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Exercise and high-fat feeding 
remodel transcript-metabolite 
interactive networks in mouse 
skeletal muscle
Joaquín Pérez-Schindler1,2,8, Aditi Kanhere3, Lindsay Edwards4, J. William Allwood3,5,9, 
Warwick B. Dunn3,5, Simon Schenk6,7 & Andrew Philp1,2

Enhanced coverage and sensitivity of next-generation ‘omic’ platforms has allowed the characterization 
of gene, metabolite and protein responses in highly metabolic tissues, such as, skeletal muscle. A 
limitation, however, is the capability to determine interaction between dynamic biological networks. 
To address this limitation, we applied Weighted Analyte Correlation Network Analysis (WACNA) to 
RNA-seq and metabolomic datasets to identify correlated subnetworks of transcripts and metabolites 
in response to a high-fat diet (HFD)-induced obesity and/or exercise. HFD altered skeletal muscle lipid 
profiles and up-regulated genes involved in lipid catabolism, while decreasing 241 exercise-responsive 
genes related to skeletal muscle plasticity. WACNA identified the interplay between transcript and 
metabolite subnetworks linked to lipid metabolism, inflammation and glycerophospholipid metabolism 
that were associated with IL6, AMPK and PPAR signal pathways. Collectively, this novel experimental 
approach provides an integrative resource to study transcriptional and metabolic networks in skeletal 
muscle in the context of health and disease.

The prevalence of metabolic diseases and associated pathologies is rapidly rising, representing the main cause 
of death worldwide and substantial economical burden1–3. The development of metabolic diseases is linked with 
disruption of multiple interconnected ‘omic’ layers (e.g. transcriptome, epigenome and metabolome) through 
different genetic factors and environmental cues4,5. Among the metabolically active tissues affected by metabolic 
diseases, skeletal muscle represents a central modulator of whole body metabolic health and a key therapeutic tar-
get via lifestyle interventions such as exercise and dietary modification6. Both obesity and type 2 diabetes (T2D) 
disrupt the skeletal muscle transcriptome and metabolome compare to healthy individuals, which is mainly char-
acterised by alterations in glucose, lipid and amino acid metabolism7–10. For instance, several human studies have 
reported a consistent down-regulation of genes associated with oxidative metabolism in skeletal muscle from 
T2D patients7. Moreover, at the metabolic level, obese subjects have lower content of several amino acids in skel-
etal muscle, while short-chain acylcarnitine species are higher in blood8. Therefore, decoding the mechanisms 
regulating different skeletal muscle ‘omic’ layers in response to exercise and diet represent an attractive strategy to 
identify novel therapeutic targets for metabolic diseases.

Although informative, the separate analysis of ‘omic’ datasets does not allow comprehensive elucidation of the 
integrative physiology underlying metabolic diseases. This limitation has begun to be addressed via the develop-
ment of trans-omic (i.e. combining multiple ‘omic’ layers) approaches4,5. For instance, Williams and colleagues 
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recently analysed several ‘omic’ datasets from the BXD mouse genetic reference population, which through cor-
relation analysis between datasets (e.g. transcriptomics, proteomics and phenome) discovered several factors reg-
ulating metabolic networks linked with metabolic diseases both at the whole body level and in liver11. Similarly, 
transcriptome and proteome datasets from differentiated human skeletal myocytes have been used to recon-
struct genome-scale metabolic models (GEMs), which together with meta-analysis of human studies and reporter 
metabolite analysis revealed networks linked with mitochondrial pathways were dysregulated in T2D7. Lee et al. 
have further expanded this approach by integrating GEMs with transcriptional and protein-protein interaction 
networks12. This allowed the identification of metabolic networks and reporter metabolites dysregulated liver, 
adipose tissue and skeletal muscle from obese subjects, of which liver mannose metabolism appears to play an 
important function in the development of insulin resistance in humans12. Integration of ‘omic’ datasets has also 
been used to uncover several mutation linked to T2D that are specifically located within human skeletal muscle 
enhancers10. However, the potential cross talk between the skeletal muscle transcriptome and metabolome in 
response to diet and exercise remains poorly understood. Moreover, integrated network analysis mainly relies 
on prediction of regulatory metabolites, thus limiting the accurate integration of the skeletal muscle metabolome 
with other ‘omic’ datasets.

The principal aim of this study was to assess and integrate transcriptional and metabolic networks regu-
lated by exercise and high fat diet (HFD)-induced obesity in mouse skeletal muscle. We specifically focused 
on the effects of acute maximal exercise, which in contrast to long-term exercise training, induces a specific 
gene expression pattern linked with the initial phase of the adaptive response to exercise13,14. To discover candi-
date genes and metabolites, we measured the skeletal muscle transcriptome, metabolome and adapted Weighted 
Gene Co-expression Network Analysis (WGCNA), a robust method for analysing gene transcription networks15. 
WGCNA has successfully been used to define gene co-expression in several tissues (e.g. liver and skeletal muscle) 
in metabolic diseases16,17, while here we further expanded this approach to integrate transcriptomic and metab-
olomic datasets in an approach that we refer to as Weighted Analyte Correlation Network Analysis (WACNA).

Results
HFD is linked with a gene expression pattern indicative of enhanced lipid catabolism.  To assess 
the effects of HFD-induced obesity on skeletal muscle transcript and metabolite responses, we used mice fed 
either a control (CON) or HFD for 10 weeks that resulted in a significant increase in body weight and fat mass, 
whereas relative lean mass was reduced by 25% (Fig. 1A,B). In line with the detrimental effects of HFD, both glu-
cose tolerance (Fig. 1C) and exercise performance (Fig. 1D,E) were impaired in HFD mice. However, despite time 
being different, the work during the maximal exercise test was the same between groups (Fig. 1F). Moreover, since 
mice ran to exhaustion, relative intensity and, thus, exercise stimulus was comparable between groups.

At the transcriptional level, HFD induced the up- and down-regulation of 119 and 93 genes in mouse skel-
etal muscle, respectively (Supplementary Table S1). Gene Ontology (GO) analysis of differentially expressed 
genes (DEG) in HFD mice in the pre-exercise state (HFD-pre) revealed a strong enrichment of biological pro-
cesses such as lipid metabolism, response to hypoxia and muscle contractility (Fig. 2A). Moreover, besides fatty 
acid metabolism, we found peroxisome proliferator activated receptor (PPAR) and AMP-activate protein kinase 
(AMPK) signalling pathways to be significantly enriched in HFD-pre (Fig. 2B). Both GO and pathway analysis 
showed an increased expression of several PPAR target genes encoding proteins involved in lipid uptake and 

Figure 1.  HFD impairs whole body metabolism and exercise performance. Changes in (A and B) body 
composition, (C) glucose tolerance, (D and E) exercise performance and (F) work were assessed in mice fed 
either control CON diet or HFD for a period of 10 weeks. Values are mean ± SEM, n = 8–12 mice per group. 
*p < 0.05, **p < 0.01, ***p < 0.001.
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catabolism, whereas lipid biosynthesis decreased (Fig. 2C and Supplementary Fig. S1A). Within the AMPK path-
way, we observed a down- and up-regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3, 
−1.8 fold) and TBC1 domain family member 1 (Tbc1d1, 1.4 fold), respectively (Supplementary Fig. S1B), thus 
consistent with the detrimental effects of HFD on glucose metabolism.

We next performed transcription factor (TF) binding site (TFBS) analysis to predict the subset of potential 
TFs driving the effects of HFD-induced obesity on the skeletal muscle transcriptome. We identified 46 TFBS 
substantially (p < 0.01) enriched in HFD-pre skeletal muscle DEG (Supplementary Table S2). Among the top 20 
most significant TFBS (Fig. 2D), none of the related TFs were differentially expressed (Fig. 2E), while some TFs 
were not detected in skeletal muscle. Although the majority of the top 20 TFBS exhibited a motif rich in G and/or 
C, we found a distinct PPARγ-retinoid X receptor α (RXRα) and nuclear factor κ B (NFκB) TFBS (Fig. 1F), both 
TFs previously reported to contribute to skeletal muscle biology and energy metabolism18,19.

HFD alters skeletal muscle transcriptome remodelling induced by acute maximal exer-
cise.  The effect of acute maximal exercise on the skeletal muscle transcriptome was assessed following a single 
bout of treadmill running. Three hours post-exercise (post), 292 and 208 genes were up-regulated in quadriceps 
of CON-post and HFD-post mice, respectively (Supplementary Table S1). Moreover, 109 and 115 genes were 
reduced in CON-post and HFD-post mice, respectively (Supplementary Table S1). Approximately 60% of the up- 
and down-regulated genes detected in CON-post were not differentially expressed in HFD-post (Supplementary 
Fig. S2A), of which nearly 9% were already differentially expressed under basal conditions and, thus, reflect 
the robust effect of HFD on exercise-mediated skeletal muscle remodelling at the transcriptional level. While 
CON-post DEG were enriched for GO terms related with muscle differentiation and gene transcription (Fig. 3A), 
cellular response to insulin stimulus was the main biological proses enriched in HFD-post skeletal muscle (Fig. 3B). 
CON-post DEG had an enrichment of pathways that regulate the adaptive response to exercise in skeletal muscle, 
including AMPK and PPAR pathways (Fig. 3C and Supplementary Fig. S3A). Conversely, pathway analysis of 
HFD-post DEG shows remodelling of extracellular matrix genes and phosphatidylinositol 3-kinase (PI3K)-Akt 
signal activation (Fig. 3D and Supplementary Fig. S3B). Cluster analysis of the genes comprised in the GO term 
skeletal muscle cell differentiation demonstrated a generalised up-regulation in the post-exercise state, with few 
genes showing a milder response in HFD-post (Fig. 3E). HFD-post was associated with several DEG comprised in 
the GO term cellular response to insulin stimulus, whereas cluster analysis identified both up- and down-regulated 
genes (Supplementary Fig. S2B).

TFBS analysis showed a collection of 95 and 85 enriched TFBS in CON-post and HFD-post DEG, respectively 
(p < 0.01; Supplementary Table S2). Cluster analysis of the top 20 TFs associated with these motifs (Fig. 3F and 
G) did not show a gene expression pattern, though Kruppel-like factor 5 (Klf5) and early growth response 1 

Figure 2.  Effects of HFD on the skeletal muscle transcriptome. (A) GO biological processes and (B) KEGG 
pathways enriched in HFD-pre DEG (number of genes is shown in brackets). (C) Heat map showing cluster 
analysis of DEG contained in the GO term fatty acid metabolic process enriched in HFD-pre. (D) Top 20 TFBS 
enriched in HFD-pre DEG. (E) Transcript levels of TFs associated with the top 20 TFBS. (F) Representative 
TFBS logos. n = 4 muscles per group.
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(Egr1) were induced by exercise, mainly in CON-post (Fig. 3H). Similar to pre-exercise TFBS analysis, we also 
found redundant motifs rich in C and/or G among the most significant TFBS, including the exercise-sensitive 
TFs Klf5 and Egr1 that indeed exhibit a highly similar motif (Fig. 3I). Nonetheless, we also identified TFBS with 
distinct motifs such as NFKB1 and E2F1 (Fig. 3F-I). TFBS analysis on post-exercise samples also predicted TFs 
that regulate energy metabolism both in muscle and non-muscle tissue such as E2F1 and KLF5, respectively20,21.

We also sought to detect down- or up-regulated genes in HFD-pre skeletal muscle of which exercise reverted 
their expression patterns (Supplementary Fig. S2C). Such categorisation showed genes with known function 
in skeletal muscle metabolism that we validated via quantitative PCR (qPCR) such as PPAR γ coactivator 1 α 
(PGC-1α) and NR4A3 (Supplementary Fig. S2D)22,23, whilst it allowed us to identify a number of novel genes 
with potential function in the development and treatment of metabolic diseases (Supplementary Fig. S2C). To 
pinpoint the subset of genes associated with the response to exercise in HFD mice we identified exercise-sensitive 
genes differentially expressed in CON-post vs. HFD-post. We detected 234 DEG in the post-exercise state 
(CON-post vs. HFD-post) of which only 16% were regulated by acute maximal exercise in both groups (Fig. 4A 
and Supplementary Fig. S2E). Accordingly, we observed subset of DEG specifically modulated in CON-post 
(17%; Fig. 4B and Supplementary Fig. S2E) and HFD-post (13%; Fig. 4C and Supplementary Fig. S2E). Clustering 
of these group-specific DEG showed different gene expression patterns, including genes with attenuated, 
enhanced or decreased expression in response to acute exercise and genes exclusively regulated by exercise in 
HFD-post mice (Fig. 4A–C). Collectively, this analysis uncovered several genes associated with the effects of HFD 
on exercise-mediated skeletal muscle remodelling.

HFD enhances lipid accumulation and catabolism in skeletal muscle tissue.  To complement tran-
scriptome analysis, we conducted unbiased assessment of the skeletal muscle metabolome via untargeted metab-
olomics. HFD-pre skeletal muscles had higher and lower content of 145 and 88 analytes, respectively, compared 
to CON-pre (Supplementary Table S3). These analytes were associated both with single and multiple metabolites, 
whereas following classification by metabolic processes we found a distinct change in the content of metabolites 
related with lipid metabolism. Of the 145 up-regulated metabolites 52%, 5% and 3% were linked to glycerophos-
pholipids, acyl-carnitines and fatty acids, respectively (Fig. 5A). Acetyl-CoA and tetradecenoyl-CoA were 2 and 
2.7 fold higher in HFD-pre, respectively, potentially due to higher preference for lipid metabolism since HFD-pre 
also exhibited lower levels of S-Acetyldihydrolipoamide, suggesting lower pyruvate dehydrogenase activity. HFD 

Figure 3.  Transcriptional response to acute maximal exercise in CON and HFD mice. (A and B) GO biological 
processes and (C and D) KEGG pathways enriched in CON-post and HFD-post DEG (number of genes is 
shown in brackets). (E) Heat map showing cluster analysis of DEG contained in the GO term skeletal muscle cell 
differentiation enriched in CON-post (red arrows show differentially expressed genes between CON-post vs. 
HFD-post). (F and G) Top 20 TFBS enriched in CON-post and HFD-post DEG. (H) Transcript levels of TFs 
associated with the top 20 TFBS in CON and HFD mice. (I) Representative TFBS logos found in CON and HFD 
mice. n = 4 muscles per group.

http://S2C
http://S2D
http://S2C
http://S2E
http://S2E
http://S2E
http://S3


www.nature.com/scientificreports/

5SCientifiC REPortS | 7: 13485  | DOI:10.1038/s41598-017-14081-w

Figure 4.  Identification of subset of genes linked with the detrimental effect of HFD on exercise-mediated 
skeletal muscle transcriptome remodelling. (A–C) Heat maps showing clusters of exercise-sensitive DEG in 
CON-post vs. HFD-post, including genes that are either (A) commonly regulated, (B) CON-post specific or (C) 
HFD-post specific. n = 4 muscles per group.

Figure 5.  Effects of HFD on the skeletal muscle metabolome. (A) Increased and (B) decreased metabolites 
found in CON-pre and HFD-pre skeletal muscles classified according to their biological function. n = 6 muscles 
per group.
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significantly increased skeletal muscle ceramides among which sphingosine-1-phosphate (1.5 fold higher in 
HFD-pre) has been linked with the regulation of insulin sensitivity24. Similarly, though to a lower magnitude, 
down-regulated metabolites in HFD-pre also had a strong link with lipid metabolism, with glycerophospholipids 
representing 45% (Fig. 5B). Acute maximal exercise did not modify the skeletal muscle metabolome of CON-post 
mice 3 h post-exercise, whereas it exerted a mild effect in HFD-post skeletal muscle, with 4 and 10 up- and 
down-regulated analytes in HFD-post skeletal muscle, respectively (Supplementary Table S3). Although most of 
these analytes were associated with multiple metabolites, we found a significant reduction (−1.6 fold) of skeletal 
muscle triglycerides in HFD-post, suggesting lipid catabolism as an important biological process modulated by 
the interplay between diet-induce obesity and exercise.

WACNA characterisation of integrated transcript-metabolite networks.  To define the association 
between changes in the skeletal muscle transcriptome and metabolome we performed WACNA. WACNA iden-
tified 22 modules of correlated genes and metabolites with distinction between modules influenced by HFD and 
exercise (Fig. 6A). Of particular interest, the brown module was highly regulated by diet, while the green module 
was regulated by exercise both in CON and HFD mice (Fig. 6A, right panel). Pathway analysis of correlated genes 
and metabolites in the brown module demonstrated a strong association with lipid metabolism, characterized 
by pathways controlling glycerophospholipid and acyl carnitine metabolism (Fig. 6B; Supplementary Table S4). 
Independent analysis of brown module transcripts showed enrichment of terms related with inflammation and 
cell cycle (Fig. 6C; Supplementary Table S4). Consistent with the lack of effects of acute exercise on the skele-
tal muscle metabolome 3 h post-exercise, combined analysis of transcript and metabolites in the green module 
showed minor enrichment of metabolic networks (Fig. 6D; Supplementary Table S4). However, the green mod-
ule showed a strong enrichment of genes associated with skeletal muscle development and function (Fig. 6E; 
Supplementary Table S4). Therefore, these data further demonstrate the robust effect of HFD-induced obesity 

Figure 6.  Integration of transcriptome and metabolome responses to HFD and acute maximal exercise. (A) 
Modules of correlated transcript and metabolites identified by WACNA analysis in CON and HFD skeletal 
muscles. (B–E) Pathway analysis was performed in subset of genes and metabolites comprised in the (B and 
C) brown and (D and E) green modules (number of metabolites/genes is shown in brackets). n = 6 muscles per 
group.
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on the skeletal muscle metabolome, with acute maximal exercise having a major function in skeletal muscle 
transcriptome remodelling and a minor effect on metabolism when comparing CON and HFD 3 h post-exercise.

Discussion
Skeletal muscle insulin resistance and metabolic dysfunction are central pathogenic factors in the development 
of metabolic disorders, such as T2D25–30. Gene transcription is a key process controlling skeletal muscle phe-
notype and, consequently, metabolic health. Both pathological and physiological cues coupled with impaired 
and improved insulin sensitivity, respectively, extensively remodel the skeletal muscle transcriptome7,13,14,31. In 
the present study we used unbiased approaches to assess the effect of exercise and diet on the skeletal muscle 
transcriptome (RNA-seq) and metabolome (untargeted metabolomics), in addition to studying the interaction 
between both responses (using WACNA). In doing so, we report that under basal conditions, HFD enhanced 
skeletal muscle lipid catabolism at the transcriptional level, while promoting the accumulation of glycerophos-
pholipid and acyl carnitine species at the metabolic level. We also demonstrate that HFD is linked to a differ-
ent transcriptional response to acute maximal exercise compared to CON mice, which in HFD mice comprised 
mainly GO terms associated with the regulation of skeletal muscle plasticity and gene transcription. Finally, we 
successfully implemented WACNA for transcript-metabolite correlation analysis, which further demonstrated 
the predominant effect of HFD and exercise on lipid metabolism and gene transcription, respectively.

Concurrent with the development of glucose intolerance, our data demonstrates that HFD result in a robust 
increased in skeletal muscle lipid catabolism at the transcriptional level. Interestingly, short- and long-term feed-
ing of a HFD with different composition (45% kcal from palm oil) can induce similar effects on lipid metabolism 
in mouse skeletal muscle32. Moreover, human skeletal muscle from pre-diabetic subjects has also been found to 
have higher expression of genes controlling fatty acid catabolism31. Thus, the coordinated up-regulation of genes 
controlling lipid catabolism is a common response to lipid overload, probably as a compensatory mechanism. 
Our data further imply the nuclear receptors PPARs as central regulators of such transcriptional response, which 
is supported by both pathway and TFBS analysis. Interestingly, PPARα overexpression in skeletal muscle concur-
rently increases fatty acid oxidation and impairs insulin sensitivity33. In contrast, overexpression of a hyperactive 
form of PPARδ in skeletal muscle results in positive effects on glucose tolerance34, suggesting that selective PPARs 
isoform activation might take place following different environmental cues. Moreover, consistent with this tran-
scriptional response, we found a significant increase in acetyl-CoA and acyl carnitine species in skeletal muscle 
from HFD-pre mice. At the whole body level, obesity in humans and HFD in rodents also increase lipid oxidation 
as reflected by lower respiratory exchange ratio30,35,36. These data suggest enhanced lipid catabolism, supporting 
abnormal energy substrate partitioning as an important factor contributing to the development of skeletal muscle 
insulin resistance25. Despite lower malic acid levels, we did not find major changes in TCA cycle and OXPHOS 
related genes or metabolites in HFD-pre skeletal muscle. We further validated the effect of HFD on lipid metabo-
lism via WACNA analysis. The main module reflecting correlated genes and metabolites linked to the diet effects 
(brown module) comprised genes with known function in muscle biology, lipid catabolism and glycerophospho-
lipid synthesis such as MEF2A, monoglyceride lipase and phosphatidylserine decarboxylase, respectively. This 
module also comprised glycerophospholipids (e.g. phosphatidylserines) and acyl carnitine species (e.g. stearoyl 
carnitine), further suggesting abnormal lipid metabolism as a key biological process involved in the pathogenesis 
of insulin resistance. However, it remains to be investigated whether acute exercise exerts transient changes in the 
skeletal muscle metabolome and whether it correlates with the transcriptional response, which could probably be 
detected at an earlier post-exercise time point37.

Exercise training is well known to remodel the skeletal muscle transcriptome and to improve insulin sen-
sitivity, though the early transcriptional responses leading to such adaptations remain poorly understood. In 
the long-term, exercise co-ordinately enhances the expression of genes controlling energy metabolism, whereas 
acute exercise seems to induce different transcriptional networks13. We found gene transcription as the main 
biological process induced by acute maximal exercise in mice fed CON diet when measured 3 h post-exercise. In 
fact, although the GO term skeletal muscle cell differentiation was highly significant, different TFs and transcrip-
tional co-regulators primarily composed this GO term. TFBS analysis revealed a subset of exercise-sensitive TFs 
motifs enriched in CON and HFD mice, suggesting that their regulation is completely or partially independent of 
nutritional factors. Among these genes, only Egr1 and Klf5 expression and motif enrichment were enhanced by 
exercise, though obesity had a blunting effect. Interestingly, Egr1 has been found to induce SIRT1 expression38, 
while Klf5 can modulates PPARδ activity20, thus both TFs represent potential mediators of exercise-induced skel-
etal muscle plasticity. Overall, HFD completely blunted the enrichment of GO terms linked to gene transcription, 
further exposing the effects of HFD on exercise-mediated adaptations. Similar effects on PGC-1α and a few of 
its target genes have been observed in skeletal muscle from obese subjects, leading to the idea that HFD and 
insulin resistance impair the effects of exercise on skeletal muscle remodelling at the transcriptional level39,40. 
Accordingly, here we have demonstrated that this phenomenon can also take place in mouse skeletal muscle at a 
large scale (transcriptome), affecting several transcriptional networks.

Both GO and pathway analysis revealed insulin signalling as a central biological process induced by exercise 
in HFD mice. When comparing transcriptional responses in CON-post and HFD-post, we identified genes with 
both known and unknown function in skeletal muscle metabolism. For example, HFD abrogated the induction 
of genes linked to energy metabolism in non-muscle tissues, such as Cbp/p300-interacting transactivator, with 
Glu/Asp-rich carboxy-terminal domain 2 (Cited2)41, dual specificity phosphatase 10 (Dusp10)42 and transfor-
mation related protein 63 (Trp63)43. Genes with therapeutic potential of which exercise reverted the abnormal 
expression patterns included genes with known function in skeletal muscle metabolism and exercise-mediated 
adaptations such as NR4A323 and PGC-1α22. Interestingly, Fu et al. have recently found that 8 weeks of HFD also 
impairs the effects of exercise training (6 weeks) on mouse skeletal muscle transcriptome44. Unlike acute exer-
cise, chronic exercise appears to regulate different transcriptional programs both in CON and HFD fed animals, 
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including genes linked to energy metabolism and mitochondrial function44. WACNA analysis revealed several 
correlated genes linked to development, cell cycle and muscle contraction in the main exercise-sensitive module 
(green module), whereas energy metabolism-related terms were not enriched. Interestingly, the green module 
comprised several genes controlling gene transcription, including histone deacetylase 5, Jun, MEF2C and mye-
locytomatosis oncogene. This data also suggests gene transcription as a key biological process induced by acute 
exercise and, potentially, mediating long-term skeletal muscle adaptations, whereas HFD seem to disrupt this 
exercise-sensitive transcriptional network.

Overall, we have identified skeletal muscle lipid metabolism and gene transcription as central biological pro-
cesses linked with glucose intolerance and exercise-mediated adaptations, respectively. The unbiased approaches 
utilised in this study allowed us to comprehensively characterise the skeletal muscle transcriptome and metabo-
lome, which revealed a broad range of novel metabolite (primarily under basal conditions) and transcript targets. 
Implementing WACNA to these datasets provided an innovative approach to integrate unbiased transcriptome 
and metabolome datasets. Besides supporting independent RNA-seq and metabolomics analysis, WACNA iden-
tified related transcript and metabolite networks sensitive to exercise and HFD. Therefore, we anticipate that the 
independent and integrated datasets reported herein will provide an important resource for studies focused on 
skeletal muscle physiology in the context of metabolic diseases.

Methods
Animals.  We bought sixteen-week-old C57BL/6NTac male mice (Taconic Biosciences), which had been 
housed under standard conditions with free access to water and either control diet (CON; 10% kcal from fat, 70% 
kcal from carbohydrate, 20% kcal from protein) or high-fat diet (HFD; 60% kcal from fat, 20% kcal from carbohy-
drate, 20% kcal from protein; Research Diets, #D12492) for 10 weeks. All methods and experiments were carried 
out in accordance with relevant guidelines and regulations, and with the approval of the Animal Care Program at 
the University of California, San Diego.

Body composition.  Lean and fat mass was measured by magnetic resonance (EchoMRITM).

Oral glucose tolerance test (OGTT).  Mice were fasted for 4 h and, subsequently, 2 g/kg body weight of 
dextrose was delivered via oral gavage. Blood glucose was measured with a standard meter, with samples obtained 
from the tail vein before or 10, 20, 30, 45, 60, 90 and 120 min after the dextrose gavage.

Maximal exercise test.  One day before the test, fed (ad libitum) mice were acclimatized to the treadmill 
(Columbus Instruments) by performing one session of 10 min at 8 m/min, 5 min at 0 m/min and 10 min at 10 m/
min with 8.5° incline. The next morning mice were fasted for 3 h, following which they were placed in the tread-
mill (8.5° incline) for 5 min at 0 m/min, with the test starting at 8 m/min for 3 min and the speed increased 2 m/
min every 3 min until exhaustion. Subsequently, mice were placed in their cages with free access to water but no 
food. A group of CON and HFD mice under basal conditions was used as pre-exercise control (pre). Importantly, 
CON-pre and HFD-pre groups underwent the same treadmill acclimatization and fasting period as the exercise 
groups. Muscles samples were collected from anesthetized (2.5% isoflurane) mice under basal conditions or 3 h 
after maximal exercise (post).

RNA isolation and quantitative PCR (qPCR).  Total RNA extraction and reverse transcription was per-
formed using RNeasy Mini Kit (QIAGEN, #74104) and iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories, 
#170-8891), respectively. Relative mRNA was quantified by qPCR on a Mastercycler® ep realplex (Eppendorf) 
using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad, #172-5270). The ΔΔCT method was used for 
analysis, with TATA binding protein (TBP) as endogenous control.

RNA sequencing (RNA-seq).  Libraries were prepared with TruSeq Stranded mRNA Library Prep Kit 
(Illumina). Sequencing was performed at the Institute for Genomic Medicine of the University of California 
using the HiSeq. 2500 (Illumina), which resulted in ~20 M reads per sample. Reads were trimmed to remove 
adapter sequences and quality checked using fastqc software (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/). Reads were aligned using TopHat to mm9 version of the mouse genome45. The expression level 
of genes and comparison between different conditions to find significant changes in expression was done using 
cufflinks46. Gene Ontology and pathway analysis was performed with DAVID 6.8 Beta47,48 and KEGG (Kyoto 
Encyclopedia of Genes and Genomes) database (http://www.kegg.jp/kegg/pathway.html)49–51, respectively, while 
TFBS analysis was performed with Pscan using JASPAR 2016 database and a promoter region of −950 to +50 
bp52. Heat maps and hierarchical clustering was performed with GENE-E (http://www.broadinstitute.org/cancer/
software/GENE-E/index.html).

Untargeted metabolomic analysis.  Sample preparation.  50 mg of powdered muscle tissue was 
mixed with 1000 µL of methanol:water:chloroform (2.5:1:1 [v/v/v]) and homogenised in a Precellys24 (Bertin 
Technologies, Stretton Scientific U.K.) at 6800 Hz for 2 × 30 s cycle followed by shaking for 10 min. Samples were 
centrifuged (10,000 g, 3 °C, 5 min) followed by transfer of 1000 µL of the supernatant to a clean 2 mL microcentri-
fuge tube. 500 µL of HPLC grade water was added followed by vortex mixing and centrifugation (10,000 g, 3 °C, 
5 min) to induce phase separation. 600 μL of the upper polar phase (methanol/water) and 100 μL of the lower 
non-polar phase (chloroform) were transferred in to separate clean 2 mL centrifuge tubes and dried by centrifugal 
vacuum evaporation for 6 h. Samples were stored at −80 °C until analysis.

UHPLC-MS.  All samples were analysed applying an UltiMate U3000 RSLC UHPLC system coupled to an elec-
trospray Q-Exactive mass spectrometer. The polar phase samples were analysed applying HILIC-MS after being 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.kegg.jp/kegg/pathway.html
http://www.broadinstitute.org/cancer/software/GENE-E/index.html
http://www.broadinstitute.org/cancer/software/GENE-E/index.html
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reconstituted in 100 μL of solvent (95/5 acetonitrile/water) and the non-polar phase samples were analysed apply-
ing reversed phase C18-MS after being reconstituted in 100 μL of solvent (50/50 water/methanol). After reconsti-
tution, 20 µL of each samples was pooled in to a QC sample to quantify technical reproducibility.

HILIC-MS.  A Accucore 150-Amide HILIC UHPLC column (100 mm × 2.1 mm 2.6 µm, Thermo-Fisher Ltd., 
UK) was applied. A gradient elution applied two mobile phases (A- 95% acetonitrile in water +5 mM Ammonium 
Formate at pH 3; B- water +5 mM Ammonium Formate at pH 3) as follows: start (95%A) and operates as follows: 
0 to 1 min. A is constant at 95%; from 1 to 12 min. B increases from 5 to 45%; from 12 to 15 min. B is kept constant 
at 45%; from 15 to 16 min. A increases from 55% to 95%; from 16 to 21 min. 5 µL of sample was injected and the 
mass spectrometer conditions were spray voltage (3.5 kV (ESI−) and +4.5 kV (ESI+)), sheath gas 40; aux gas 15; 
sweep gas 0, S lens 100; Resolution 35,000 (FWHM, m/z 200), capillary temperature 300 °C; ESI heater tempera-
ture 300 °C. All samples were analysed applying positive-negative ion mode switching with data collected in the 
m/z range 100–1000. All samples were stored in the autosampler at 4 °C. Ten QC samples were analysed at the 
start of the analysis followed by a QC sample after every 6th biological sample and two QC samples at the end of 
the analytical run. Biological samples were randomised across the analytical batch.

Solvent A is constituted by acetonitrile 95% + Ammonium Formate 5 mM at pH 3 and solvent B is constituted 
by H2O+ Ammonium Formate 5 mM at pH 3. The gradient elution conditions are: from 0 to 1 min. A is constant 
at 95%; from 1 to 12 min. B increases from 5 to 45%; from 12 to 15 min. B is kept constant at 45%; from 15 to 
16 min. A increases from 55% to 95%; from 16 to 21 min. A is constant at 95%.

Reversed phase C18-MS: A Hypersil Gold UHPLC C18 column (100 mm × 2.1 mm 1.9 µm, Thermo-Fisher 
Ltd.) was applied. A gradient elution applied two mobile phases (A-99.9/0.1 water/formic acid; B-99.9/0.1 meth-
anol/formic acid) as follows: start (95%A) for 2 minutes, linear ramp to 95%B over 7 min, hold for 3 min, step 
return to 95%A and hold for 3 min. 5 µL of sample was injected and the mass spectrometer conditions were spray 
voltage (−3.5 kV (ESI−) and +4.5 kV (ESI+)), sheath gas 40; aux gas 15; sweep gas 0, S lens 100; resolution 
35,000 (FWHM, m/z 200), capillary temperature 300 °C; ESI heater temperature 300 °C. All samples were ana-
lysed applying positive-negative ion mode switching with data collected in the m/z range 100–1000. All samples 
were stored at 4 °C. Ten QC samples were analysed at the start of the analysis followed by a QC sample after every 
6th biological sample and two QC samples at the end of the analytical run. Biological samples were randomised 
across the analytical batch.

Data processing and statistical analysis.  Raw data (.RAW) were converted to mzML files applying ProteoWizard 
followed by data processing applying XCMS software as described previously53. Data were exported as a data 
matrix of metabolite feature (m/z-retention time pair) vs. sample with associated chromatographic peak areas 
for a detected metabolite. Each metabolite feature with a relative standard deviation calculated for QC sam-
ples greater than 20% and not detected in greater than 70% of samples were removed prior to univariate and 
multivariate data analysis as described previously54. All metabolite features were annotated according to level 2 
of the MSI reporting standards55 applying PUTMEDID_LCMS, as previously described56. The processed data 
were analysed in R applying the unsupervised multivariate principal components analysis (PCA) and the uni-
variate non-parametric Wilcoxon–Mann–Whitney test. Correction for false discovery rate was applied using the 
Benjamini–Hochberg procedure. The fold change was calculated including 95% confidence limits. Metabolites 
were manually clustered in to classes defining similar chemical structure or metabolic pathway to identify biolog-
ically relevant and robust metabolic changes.

Weighted Analyte Correlation Network Analysis (WACNA).  To perform an integrated analysis of 
the transcriptomic and metabolomic data, we generalised Weighted Gene Co-expression Network Analysis. 
First, missing values in the metabolomics data were imputed using k-nearest neighbours imputation with k = 3. 
Second, to reduce the dimensionality of the final matrix only the top 20% of data (by variance) for each data-
set (metabolomics from positive ion spectroscopy, from negative ion spectroscopy and RNA-Seq) were carried 
forwards. These data matrices were combined, mean centred and z-scaled. Finally, WGCNA was carried out as 
described elsewhere15. Modules of correlated analytes (metabolites and transcripts) were identified using a meas-
ure of topological overlap and each named with a colour for easy reference. For each module, a module eigengene 
was computed (defined as the first principal component). This eigengene provided an aggregate measure for all 
the analytes in the module and was used to identify modules of interest (i.e. those that were affected by experi-
mental interventions). Finally, seven modules of interest identified thus were passed into MetaCore (Thompson 
Reuters) for enrichment analysis and pathway mapping. All analyses prior to MetaCore were conducted in R; 
code is available on request.

Statistical analysis.  Values are expressed as mean ± SEM. Statistical significance was determined with 
unpaired two-tailed t-tests or two-way ANOVA with Tukey post hoc test. Significance was considered with a 
p < 0.05.

Data availability.  The RNA-seq data is available at Gene Expression Omnibus (accession number: 
GSE97718).
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