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Effect of laser surface remelting on 
the microstructure and properties 
of Al-Al2Cu-Si ternary eutectic alloy
Bhupendera Prashanth Ramakrishnan1, Qian Lei2, Amit Misra2 & Jyoti Mazumder1,2

Bimodal ultrafine eutectic composites (BUECs) exhibit a good combination of strength and plasticity 
owing to a dual-hierarchy in eutectic length-scales in the microstructure. The present study investigates 
the variation of phase, morphology, feature length-scales and modality of microstructures obtained in a 
Al81Cu13Si6 (at. %) ternary alloy after laser surface remelting. A novel approach of varying component 
bimodal eutectic volume fractions by controlling the cooling rate of the laser solidification process has 
been presented. The volume fraction of the fine eutectic matrix has a profound effect on the flow 
strength. Laser remelted microstructures with volume fractions of the fine eutectic varying from 25 to 
40% exhibiting compressive flow strengths ranging from 500 to 900 MPa have been obtained. The 
volume fraction of the fine eutectic decreased with cooling rate and completely ceased to exist at 
cooling rates greater than 4 × 10 °C/s4 .

Most ultrafine and nanoscale grained metallic alloys exhibit high strength but show poor plastic deformability1. 
There is a trade-off between strength and ductility associated with materials processing techniques. Bimodal 
ultrafine eutectic composites (BUECs), characterized by a heterogeneous microstructure with a dual hierarchy 
in length-scales, coarse sub-micron dendritic colonies dispersed in a nanoncrystalline eutectic matrix, have 
been reported to exhibit a good combination of strength and plasticity. These structures were first developed in 
Ti-based alloys2. BUECs exhibit a good combination of strength, strain hardening and plasticity in several ter-
nary and quaternary alloy systems2–16. The high strength results from dislocation confinement within the ultraf-
ine eutectic matrix17,18. The good compressive plastic behavior originates from abundant slip/shear bands in the 
coarse dendrites12, obstruction of runaway shear bands at the dendrite-matrix interface19 and rotation of ultrafine 
matrix along primary shear band direction6. The formation of BUECs is favored under high cooling rates; meth-
ods like rolling at low temperature20, arc melting14,15, induction melting16, suction casting into a copper mold2–9 
and semi-solid sintering12 have been used to fabricate BUECs in the past. The present study employed rapid 
solidification via laser surface remelting to study the effects of cooling rate on the microstructure and properties 
of Al81Cu13Si6 ternary alloy.

Any solidification process with a cooling rate greater than 102 K/s can be considered as rapid solidification21. 
Rapid solidification leads to remarkable non-equilibrium effects within the fusion zone such as grain refinement, 
extended solid solubility and evolution of metastable crystalline phases22. Rapidly solidified materials exhibit 
improvements in mechanical properties such as strength23–26, fracture toughness27,28 and super plasticity29–32. 
These materials also exhibit enhanced corrosion resistance33–35 and respond better to subsequent working or heat 
treatment processing36. Laser materials processing is associated with high cooling rates, as high as 1010 K/s with 
ultrashort pulsed laser beams37. This occurs due to rapidly moving temperature fields and results in the departure 
from local equilibrium conditions at the solid/liquid interface38. The principles of full diffusional (equilibrium) 
solidification cannot be directly applied because of the introduction of morphological instabilities and formation 
of metastable phases39.

Laser surface remelting is a versatile rapid solidification technique which can be employed to realize a 
wide range of processing conditions (cooling rates) by varying parameters such as laser power and scan veloc-
ity. Refined microstructures with an interlamellar spacing of up to 17 nm have been obtained in Al-Cu binary 
eutectic system40. Using solidification modelling techniques, the morphology of Al-Cu-Si system under rapid 
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solidification conditions has been studied only in alloys with low Si content (1–2 at. %)39. Experimental investiga-
tions on the Al-rich part of Al-Cu-Si system using casting methods have resulted in bimodal type structures5–7,41. 
The emphasis of the previous works has been on mechanical properties and deformation mechanisms of as-cast 
structures fabricated with minimal process control5,7,8. There is at present little information about processing 
conditions conducive for bimodal eutectic structure formation.

In the present work, we report the effect of processing conditions on the phase, morphology, modality, volume 
fraction and feature length-scales of solidification microstructure of Al-Cu-Si BUECs. In the past, the primary 
method for the control of volume fraction involved varying the alloy composition4,8,14. However, the processing 
conditions and mechanical properties of Al81Cu13Si6 BUECs with varying volume fractions have not been studied 
till date. We leveraged the versatile cooling rate capabilities of laser surface remelting to vary critical BUEC micro-
structure attributes within the melted zone. The hardness and compressive flow strength of the microstructures 
was investigated. The possible solidification paths under non-equilibrium conditions were discussed to explain 
the variation in microstructure phase, morphology and volume fraction. This work also presents the upper bound 
of cooling rate range favourable for BUEC formation; the fine nanocrystalline matrix ceased to form beyond this 
limit.

Results
Microstructure of as-received samples. The substrate for laser surface remelting was arc cast with a 
composition of Al81Cu13Si6. Figure 1 shows the SEM micrograph of the as received material and the EDX mapping 
of the primary elements, Al, Cu and Si. The SEM micrograph of the substrate revealed a ternary eutectic struc-
ture with θ – Al2Cu and Si phases dispersed uniformly in α – Al matrix. The length scales of the θ – Al2Cu phase 
ranged from a few 100 nanometers to a few 10 microns, at different regions in the material.

Microstructure of laser treated samples. The phase, morphology, length scale and modality of the solid-
ification microstructure varied significantly at different locations within the laser trace. Figure 2 shows the SEM 
micrographs of the microstructures obtained at various regions within the melt pool, i.e. along the boundary 
(Fig. 2d–g) and center-line of the laser trace (Fig. 2a–c). The corresponding laser process parameters were power 
(P): 1000 W, spot size (SS): 0.8 mm and scanning velocity (SV): 25.4 mm/s (sample A). A bimodal eutectic struc-
ture with two distinct phases with different length-scales of lamellar spacing was observed near the boundary. 
The coarse eutectic (binary) consisted of α – Al and θ – Al2Cu phases while the fine eutectic (ternary) consisted of 
α – Al, θ – Al2Cu and Si phases. Figure 3 shows the SEM micrograph and EDX mapping of the Al, Cu and Si in the 
bimodal eutectic structure (sample A). Si was primarily confined to the fine matrix. The coarse eutectic had a dis-
continuous morphology with interphase spacings in the 100–400 nm range; the coarsest structures were obtained 

Figure 1. (a) SEM image of as-cast ternary alloy; EDX mapping of different elements: (b) Al; (c) Cu; (d) Si.
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along the trace boundary. The volume fraction of the fine eutectic was highest along the trace boundary and grad-
ually decreased towards the interior regions of the laser trace. In the interior regions of the laser trace, extending 
to the top, the microstructure of previously fine ternary eutectic structure transformed to a binary structure of 
Si dispersed in an α – Al matrix. The bimodal nature of eutectic length-scales ceased to appear in this region. 
Thus, this microstructure can be considered as a ‘dual-binary eutectic’. Figure 4 shows the SEM micrograph and 
EDX mapping of the microstructure without an interdendritic ternary eutectic phase. The volume fraction of the 
binary Al – Si structure was about 5–10%, significantly lower than the volume fraction of the ternary structure 
observed at the melt pool boundary (40–45%). Figure 5 shows the high-angle annular dark-field (HAADF) TEM 
images of the two microstructure types. In the binary/ternary bimodal eutectic (Fig. 5a,b), the lamellar spacing 
of Al-Al2Cu eutectic was larger as compared to the dual-binary eutectic (Fig. 5c,d). The absence of the θ – Al2Cu 
phase in the Si rich regions indicated that Cu was restricted to the coarse eutectic phase (Fig. 5d). The finest 
Al-Al2Cu eutectic structure was obtained near the top of the laser trace, on the laser beam axis.

Hardness and flow strength. The Vickers hardness was measured at several locations within the laser trace 
and as-received sample. The variation of measured hardness (and flow strength estimated from hardness) with 
volume fraction of the fine eutectic was also studied. Figure 6 shows the methodology adopted to study the effect 
of volume fraction on the flow strength of the bimodal microstructure (sample A). The projected indent area was 
measured at each indent location. Furthermore, an SEM image adjacent to the indent was captured to estimate the 
volume fraction of the fine eutectic structure. The varying contrast between the coarse and fine eutectics was 
leveraged to estimate volume fractions at multiple locations (with an accuracy of ±5%). The SEM micrograph at 
each location was transformed to a binary image using image processing functions in MATLABTM and the volume 
fraction of the black pixels (fine eutectic region) was obtained. The flow strength was estimated as indentation 
hardness (in GPa) divided by a factor of 2.742. The laser process parameters were varied to obtain microstructures 
with different volume fractions of the fine eutectic (see Materials and methods section). Figure 7a shows the vari-
ation of flow strength with volume fraction of the fine eutectic. The flow strength varied from 500 to 900 MPa for 
fine eutectic volume fractions ranging from 25 to 40%. Figure 7b shows the variation of interlamellar spacing in 
the coarse eutectic with volume fraction of the fine matrix. The Al-Al2Cu eutectic became coarser at higher vol-
ume fractions of the fine eutectic. The flow strength of the ternary (as-received) and binary eutectic regions were 

Figure 2. SEM images of microstructures: (a–c) along laser trace centreline and (d–f) along laser trace 
boundary. Process parameters of sample A: P = 1000 W, Ss = 0.8 mm, Sv = 25.4 mm/s.
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approximately 609 ± 5  MPa and 1033 ± 10  MPa respectively; finer feature length-scales resulted in higher flow 
strengths in these regions.

Discussion
The cooling rate at different locations within the melt pool can be drastically different43,44. This resulted in a 
non-uniform solidification microstructure, in terms of phase, morphology and feature length scales. The highest 
cooling rates were realized on the centerline of the fusion zone while the lower cooling rates were obtained along 
the boundary. Thus, fine grained microstructures were obtained at the top of the laser trace along the beam axis 
and the radial coarsening of grains was observed away from this region45. The modification of grain size was also 
accompanied by a change in the eutectic phase and morphology, a direct result of non-equilibrium solidification 
at high cooling rates (>102 °C/s).

Solidification paths for ternary alloy. The solidification of ternary alloys is complex, with several phases 
and morphologies possible based on the alloy composition and growth conditions46. The formation of phases 
with specific morphologies under non-equilibrium conditions can be treated by evaluating competitive growth 
through interface response functions (interface temperature). Upon satisfying thermodynamic stability criteria, 
the phase and morphology with the highest interface temperature grows47. Three types of eutectic structures 
attain stability during laser surface melting of Al81Cu13Si6 ternary alloy and they each grow under a different range 
of overlapping processing conditions. They are Al-Al2Cu-Si ternary eutectic, Al-Al2Cu binary eutectic and Al-Si 
binary eutectic.

In the ternary phase diagram (liquidus projection) of Al-Cu-Si, the binary eutectic point appears as univari-
ant equilibrium lines which meet at ternary invariant point. In the present work, the composition of Al81Cu13Si6 
coincides with a ternary invariant point which signifies that the four phases (Al, Al2Cu, Si and liquid) are in equi-
librium at the eutectic temperature of 524 °C. The substrate was arc-cast at relatively lower cooling rates compared 
to laser melting and can be considered to be closer to the liquidus projection phase diagram. The solidification 
microstructure of the as-received sample was certainly Al-Al2Cu-Si ternary eutectic which was confirmed from 
the SEM micrograph.

Rapid solidification is a non-equilibrium phenomenon which may result in the undercooling of melt, for-
mation of metastable phases, and coring or microsegregation in the solid solution21. The solidification micro-
structure within the laser trace was therefore expected to deviate significantly from the equilibrium ternary 
phase diagram prediction. However, at lower scan velocities (<5 mm/s), a fine Al-Al2Cu-Si ternary eutectic was 
obtained within the laser trace.

Figure 3. Microstructure of the bottom region of sample A: (a) SEM image of bimodal eutectic (coarse phase: 
Al-Al2Cu and fine matrix: Al-Al2Cu-Si), EDX element mapping: (b) Al; (c) Cu; (d) Si.
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The coupled zone refers to the range of compositions and growth conditions (non-equilibrium) where the 
solidification microstructure is wholly eutectic48. Within the coupled zone, the eutectic structures grow faster 
than the competing dendritic phases. This concept is primarily applicable to binary systems but can be extended 
to ternary systems as well41. There exists an invariant coupled zone within which the formation of a ternary 
eutectic phase is more feasible than competing dendritic structures (Al–Al2Cu in this case). Outside the invariant 
coupled zone, the formation of Al–Al2Cu dendrites is observed. A univariant coupled zone can be associated with 
this binary eutectic reaction. The morphology of the Al–Al2Cu eutectic is not lamellar since the solidification pro-
cess is associated with high growth velocities in the presence of a third component (Si). The destabilization of the 
planar growth interface under rapid solidification conditions can be treated by an absolute stability condition for 
undercooled alloy melts, which considers the surface energy effect in addition to the constitutional undercooling 
criterion49. Morphological instability is further induced by the formation of a long range solute boundary layer, 
resulting from the segregation of the third component (Si)50.

At higher cooling rates, the solidification path proceeds along the univariant equilibrium line associated with 
the following binary eutectic reaction:

α→ + θL (Al) (Al Cu) (1)2

Al and Al2Cu dendrites with primary arm spacings ranging from 100–500 nm coprecipitate as a binary eutectic 
mixture. When the interdendritic melt composition reaches the invariant ternary eutectic composition at 524 °C, 
it is quenched, resulting in the formation of a fine nanocrystalline matrix41.

α→ + θ +L (Al) (Al Cu) Si (2)2

The final solidification microstructure closely resembled those reported by earlier studies on Al-Cu-Si 
bimodal eutectic composites6–8. However, in this study, the feature length scales and volume fractions of constit-
uent eutectics varied significantly within the laser trace. The previous investigations report a small subset of the 
structures obtained in this study owing to limitations in their solidification processing capabilities. The dendritic 
arm spacing of the coarse binary eutectic and the volume fraction of the fine matrix were dependent on the solid-
ification conditions (cooling rate). The volume fraction of the fine matrix decreased with finer length scales of 
the coarse binary eutectic. A shift in primary phase boundary of the coupled zone at high growth velocities has 
been observed in binary systems51. Similarly, the coupled zone associated with the ternary eutectic reaction shifts 
as the growth velocity increases. The growth velocity increases with distance from the trace bottom, explaining 

Figure 4. Microstructure of the top region of sample A: (a) SEM image of dual-binary eutectic (coarse phase: 
Al-Al2Cu and fine matrix: Al-Si), EDX element mapping: (b) Al; (c) Cu; (d) Si.
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the observed microstructure modality and phase distribution. The evolution of a ternary fine eutectic matrix was 
favored at lower growth velocities.

Effect of cooling rate on solidification microstructure. The cooling rate of the solidification process 
had a significant effect on the morphology and phase distribution of the solidification microstructure. However, 
this change in morphology and elemental distribution was restricted to the phase containing Si, i.e. the ternary 
Al-Cu-Si and binary Al-Si phases. The cooling rate of the solidification process was experimentally obtained to 
study its effect on the microstructure phase, morphology and modality. The average cooling rate and associated 
microstructures (captured by SEM) are shown in Fig. 8. The samples were laser treated by a laser power of 500 W, 
spot size of 0.8 mm, and different scanning speeds of 2 54, 5.28, 20.32, and 25.4 mm/s. The ternary eutectic struc-
ture ceased to form at a cooling rate of × °~4 10 C/s4 . The bimodal nature of the microstructure was not observed 
at higher cooling rates; with Si globules precipitating along the Al − Al2Cu eutectic colony interfaces. This cooling 
rate also signifies the limit of the invariant coupled zone of the ternary eutectic solidification process. The decrease 
in spacing of Al − Al2Cu eutectic colonies was continuous regardless of the existence of the fine ternary eutectic 
matrix. The consistent dendritic morphology of the Al − Al2Cu eutectic colonies and absence of any primary 
phase indicates that the solidification conditions were still confined to the univariant coupled zone associated 
with the Al − Al2Cu binary eutectic reaction.

Tuning flow strength of BUECs. The flow strength of the solidified microstructure depends on the feature 
length scales via a Hall-Petch type relationship. Bimodal eutectic structures with lower volume fractions of the 
fine eutectic exhibited higher flow strengths. The higher flow strengths are a result of the reduced spacings in both 
the coarse and fine eutectic structures, obtained under solidification at high cooling rates. Thus, the spacings and 
volume fractions of both eutectics in BUECs must be considered in understand the overall flow strength. A strict 

Figure 5. HAADF TEM images of two types of eutectic structure, (a,b) Bimodal eutectic: coarse phase: Al-
Al2Cu and fine matrix: Al-Al2Cu-Si, (c,d) Dual-binary: coarse phase: Al-Al2Cu and fine matrix: Al-Si. (images 
from sample A).
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dependence between the coarse eutectic spacing and fine eutectic volume fraction was observed over a wide range 
of solidification conditions, realized by varying laser scanning speed and laser power. This result revealed that any 
attempt to refine the microstructure would result in reduction of volume fraction of fine eutectic. The heterogene-
ity of length scales in the solidification microstructure reduced and eventually disappeared as the cooling rate was 
increased. The bimodal nature suppresses shear localization and crack nucleation, improving compressive plastic 
strain5. The shear stress across interfaces between the coarse and fine eutectic colonies is effectively dissipated by 
the rotation of the coarse eutectic colonies6. These effects are likely to be less pronounced at lower volume frac-
tions of the fine eutectic. The high compressive plastic strain which results from this heterogeneity of length scales 
is expected to be compromised in structures solidified at high cooling rates. Thus, the strength and compressive 
plasticity can be tuned over a wide range by varying the cooling rate of the solidification process.

The findings of this study will enable more precise control of mechanical properties of rapid solidification 
processing (e.g. laser surface melting, suction casting, metal based additive manufacturing etc.) of eutectic ternary 
alloys. The large variation in flow strength and possibly ductility (not addressed in this work) over a narrow range 

Figure 6. (a) SEM image of indent location comprising of both coarse and fine eutectic, (b) SEM image of area 
near the indent location, used for volume fraction measurement, (c) Processed SEM image (dark areas can be 
mapped to fine eutectic region). (images from sample A).

Figure 7. (a) Variation of flow strength with volume fraction of the fine eutectic in bimodal eutectic type 
microstructure (coarse eutectic: Al + Al2Cu, fine matrix: Al + Al2Cu + Si); (b) Variation interlamellar spacing 
of Al-Al2Cu coarse eutectic with volume fraction of fine eutectic matrix. Process parameters: P = 500–1000 W, 
Ss = 0.8–1.2 mm, Sv = 2.54–101.4 mm/s.
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of cooling rates could result in BUECs finding application in materials processing environments with dynamic 
requirements. Further studies are required to establish the effects of varying temperature gradients and growth 
velocities on the morphology and length-scales of BUECs. These parameters could offer more precise control of 
microstructure attributes such as feature length-scales and volume fraction; thus, providing a robust processing 
technique for BUECs with a wide range of mechanical properties.

Summary and Conclusions
The variation of morphology, constituent phases and length-scales of an arc-melted Al81Cu13Si6 alloy upon laser 
remelting have been studied. Three distinct eutectic structures were obtained based on location within the laser 
trace: Al-Al2Cu-Si ternary eutectic, Al-Al2Cu binary eutectic and Al-Si binary eutectic. The extent of departure 
from equilibrium solidification (quantified by cooling rate) determined the solidification microstructure, which 
was either a (i) ternary eutectic, or (ii) binary (Al-Al2Cu)/ternary (Al-Al2Cu-Si) bimodal eutectic, or (iii) 
‘dual-binary (Al-Al2Cu)/Al-Si eutectic’. The formation of bimodal eutectics was favored at cooling rates under 

× °~4 10 C/s4 . The flow strength of bimodal eutectics was effectively varied between 500 to 900 MPa, a result of 
differing fine eutectic volume fractions within the laser trace. The control of volume fraction and constituent 
phases will provide greater flexibility in processing materials with diverse mechanical properties.

Materials and Methods
Sample preparation and laser surface remelting. A eutectic Al81Cu13Si6 (at. %) ternary alloy ingot was 
fabricated using an arc melter (Materials Preparation Center, Ames Laboratory, Iowa State University). Argon gas 
environment was employed to protect the sample from oxidation during arc melting. Specimens with a thickness 
of 20mm × 10mm × 2 mm were cut from the as-cast ingot.

After grinding and polishing, the specimens were laser surface remelted using solid state disk laser (TRUMPF 
Laser HLD 4002) at a wavelength of 1030 nm. Previous investigations on laser surface remelting of Al alloys 
primarily used CO2 laser (λ = 10.6 μm)40,52. However, the absorption coefficient of Al at this wavelength is low 
(2–3%)53. Lower wavelength laser irradiation resulted in a more efficient remelting process (absorption coefficient 
of 10%), permitting the use of lower powers and higher scan speeds. The absorption was further improved by 
coating the sample with graphite (Bonderite L-GP G aerosolized graphite lubricant) prior to remelting. The laser 
power (P) was varied between 500 and 1000 W. The laser spot diameter (Ss) and scan speed (Sy) ranged from 0.8 
to 1.2 mm and 2.54 to 101.4 mm/s respectively. Argon shielding gas (flow rate of 9.4 L/min) was used during the 
laser melting process to prevent oxidation. A two-color pyrometer (IMPAC ISR 12-LO/GS) was used to measure 
the temperature-time history at the top of the melt pool. The temperature history was obtained at approximately 
the middle of laser scan path, to avoid anomalous free-edge heat transfer effects.

Figure 8. Microstructures obtained at the top of laser trace corresponding to cooling rates of (a) . × °3 8 10 C/s3

; (b) × °14 10 C/s3 ; (c) × °49 10 C/s3 ; (d) × °54 10 C/s3 . Process parameters: P = 1000 W. Ss = 0.8 mm. Sv = (a) 
2.54 mm/s; (b) 5.28 mm/s; (c) 20.32 mm/s; (d) 25.4 mm/s.
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Materials characterization and hardness testing. The eutectic microstructures of the as-cast and laser 
treated Al-Cu-Si specimens were characterized using an FEI Helios 650 scanning electron microscope (SEM) in 
the secondary electron mode. The TEM samples were prepared by mechanical cutting, grinding, polishing fol-
lowed by focussed ion beam milling. High angle annular dark field (HAADF) images and corresponding bright 
field images were captured using a JEOL 3100 R05 TEM with an operating voltage of 300 kV. Indentation experi-
ments were conducted at room temperature on a hardness tester. A Vickers indenter (Clark CM-800 microhard-
ness tester) was employed to perform the indentation experiments in the load controlled mode, with the peak 
load ranging from 250 mN to 2 N.

Image processing. The coarse and fine eutectic phases were mapped to white and black pixels respectively 
using imadjust and medfilt2 MATLAB functions. The image was further processed to fill gaps using erosion and 
dilation operations with a disk structuring element. The imcomplement and imfill functions were used to fill 
any remaining holes. The volume fraction of the fine eutectic phase was evaluated as the number of black pixels 
divided by the total number of pixels.
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