Cue Validity and interactions between the two variables were nonsignificant
for P300 latencies.

Correlation Analyses. The ipsilateral and contralateral face-N170 amplitudes were positively correlated with the
contralateral-invalid target-P100 latencies (r;,; = 0.65, 95% confidence interval: 0.34 ~ 0.85; 1., = 0.67, 95%
confidence interval: 0.39 ~ 0.85) and negatively correlated with P300 amplitudes (valid: r,; = —0.45, 95%, con-
fidence interval: —0.71 ~ —0.07; 7y, = —0.43, 95% confidence interval: —0.69 ~ —0.05; invalid: r;,;= —0.51,
95% confidence interval: —0.74 ~ —0.20; 7 ys = —0.50, 95% confidence interval: —0.73 ~ —0.16) in the Control
group. These results suggest that the larger the N170 amplitude as induced by the face pair, the earlier the
contralateral-invalid P100 peak and the larger the P300 amplitudes as induced by the target in the Control group.
However, these effects were absent in the Low and High cortisol responders.

Discussion

The present study investigated the influence of acute psychosocial stress on attentional bias to threatening stimuli
using behavioral and electrophysiological measures. The acute stress response was successfully evoked, as indi-
cated by the higher negative affect, increased heart rate, and higher cortisol levels in the stress group compared
to the Control group. The behavioral results indicated that the Control group showed a trend of more accurate
responses to the valid compared to the invalid trials, while this effect was not seen in the stress group (neither
Low nor High cortisol responders). The ERP data showed that the P100 component induced by the target peaked
earlier in the valid compared to the invalid trials in the Control group. However, this effect was absent in both the
Low and High cortisol responders of the stress group. In addition, we found reduced P300 amplitudes at the target
onset in the stress group relative to the control group.

The control group showed marginally higher accuracy on the valid nogo trials than invalid nogo trials, which
may be a product of enhanced attention to the location of angry faces’, indicating an attentional bias effect.
However, acute stress interfered with the attentional resources necessary to diverting from angry faces and
resulted in no attentional bias effect in the Low and High cortisol responders of the stress group. These results
support our hypothesis and are similar to previous reports of altered attention under stress>?, although these
studies reported that the effect was on the response time to the negative stimuli, rather than on the accuracy of
non-response, as in the current study.

More importantly, the present study found that the Control group showed earlier P100 latencies on valid than
invalid trials, but this effect was not found in either the Low and High cortisol responders of the stress group. The
P100 component reveals the mobilization of automatic attentional resources'?, and its latency reflects the speed
of perceptual processing?. A shorter P100 latency indicates a faster processing speed of the target that replaces
the angry face and suggests a normal, adaptive attentional bias toward the threatening stimulus. However, this
difference was not seen under acute stress, and it was not related to the stress level; that is, attention was equally
allocated to angry and neutral faces in stressed participants, indicating a stress-induced suppression of the atten-
tional bias. These results were similar to the behavioral results.

This finding could be further evidence supporting the idea that attention orientation to threat is suppressed
under stress. These results provide neural evidence for how attentional bias may develop under acute stress. One
possibility for the reduced threat bias under stress may be that acute stress shifts the processing priorities from
the less threatening stimulus (i.e., angry faces) to the more threatening stimulus (i.e., acute stress)>?. In this case,
lower accuracy or longer response time may be found in the stress group. However, our results did not support
this view as relatively higher accuracy was found in the Low cortisol responders and High cortisol responders
(though to a lesser degree in the low cortisol responders) compared to the Control group. Another possibility
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Figure 4. Left panel: Ipsilateral and contralateral waveforms based on pooled activity recorded at CB1/O1-
CB2/02 sites, time-locked to the onset of targets in the valid (solid line) and invalid conditions (dashed line) for
the three groups; Ipsilateral/Contralateral: electrodes ipsilateral/ contralateral to the location of the target; Right
panel: peak latencies of the target-evoked P1 components in the valid and invalid conditions; *p < 0.05.
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Figure 5. The P300 component (FZ, FCZ and CZ) and topographic maps (CZ) time-locked to the target onset
for the Control group, the Low and High cortisol responders in the valid and invalid conditions. Valid: when the
target replaced an angry faces; Invalid: when the target replaced a neutral faces.
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may be that acute stress makes it difficult to distinguish threat from non-threat information. Shackman, Maxwell,
McMenamin, Greischar, & Davidson (2011) reported that threat of shock can increase neural responses in extra-
striate visual cortex, even for neutral visual stimuli*’. Acute stress can also shift amygdala function toward height-
ened sensitivity with lower levels of specificity, that is, stress augments amygdala responses to both threat-related
stimuli and non-threatening stimuli, thereby diminishing a threat selective response pattern under stress®’.
According to this view, higher accuracy or shorter response time may be found in the stress group. Indeed, our
results support this view. However, given the marginally significant results, the conclusion should be treated cau-
tiously and more studies are needed to further test these implications.

Some studies that have assessed stress effects on attention have produced inconsistent results**2, in which
attentional bias to threat was enhanced in an acute stress condition compared to a control condition. There may
be several reasons for these mixed results. One possibility may be different cue presentation times. Mogg et al.*?
used a dot probe task with a 500-ms cue presentation time??, while the present study adopted a modified dot
probe task with a 100-ms cue presentation time. Previous research observed that attention orienting to threats
typically occurred when the stimuli were presented for a short duration (less than 100 ms)®*. Attention disen-
gagement from threats tends to occur when the duration is much longer (500 ms or longer), which is sufficient
time for attention to shift one or more times*. Using different task paradigms may be another contributing fac-
tor to the inconsistent results reported in the literature. Roelofs et al.”® used a masked emotional Stroop task to
show that those who produce the largest stress cortisol responses also showed greater vigilance toward angry
faces®. The current results from a dot probe task do not show such a pattern. Some researchers have argued that
the emotional Stroop task indirectly measures attentional bias and that a longer response time to threat-related
information may reflect a response bias rather than an attentional bias****. Finally, gender may also be a potential
moderator. In the research by Roelofs et al.>* and Mogg et al.*, both men and women were included, while only
men were included in the present study. Previous studies have revealed that compared to young women, young
men have higher cortisol responses after exposure to acute stress®®, which could make men perceive stressful
situations as more threatening, resulting in more conservative, inhibited behavior®’.

In addition, the Low and High cortisol responders had smaller P300 amplitudes for targets compared to the
Control group both in the valid and invalid conditions. The results were consistent with studies in clinical pop-
ulations (i.e., PTSD and anxiety disorder) who also show reduced P300 amplitudes, suggesting a deficit in the
amount of attentional resources allocated during stimulus evaluation and memory updating processes***. These
results may be attributed to the detrimental effect of acute stress on higher-order PFC abilities, i.e., attentional
regulation®®#!. The attentional regulation can switch from slow thoughtful ‘top-down’ control by the PFC to
reflexive and rapid emotional responses of the amygdala and related subcortical structures*. Consistent with this
argument, an ERP study found that stress can amplify earlier extrastriate activity, but disrupt later activity asso-
ciated with the evaluation of task-relevant information as reflected by P300 amplitude®®. Hence, the smaller P300
in the stress condition may be associated with reduced prefrontal cortex activity under acute stress indicating less
efficient cortical processing.

Interestingly, we also found that the N170 amplitudes elicited by the face cue were positively related to the
target induced contralateral-invalid P100 latencies and P300 amplitudes both in the valid and invalid trials in the
Control group, while these relationships were absent in the Low and High cortisol responders. The correlations
in the Control group suggests that higher neural activity at the structural encoding step of face perception may be
associated with faster early sensory processing of the subsequent stimuli and more engagement in attention ori-
entation to the following stimuli. Pourtois et al.'* reported that a larger C1, as evoked by face pairs, was correlated
with a larger validity effect on the P100 amplitude'®. Because C1 is thought to reflect the initial evoked response in
the primary visual cortex*?, Pourtois et al. proposed that the correlation might indicate the important functional
significance of C1, which allows for processing of the subsequent target that was presented at the same location
as the threat. In the present study, N170, another important face-sensitive component, may also have significant
functional implication. However, acute stress may interrupt the link between face perception and subsequent
target processing, as reflected by the lack of this relationship in the stress condition, which may indicated one
mechanism underlying the reduced attentional bias in stressed individuals, as discussed above.

There are several limitations to the current study. First, as only male participants were included in this study,
we cannot expand the findings to females. Second, although we examined how and at which stages acute stress
influenced the attentional bias, the time frame during which acute stress affects attentional bias is unknown. More
research is needed to examine sex differences and how the duration of acute stress affects attentional bias. Finally,
the present study used a between-subjects design without measuring the baseline attentional bias before the
stress/control treatments, which may have not fully eliminated possible individual differences between the two
groups. Further research should use a pre-post treatment design to eliminate individual differences.

25,32

Conclusion

In summary, our results suggest that acute psychosocial stress impairs attentional bias. The reduced attentional
bias on the P100 component and reduced P300 component may suggest that the underlying neural mecha-
nisms that acute stress may lead to indiscriminate selective response to threat and reduced efficiency of cortical
processing.

Methods

Participants. The study was approved by the Ethics Committee of Human Experimentation at the Institute
of Psychology, Chinese Academy of Sciences. All procedures were performed in accordance with relevant guide-
lines and regulations. Due to sex differences and menstrual cycle effects on the stress response and cognitive
functioning®®*, only healthy male undergraduates were recruited from universities in Beijing. Participants who
met the following criteria were included: (1) no medication that affects the hypothalamic-pituitary-adrenal axis
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(e.g., corticosteroids) within one month of testing; (2) no past or present neurological or psychiatric diagnoses;
(3) no periodontitis or any wounds in the mouth; (4) no cold or other medication within the previous two weeks;
(5) no overnight shift work or irregular circadian rhythms; (6) no excessive alcohol (more than two alcoholic
drinks daily) or nicotine consumption (more than five cigarettes a day); and (7) normal or corrected-to-normal
vision and intact color vision. Participants were first screened for the inclusion criteria and were then informed
via telephone to refrain from heavy exercise, eating or drinking, except for water, for two hours prior to arriving
in the laboratory. In addition, after arrival, participants were asked to avoid drinking water for a half hour prior
to the first saliva collection.

Sixty-two male undergraduate students reporting right-handedness were recruited. All participants provided
written informed consent and received financial compensation for participation. In order to explore the potential
difference in attentional tasks between the High and Low cortisol responders, the number of participants in the
stress condition was nearly twice as many as that in the control condition to ensure equal cell sizes. Participants
were randomly assigned to the control or stress conditions. Five participants were excluded due to poor behav-
ioral performance (below 3 standard deviations from the mean) or missing more than three values on cortisol,
which resulted in 38 participants in the stress condition and 18 participants in the control condition. The Control
group (mean age = 20.67 & 1.46 years) and the stress group (mean age =21.08 & 1.78 years) were matched for age.

General Procedure. The experiment occurred between 13:30 p.m. and 18:30 p.m. Participants rested
for 30 min upon arrival at the laboratory, during which they completed the informed consent document and
the State-Trait Anxiety Inventory (STAI)*#*. Then, they were prepared for the electroencephalogram (EEG)
recording. Next, participants practiced the dot probe task. After that, participants were randomly assigned to
perform the TSST or the control task. Then, participants completed the formal dot probe task in a dimly lit,
sound-attenuated room. Finally, participants rated their state anxiety level on the STAI state scale (approximately
30 min after the stress or control tasks). Salivary samples, heart rate, and responses on the Positive Affect and
Negative Affect Schedule (PANAS)**4” were collected 30 min after arrival as a baseline and at 0 min, 15 min, and
30 min after the end of the stress or control tasks. In addition, heart rate was continuously recorded throughout
the stress or control tasks.

Materials. The face stimuli were from the Japanese and Caucasian Facial Expressions of Emotion (JACFEE)
and Neutral Faces (JACNeuF) sets*. The properties of the photographs such as contrast and luminance were nor-
malized. Four angry (2 male) and four neutral (2 male) expressions of different Asian actors (totally 8 actors) were
used, and the angry and neutral faces did not differ in luminance and contrast. The photographs were presented
in pairs with an angry face and a neutral face of different actors with the same gender. There were two different
types of face pairs: angry (left) - neutral (right) and neutral (left) - angry (right). The angry face appeared an equal
number of times to the left or right of the fixation cross. Each face was enclosed in a black rectangular frame
measuring 7 X 10 cm, with a 10.5 cm distance from its center to the white fixation cross. Participants were seated
in front of the screen at a viewing distance of 70 cm, which resulted in a visual angle of 8.5° as measured from
the fixation cross to the center of each image. The probe was a white upward or downward triangle measuring
2.26 x 2.61 cm (1.85° x 2.14° of visual angle). The probability of the probe appearing at the location of the angry
or the neutral face was the same (50%).

Modified Dot Probe Task. A modified dot probe task that stemmed from Brosch et al’s!® study was used
with the following two considerations: (a) to investigate covert spatial orientation toward threats without contam-
ination from motor-related activities'*; and (b) to collect enough behavioral data.

Each trial started with a 2 x 2 cm white fixation cross that was presented for a random duration between 500
and 1,000 ms, which was followed by a pair of faces that were displayed for 100 ms. Then, the fixation cross was
presented for a random duration between 100 and 300 ms after the offset of the face pairs. Next, a probe appeared
for 150 ms at the previous location of one of the faces. Participants were required to use their right index finger to
press a key for the go stimulus (e.g., upward triangle) while withholding the responses to the nogo stimulus (e.g.,
downward triangle). The maximum response time was 1,900 ms, after which a new trial began (see Fig. 6). In the
go trials, the direction of the triangle pointing upward or downward was counterbalanced across participants. The
present study included 25% go trials and 75% nogo trials.

The present experiment consisted of two practice blocks with 8 trials each. The formal experiment included
four test blocks with 96 trials and a short break between blocks. A valid trial indicates that the target replaced the
location of the angry faces, while an invalid trial indicates that the target replaced the location of the neutral faces.
Shorter response time for go trials or higher accuracy for go or nogo trials in the valid condition than the invalid
condition indicates an attentional bias toward the threat.

Stress Induction and Control Condition. The present study used a modified TSST, which is more effec-
tive in eliciting cortisol responses than the original TSST'**°. The modified version consists of similar three phases
as the original: preparation (5 min), speech (5min), and mental arithmetic (5min). Participants were instructed
to imagine that they were accused of shoplifting and had to deliver a speech to defend themselves in front of three
store managers. Participants were also informed that their performance would be videotaped and evaluated by
the research team. At the end of the speech, participants were instructed to complete a 5-min backward mental
arithmetic task (subtracting 13 from 1022) and must start from the beginning if any mistakes were made.

In the control protocol, participants performed a less stressful task, which was similar to the TSST with respect
to the time course and physical and mental demands®**L. In the preparation phase, participants were asked to
read an article about travel and summarize the main contents. Then, they were required to give a speech in front
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Figure 6. The schematic diagram of the dot probe task. Note: the faces showed here were just a sketch and not
the ones used in the formal experiment.

of a video camera. Participants were told that they could refer to their notes and their performance would not be
evaluated. Next, participants completed a simple written arithmetic test for 5min. This protocol was performed
in the test room with only the participant in the room.

Subjective Measures. State and trait anxiety. Anxiety was measured with the Chinese version of the
STAI***, which has two subscales: state anxiety and trait anxiety. Each subscale contains 20 items. The test-retest
reliabilities for the STAI state scale and STAI trait scale are 0.88 and 0.90, respectively®. Participants rated each
item on a four-point Likert scale, with a higher score indicating a higher level of anxiety.

Positive and negative affect. 'The PANAS is a 20-item self-rating scale for measuring positive and negative affect,
which was developed by Watson et al.¥’. This study used the Chinese version*, which has a Cronbach’s alpha of
0.82 for the full scale and 0.85 and 0.83 for the positive and negative affect subscales, respectively.

Physiological Measures.  Saliva sample collection. Salivette collection devices (Sarstedt, Niimbrecht,
Germany) were used to obtain saliva samples, which were measured at four time points: 30 min after arriving
in the laboratory as a baseline and 0 min, 15min, and 30 min after the end of the TSST or control procedure.
Participants were required to chew a cotton pledget for 2 min. The samples were stored at —20 °C until they were
assayed. An electrochemiluminescence immunoassay (Cobas e601, Roche Diagnostics, Numbrecht, Germany)
was used to analyze the cortisol concentration, and the following parameters were used: sensitivity, 0.500 nmol/L
(lower limit), and standard range in assay, 0.5-1750 nmol/L. Intra- and inter-assay variations were less than 10%.
Five participants, who were missing three or more samples due to insufficient saliva, were excluded from the final
analysis. Participants missing one or two cortisol values were included. Missing baseline values were substituted
with the average cortisol concentration of all participants at that time point, and missing values at other time
points were substituted with the average cortisol separately for each group. The number of final participants for
the cortisol analysis was 56 (the Control group N =18, the stress group N = 38). Participants in the stress condi-
tion were divided into the Low cortisol responders (N =19) and High cortisol responders (N=19) according to
a median split (3.80 nmol/l) of cortisol change, which was computed by subtracting baseline cortisol level from
peak-time cortisol level (15 min post-stress induction in this experiment)?¥.

Heart rate recording.  Heart rate (HR; beats per min) was measured using the electrocardiogram (ECG) amplifier
module from BIOPAC MP150 for Windows (BIOPAC Systems, Inc., CA, USA). ECG was measured via three Ag-
AgCl disposable electrodes, which were placed on the right carotid artery and the left and right medial malleolus
after the surface was cleaned with alcohol. Except for the continuous recording during the TSST/control task,
HR was collected at the same time as each saliva collection for a 5min. However, 15 min post-TSST/control task,
the ECG lasted only for 2 min to ensure that the attentional bias task was completed during the period of cortisol
elevation in response to the TSST. HR was averaged at each assessment point for each participant offline.
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EEG Recording and Preprocessing. During the dot probe task, the EEG was recorded from 64 channels
using Ag/AgCl electrodes in a cap conforming to the international 10-20 system (Neuroscan Inc., Charlotte,
North Carolina, USA), with an on-line reference to the left mastoid and an off-line algebraic re-reference to the
average of the left and right mastoids. The electrooculogram (EOG) was recorded by placing electrodes at the
outer canthus of each eye as well as above and below the left eye. Impedance was maintained at less than 5 kQ.
Signals were amplified with a 0.05-100 Hz bandpass filter and digitized at 1,000 Hz.

Scan 4.5 software (Neuroscan, USA) was used to process the EEG data. Ocular artifacts were removed from
the EEG signal with a regression procedure that was implemented in the Neuroscan software>. Data were dig-
itally filtered using a low-pass filter of 30 Hz. An interval of 100 ms before the face and target presentations was
used as the baseline for the face and target ERPs. Epochs were created around the face and target onsets (from
—100 ms to +600 ms) and epochs with amplitudes that exceeded +100 pV were discarded. After epoching, base-
line corrections were performed. Finally, the trials that were in the same condition (including the face pair and
target onset-locked ERPs) were averaged, and correct rejections of the nogo trials were used to create the ERPs.
Overall, for N170 evoked by the face pair, the number of trials for each condition was 144 and less than 36.5% of
the trials were rejected in the three groups (Control group, Low and High cortisol responders) because of artifacts
and outliers in reaction times. For P1 evoked by the target, the number of trials for each condition was 72 and
less than 43.1% trials were rejected in the three groups. For P3 evoked by the target, the number of trials for each
condition was 144 and less than 30.6% trials were rejected in the three groups.

Data Analysis. One-way analysis of variances (ANOVAs) was used to examine the group differences on trait
anxiety levels. Repeated measures ANOVAs were performed on state anxiety levels, positive and negative affect,
cortisol levels, and HR, with Measurement Time Points as within-subjects factors and Group (Control group, Low
and High cortisol responders) as a between-subjects factor.

All trials with incorrect responses and trials with response time faster than 100 ms or slower than 1500 ms
were excluded from behavioral and ERP analyses. For behavioral data, a repeated measures ANOVA was per-
formed on response time (RT) for the go trials with Group as a between-subjects factor and Cue Validity (valid,
invalid) and Visual Field (left, right) as within-subjects factors. Similar ANOVAs were also performed on the
percentage of hits in the go trials and the rate of correct rejections in the nogo trials.

For ERPs evoked by the face pairs, the P100 and N170 components were analyzed. The P100 and N170 peak
amplitudes and latencies were measured at occipital sites (O1/2, CB1/2; time window: 60-160 ms) and bilat-
eral occipital sites (PO5/6, PO7/8; time window: 130-210 ms) separately. Repeated measures ANOVAs were
performed on the P100 and N170 amplitudes/latencies separately with Group as a between-subjects factor and
Contralaterality (ipsilateral vs. contralateral to the location of the angry face) as a within-subjects factor. The
ipsilateral waveform was calculated by averaging the left-sided electrodes to the left-sided angry face and the
right-sided electrode to the right-sided angry face, and the contralateral waveform was calculated by averaging
the left-sided electrodes to the right-sided angry face and the right-sided electrodes to the left-sided angry face.

For ERPs evoked by the target onset, we analyzed P100 and P300 components. P100 peak amplitudes and
latencies were measured across the O1/2 and CB1/2 sites (time window: 60-180 ms). Repeated measures ANOVA
with Group as a between-subjects factor and Cue Validity and Contralaterality (electrode ipsilateral vs. contralat-
eral to the location of the target) as within-subjects factors. For the target-evoked P100, the ipsilateral and con-
tralateral waveforms were calculated in a similar way as for the face pairs according to the location of the target.
The P300 component was measured at midline sites Fz, FCz, and Cz (time window: 250-600 ms), and the visual
field factor was not included in the final analysis as it did not interact with group or cue validity (ps > 0.46). The
repeated measures ANOVA was performed on the P300 component with Group as a between-subjects factor and
Cue Validity and Site as within-subjects factors. Greenhouse-Geisser correction was used to correct the degrees
of freedom and Bonferroni corrections were applied to correct the alpha levels. Interaction tests were conducted
using the least significant difference (LSD) method.

To explore the potential correlations between face perception during the cue stage and attentional bias during
the target response stage, correlation analyses were conducted for the component that was evoked by the face pair
(ipsilateral and contralateral N170 amplitudes) and the components that were evoked by targets (ipsilateral and
contralateral P100 latencies and the averaged P300 amplitudes at the midline electrodes in the valid and invalid
conditions) for the Control, Low and High cortisol responders, separately. To reduce type I error rate on explor-
atory correlation analyses, the bootstrapping (number of samples: 1000) were performed and 95% confidence
intervals surrounding each correlation coefficient are reported.
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