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Evaluating phenotype-driven 
approaches for genetic diagnoses 
from exomes in a clinical setting
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Andrew Collins1

Next generation sequencing is transforming clinical medicine and genome research, providing a 
powerful route to establishing molecular diagnoses for genetic conditions; however, challenges 
remain given the volume and complexity of genetic variation. A number of methods integrate patient 
phenotype and genotypic data to prioritise variants as potentially causal. Some methods have a clinical 
focus while others are more research-oriented. With clinical applications in mind we compare results 
from alternative methods using 21 exomes for which the disease causal variant has been previously 
established through traditional clinical evaluation. In this case series we find that the PhenIX program 
is the most effective, ranking the true causal variant at between 1 and 10 in 85% of these cases. This 
is a significantly higher proportion than the combined results from five alternative methods tested 
(p = 0.003). The next best method is Exomiser (hiPHIVE), in which the causal variant is ranked 1–10 in 
25% of cases. The widely different targets of these methods (more clinical focus, considering known 
Mendelian genes, in PhenIX, versus gene discovery in Exomiser) is perhaps not fully appreciated but 
may impact strongly on their utility for molecular diagnosis using clinical exome data.

Next generation sequencing (NGS) of patient genomes is revolutionising research and medical genetics by estab-
lishing molecular diagnoses and identifying novel disease: gene relationships. Whole-exome sequencing (WES), 
which covers only the protein coding sequence of the genome, is particularly cost-effective and has identified 
many novel disease genes underlying mostly Mendelian and other monogenic conditions. However WES typi-
cally recovers ~30,000 variants of which ~10,000 are predicted to result in nonsynonymous changes, alter con-
served splice sites, or represent small insertions or deletions (indels)1. The variant set includes many that are 
potentially deleterious and therefore detailed and careful analysis is required to identify the most likely candidate 
variant(s) which best match the clinical phenotypes.

In order to reduce the complexity of WES data, methods exist to filter variant lists. Filters discard variants 
which fail to meet a set of criteria based on, for example, the predicted functional impact of the variant through 
changes to the protein or whether a variant has been observed in a disease-free control data set. Examples of 
variant-based prediction tools include SIFT (Sorting Intolerant From Tolerant)2 and PolyPhen2 (Polymorphism 
Phenotyping)3, which are concerned with the impact of an amino acid substitution on the structure and function 
of a protein; GERP++ (Genomic Evolutionary Rate Profiling4) which is concerned with evolutionary conserva-
tion of sites; VAAST 2.0 (Variant Annotation, Analysis Search tool5) which incorporates information about phy-
logenetic conservation and amino acid substitution and CADD (Combined Annotation-Dependent Depletion6) 
which integrates information from various functional annotations into a single score. Further reduction in the 
number of candidate variants might be achieved through ‘intersection filtering’7 which considers whether a sig-
nificant proportion of individuals with a shared phenotype carry a predicted damaging variant in the same gene 
and whether such a variant is a strong candidate for disease causality. However, each genome contains ~100 
loss-of-function variants and has ~20 genes completely inactivated8. Therefore ‘variant based’ methods based 
only on predicted pathogenicity, combined with intersection filtering, may be insufficient to separate disease 
mutations from variants with deleterious biochemical effects which are not related to the disease in question. 
The difficulty is exemplified by the recent whole genome sequencing of 217 Mendelian disease cases with a broad 
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range of disorders for which disease causal variants were, after comprehensive analysis, confirmed in only 34% 
of cases9. The development and implementation of more powerful strategies which can accelerate the establish-
ment of molecular diagnoses is pressing. Such strategies underlie successful interpretation of cases from the UK 
100,000 genomes project (https://www.genomicsengland.co.uk/the-100000-genomes-project/) which is applying 
NGS to transform patient diagnosis and treatment and rare disease (along with cancer and infectious disease).

Given the difficulty in establishing molecular diagnoses, even for Mendelian forms of disease, a number 
of tools have been developed which are designed to determine or support the identification of causal variants 
(Table 1). These methods integrate diverse database information including, for example, phenotypic ontologies, 
variant pathogenicity scores, insights from model organisms and protein:protein interaction data, with patient 
phenotypic and genotypic NGS data. To evaluate the utility of these tools for establishing clinical molecular 
diagnoses we compare results from a range of methods through rank positions for the causal variants in a panel 
of clinical exomes which have firmly established molecular diagnoses. The tools produce ranked lists of variants 
but do not report exclusions (i.e. where the causal variant is not within the NGS data file). We compare methods 
through the ranked position of the causal variant in each case, in particular where a method achieves a rank of 1 
for the causal variant or the variant is ranked in the range 1–10. The cases chosen (Supplementary Table 1) form 
part of a clinical service evaluation of routine NGS diagnostic testing and might be considered representative of 
cases encountered in a clinical genetics environment.

Overview of current tools. We consider tools which integrate patient phenotypic information (usually 
represented in the form of Human Phenotype Ontology, HPO terms; http://human-phenotype-ontology.github.
io/about.html) with NGS-derived genotypic data in the form of a VCF file10. Several of the tools are relatively 
easy to use through online web servers where HPO terms and VCF files containing patient exome data may be 
uploaded (Table 1). The methods may have a primarily clinical focus, in which known disease genes are targeted, 
or have a gene discovery emphasis in which novel genes, showing some relationship to known disease associa-
tions, are highlighted. The methods include PhenIX11 which ranks candidate genes in NGS data with a focus on 
known disease-associated Mendelian genes. Ranking is based on integration of predicted variant pathogenicity 
with phenotypic similarity of diseases associated with these genes. Exomiser (hiPHIVE)1 uses the same software 
framework but also includes multi-species (human, Zebrafish, mouse) ontologies and protein-protein interaction 
network data. It has a gene discovery focus employing random-walk analyses of multi-species protein interaction 
networks. Human data come from OMIM and Orphanet12 and the human phenotype comparison considers 
known disease-gene associations while integration of mouse and zebrafish data targets novel candidate genes. 
Where genes have no known phenotype associations a random-walk-with-restart algorithm scores proximity to 
other genes in protein-protein association networks which are implicated in patient phenotypes.

eXtasy13 employs genomic data fusion to quantify the deleteriousness of nonsynonymous variants which are 
prioritised dependent on disease phenotypes. eXtasy evaluates patient data against ten measures of variant del-
eteriousness and a haploinsufficiency prediction score for given gene. The gene prioritisation approach scores 
genes with mutations according to their similarity with known disease genes. Disease genes previously associated 
with a HPO term are identified using the Phenomizer algorithm14. Genes containing variants are scored for 
similarity with this set of genes using Endeavour15, which recognises the high proportion of shared annotations 
in gene ontology databases. Random Forest learning is used for data integration with the model trained on the 
Human Gene Mutation Database16 compared to (non-disease) control datasets of common polymorphisms and 
rare variants.

OMIM Explorer17 is strongly focussed towards clinical diagnostics by applying transitive prioritization which 
links phenotypes to variants through medically recognised intermediates. The tool quantifies semantic similar-
ity to compare patient phenotypes with known diseases or syndromes using OMIM as a basis for calculations. 
Semantic similarity scores and HPO annotations are used to identify similarities of an input query to the set of 
OMIM-described diseases defined by HPO phenotypes. The interactive user interface guides user input to grad-
ually improve the diagnostic process. Innovative features include an interface for translating clinical notes into 
HPO terms.

OVA18 considers genotype and predicted effect on protein sequence to reduce the number of potential can-
didate variants. OVA firstly excludes likely benign variants (such as synonymous and intronic variants) and then 
evaluates remaining variants against a multi-ontology annotation. Different ontologies are considered which inte-
grate human and model organism data including: Gene Ontology19, HPO14, Uberon20, Disease Ontology21 and 
The Pathway Ontology22. Experimental interaction data from mentha23 are also considered. For scoring semantic 
similarity the query phenotypic descriptors and variant data are evaluated against known phenotype-genotype 
associations, phenotypes and links across ontologies with the target being the prioritisation of known and novel 
disease genes. Gene scores are optimised using a Random Forest model to classify each candidate gene and obtain 
final ranks for candidate genes.

Phen-Gen24 predicts the damaging impact of coding mutations (nonsynonymous, splice site, and indels) ena-
bling a quantitative comparison between them. Phen-Gen determines potential disease impacts at a locus level 
(including consideration of non-coding variation) using evolutionary conservation, ENCODE predictions25, 
and proximity to coding sequence. Phenomizer is used for matching patient HPO terms to known disease-gene 
associations. Novel candidate genes are assessed as functionally related genes using a random-walk-with-restart 
algorithm searching gene interaction networks. A Bayesian approach is used to evaluate deleterious variants in 
the exome to known disease-gene associations.

Phevor26 integrates phenotype, gene function, and disease information with genomic data targeting both 
known variation and disease causing alleles not previously implicated in disease. Phevor combines data from bio-
medical ontologies with variant prioritization scores. The tool propagates information across and between ontol-
ogies to re-prioritize potentially damaging variants given gene function and disease, and phenotype knowledge. 

https://www.genomicsengland.co.uk/the-100000-genomes-project/
http://1
http://human-phenotype-ontology.github.io/about.html
http://human-phenotype-ontology.github.io/about.html
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Outputs from the NGS annotation tools ANNOVAR27 and VAAST5 are used to rank exome variants. Input patient 
phenotypes are mapped against a series of ontologies, such as HPO and the Mammalian Phenotype Ontology28, 
to produce a list of genes known to be associated with these terms. In effect entries in different ontologies are 
brought together through different annotations of the same gene. Each gene receives a score which is combined 
with the variant annotation data to produce a final rank.

Results
We examined a total of 21 clinical exomes. In the case of Patient 6, with ‘epileptic encephalopathy, early infantile, 4’  
secondary to a mutation in the ARX gene, the known causal variant was not captured by the TruSight One panel, 
and was therefore not present in the genotype data for this individual. We have therefore excluded this case from 
the comparison of methods.

Table 2 shows the rank position of the known causal mutation in the set of variants scored by each method. 
The known pathogenic variant was correctly assigned a rank of 1 in 40% of cases by PhenIX (Table 2, Figs 1 and 2),  
20% of cases by Exomiser and 10% of cases by eXtasy (using combined order statistics). OVA and eXtasy (using 
the maximum score) did not identify the correct variant as rank 1 in any case. Considering the identification 
of the correct causal variant within a rank of 1–10 the proportion of cases resolved by PhenIX rises to 85% but 
the proportion remains at 20% for Exomiser and increases slightly to 25% using Exomiser with CADD scores. 
eXtasy, with combined order statistics, identifies the causal variant with rank 1–10 in 20% of cases. PhenIX places 
the known causal variant at rank = 1 in 8 cases whereas the five other methods combined (Table 2) identify the 
known variant at rank = 1 in 5 cases, however, this difference is not significant (p = 0.50, by Fisher’s exact test). 
Considering the placement of the known causal variant as rank = 1–10, PhenIX achieves this in 17 cases whereas 
taking the highest rank achieved by any method from the set of five other methods ranks the causal variant as 
1–10 for 7 cases (p = 0.003).

For eXtasy the superiority of the combined order statistics over the maximum score is clear (Table 2). The 
performance of eXtasy using combined order statistics might have improved if a complete set of HPO terms could 
have been used.

The superiority of PhenIX for this small case series of clinical exomes is clear although it is worth noting that 
improved prioritisation was achieved by alternative methods for two of the cases. For the mental retardation, 
autosomal recesive 15 case involving the gene MED13L (patient 4) PhenIX only achieves a rank of 106 for the 
causal variant compared to a much improved ranking of 10 using Exomiser with CADD. Although it is not 
possible to draw firm conclusions from one case it is conceivable that in, for example, mental retardation phe-
notypes where there is extreme phenotypic and genotypic heterogeneity, the integrated phenotypic and interac-
tome analysis provided by Exomiser is more powerful. The other case where there is apparent superiority over 

Tool Concept Authors benchmarks References and software

Exomiser (hiPHIVE) 
(human/interactome-
PHenotypic Interpretation of 
Variants in Exomes)

Integrated phenotypic and interactome analysis 
using model organisms (mouse, zebrafish) and 
human clinical data along with protein-protein 
interaction network data. Focussed on finding 
new disease genes.

Known disease-gene associations the 
top hit in 97 % of simulated exomes.

1,29,30 http://www.sanger.ac.uk/science/tools/
exomiser

eXtasy

Integrates predicted impact of variants with 
haploinsufficiency and phenotype-specific gene 
prioritisation. Uses random forest learning 
trained on the Human Gene Mutation Database 
(HGMD16)

Outperforms classical 
deleteriousness scores (PolyPhen, 
SIFT, MutationTaster).

13 http://extasy.esat.kuleuven.be/

OMIM Explorer
Reduces high dimensional phenotypic and 
genotypic data using semantic similarity and 
multidimensional scaling. Interface can be used 
to convert clinical notes to HPO terms.

Clinical variants given median rank 
of 2, causal variants in top 1% of 
candidates (47 cases). Outperformed 
Phen-Gen, eXtasy, and Exomiser 
(hiPHIVE) for clinical variants.

17 http://omimexplorer.research.bcm.
edu:3838/omim_explorer/

OVA “Ontology Variant 
Analysis”

Integrates human and model organism 
phenotypes, functional annotations, curated 
pathways, cellular localizations and anatomical 
terms using supervised learning. Exploits 
multiple ontologies and experimental 
interaction data23.

Outperformed ExomeWalker31 in 
benchmarking with 150 exomes. 
True disease gene ranked first in 20% 
on cases.

18 http://dna2.leeds.ac.uk:8080/OVA/index.
jsp

Phen-Gen

Semantic matching of symptoms against 
disorder database following Phenomizer14. 
Functionally related genes recognised through 
random walk algorithm. Variants classified 
using conservation and predicted functionality 
scores. Phenotypic and genotypic evidence 
combined in Bayesian framework.

Causal coding variants ranked first 
in 88% of cases (simulation) and in 8 
of 11 patient samples. Outperformed 
VAAST, eXtasy and Phevor by 
13–58% and PHIVE by 13–16%.

24 http://phen-gen.org/

PhenIX (Phenotypic 
interpretation of eXomes)

Interrogates only known Mendelian genes 
and uses semantic similarity matching in 
Phenomizer14. Uses MutationTaster, Polyphen2 
and SIFT to predict pathogenicity.

Tests on 52 patient samples with 
known mutations correct gene 
achieved mean rank of 2.1

11 http://compbio.charite.de/PhenIX/

Phevor “Phenotype driven 
variant ontological re-ranking 
tool”

Uses ontologies to re-prioritise candidates 
identified by other variant prioritisation tools 
such as SIFT, PhastCons and VAAST to identify 
alleles not previously linked to disease.

Improved performance of tools such 
as SIFT and VAAST.

26 http://weatherby.genetics.utah.edu/cgi-
bin/Phevor/PhevorWeb.html

Table 1. Some phenotype-based variant prediction tools.

http://www.sanger.ac.uk/science/tools/exomiser
http://www.sanger.ac.uk/science/tools/exomiser
http://extasy.esat.kuleuven.be/
http://omimexplorer.research.bcm.edu:3838/omim_explorer/
http://omimexplorer.research.bcm.edu:3838/omim_explorer/
http://dna2.leeds.ac.uk:8080/OVA/index.jsp
http://dna2.leeds.ac.uk:8080/OVA/index.jsp
http://phen-gen.org/
http://compbio.charite.de/PhenIX/
http://weatherby.genetics.utah.edu/cgi-bin/Phevor/PhevorWeb.html
http://weatherby.genetics.utah.edu/cgi-bin/Phevor/PhevorWeb.html
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PhenIX is for Costello syndrome (patient 16) for which the causal variant in HRAS achieves a rank of 7 under 
PhenIX but ranked 1 by Exomiser and eXtasy using combined order statistics. The reason for this difference is 
not understood.

Discussion
Matching by semantic similarity of patient phenotypes with resources such as the Online Mendelian Inheritance 
in Man (OMIM) disease catalogue is widely employed. A straightforward analysis strategy might filter variant 
lists by limiting the search for causal variants to genes already known to contain variants associated with a set 
of phenotypes, for example using lists of genes generated from OMIM. This seems most likely to be effective for 
conditions with more limited phenotypic and genotypic heterogeneity but, in other cases, using tools such as 
PhenIX which allows for phenotypic ambiguity through distance measures in the HPO network, as opposed to 
using semantic absolutes using OMIM, might be advantageous.

Tools which integrate knowledge of existing clinical phenotype and genotype relationships might give mis-
leading results where these relationships are poorly understood. James et al.17, argue that the procedure employed 
in PhenIX (in which phenotypes are collapsed across the diseases to which a gene’s variants have been associated), 
can result in overestimation and underestimation of semantic similarity matches of candidate genes to patient 
phenotypes and limited reporting of ruled-out diseases from further consideration. There is therefore a risk of 
incorrect phenotypic interpretation given the limitations of current knowledge and over-reliance on this form of 
matching. However, as we have shown here for cases in a clinical setting, tools which have a gene discovery rather 
than diagnostic emphasis may give misleading results.

Most tools (eXtasy, Phevor, Phen-Gen, OVA and Exomiser hiPHIVE) integrate human and non-human 
genomic data which underlies their gene discovery focus. Our analyses, which utilise clinical exome data with 
known molecular causes, suggest that these tools may not reliably identify known disease:gene relationships. 
The most striking example is in the comparison of PhenIX and Exomiser (hiPHIVE) which share the same soft-
ware framework but have widely differing performance (ranking the causal variant 1–10, in 17 cases by PhenIX, 
compared to 5 cases by Exomiser, p = 0.0003). This comparison suggests that the integration of model organism 
data (as in Exomiser) may be less useful in prioritising established human phenotype: genotype relationships 
which underlie many clinical genetics applications. However, where there is high phenotypic and genotypic 

Patient Gene Diagnosis

Rank

PhenIX Exomiser
Exomiser 
with CADD OVA

eXtasy 
(order 
statistics)

eXtasy 
(combined 
max)

1 ARID1B COFFIN-SIRIS SYNDROME 2 95 132 1037 6013 6184

2 KCNQ2 EPILEPTIC ENCEPHALOPATHY 1 85 104 — 1458 8508

3 SGCE MYOCLONIC DYSTONIA 7 — — — 239 9304

4 MED13L MENTAL RETARDATION, 
AUTOSOMAL RECESSIVE 15 106 14 10 1004 2230 4511

5 RYR1 CONGENITAL FIBER-TYPE 
DISPROPORTION MYOPATHY 1 68 85 74 422 8624

6 ARX EPILEPTIC ENCEPHALOPATHY, EARLY 
INFANTILE, 4 — — — — — —

7 SACS SPASTIC ATAXIA, CHARLEVOIX-
SAGUENAY TYPE 3 89 77 308 3264 5032

8 UBE3A ANGELMAN SYNDROME 12 74 77 — 178 8728

9 PTEN PTEN HAMARTOMA TUMOR 
SYNDROME 1 1 1 — 126 8822

10 DYNC1H1
SPINAL MUSCULAR ATROPHY, 
LOWER EXTREMITY, AUTOSOMAL 
DOMINANT

10 85 86 20 1759 4687

11 SCN1A DRAVET SYNDROME 2 27 53 72 250 8188

12 TCOF1 TREACHER COLLINS SYNDROME 3 9 99 92 45 259 8858

13 OTX2 MICROPHTHALMIA, ISOLATED 1 5 60 70 73 — —

14 EHMT1 KLEEFSTRA SYNDROME 10 88 95 — — —

15 EFNB1 CRANIOFRONTONASAL SYNDROME 1 1 1 — 254 8997

16 HRAS COSTELLO SYNDROME 7 1 1 52 1 9328

17 PTPN11 NOONAN SYNDROME 6 1 82 83 — 1 9328

18 EIF2B1 LEUKOENCEPHALOPATHY WITH 
VANISHING WHITE MATTER; VWM 11 — 144 — 30 9216

19 FGFR3 MUENKE SYNDROME 1 1 1 50 7 9281

20 POLG ALPERS SYNDROME 1 89 98 402 14 8876

21 COMP PSEUDOACHONDROPLASIA 1 78 90 53 10 9310

Table 2. Rank positions of causal variants by method. ‘—’ – not ranked.
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heterogeneity, such as in the case of mental retardation phenotypes, tools which encompass a wider range of 
predictors may be more useful.

Beyond the questions of diagnostic accuracy, there are also other potential factors which would need to be 
considered prior to the implementation of these tools in a diagnostic setting. Amenability to high throughput use, 
and ability to integrate with existing software used would greatly reduce the ‘hands on’ time required for using 
these tools, as well as reducing the potential for user input error. Furthermore, care must be taken regarding data 
protection. Tools which provide only a website to which patient data is uploaded (for instance OMIMExplorer) 
will likely raise more concerns than a tool which can be run locally without data leaving the lab (such as the 
Exomiser software package).

The use of these software tools will obviously fail to correctly identify the pathogenic variant in cases where 
the pathogenic variant is not present in the sequencing data (as seen in patient 6 with a pathogenic ARX variant). 
Some consideration should also be given to the use of a priori candidate gene sets identified using HPO terms (for 
example by using the Phenomizer platform14). Here, candidate genes worthy of sequencing may be identified and 
this information can impact the choice of panel for the planned sequencing experiment.

It must be noted that this investigation considers only a small sample size, although they represent well char-
acterised clinical cases. Although a total of 20 exomes contribute to the final analyses, it is noteworthy that the 
statistical superiority of PhenIX in these data has been demonstrated. It is likely that these data are not represent-
ative of the substantial variety of exome samples that will be seen in clinical practice, though they do represent an 

Figure 1. Ranks for causal variants by category. Chart showing the number of cases in different rank classes for 
each method.

Figure 2. Intersection of pathogenic variants being ranked within the top 10 between software.
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unbiased selection of exomes which were clinically resolvable through traditional genetic investigations. Whilst 
resolving clinically tractable exomes is perhaps not the area for which these tools offer the biggest gain, they have 
the potential to help streamline diagnostic processes if used routinely for diagnostic applications. It is therefore 
important to understand situations in which some of the tools may be sub-optimal. We have shown that this may 
be the case with hiPHIVE for clinically ‘simple’ cases, and further work is required to confirm this evidence to 
inform clinical practice as NGS and HPO analyses become increasingly mainstream.

Materials and Methods
We consider 21 exome samples collected during a regional clinical exome service evaluation project in the 
UK. These cases have a previously established, clinically confirmed molecular diagnosis determined through 
traditional testing. Phenotypes from each case were described through comprehensive sets of HPO terms 
(Supplementary Table 1); HPO terms were selected based upon review of the clinical notes, identifying unambig-
uous physical features, as well as those reported by multiple clinicians. Samples were sequenced following capture 
using the TruSight One sequencing panel (Illumina, San Diego, CA, USA). The TruSight One panel captures the 
exonic regions of 4,813 genes that are known to be implicated in the development of human disease.

For the tools we were able to compare we retained default parameters throughout and used the same HPO 
terms and VCF files as input in each case, with the following tool-specific differences: eXtasy could not utilise all 
current HPO terms because its internally held database of HPO terms has not been fully updated since the origi-
nal publication of the eXtasy program. We consider two alternative statistics for the eXtasy software. Because each 
variant may be associated with different phenotypes eXtasy can report a maximum score (‘combined max’) across 
phenotypes13 and, alternatively, it may report Order Statistics (‘combined order statistics’)15 which combines 
ranking from separate data sources effectively reducing to a combined rank across all separate ranks. PhenIX 
was run utilising the available web server (http://compbio.charite.de/PhenIX/), whilst hiPhive was run using the 
downloaded Exomiser package. For hiPHIVE and PhenIX, we specified a 0.1% allele frequency cutoff. Exomiser 
(hiPHIVE) does not include CADD scores as a default but has the option to include them if downloaded locally. 
We compare both the default program and the program with the addition of CADD scores. We scored the rank 
position determined by each method tested for the known causal variant in every case (Table 2, Fig. 1).

This research was performed in accordance with the relevant guidelines for research within the National 
Health Service.

Data availability. We are unable to make the genomic data on which these analyses are based available.
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