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QTL analysis of four main stem bark 
traits using a GBS-SNP-based high-
density genetic map in ramie
Chan Liu1, Siyuan Zhu1, Shouwei Tang1, Hongwu Wang2, Xia Zheng1, Xiaorong Chen3, 
Qiuzhong Dai1 & Touming Liu1

Ramie fiber extracted from ramie stem bark (RSB) is a highly important natural fiber, and therefore, 
RSB is an economically important plant organ. The genetic basis of RSB traits is poorly understood. In 
the present study, fiber yield and three RSB traits (bark thickness, bark weight, and fiber output ratio) 
were subject to quantitative trait locus (QTL) analysis using an F2 agamous line population derived 
from two ramie varieties (Qingdaye and Zhongzhu 1). A total of 4338 high-quality single nucleotide 
polymorphisms were identified using the genotyping-by-sequencing technique and were subsequently 
used to construct a high-density genetic map spanning 1942.9 cM. Thereafter, QTL analysis identified 
five, two, four, and four QTLs for bark thickness, bark weight, fiber output ratio, and fiber yield, 
respectively. A 5.1 cM region that corresponded to a QTL for bark thickness (qBT4a) contained 106 
candidate genes, and the Zhongzhu 1 allele of one of the genes, a putative MYB gene (evm.model.
scaffold7373.133_D1), included a 760-bp insertion that caused premature termination, thereby 
producing a protein that lacked part of the MYB domain. Because MYB transcription factors play central 
roles in regulating the development of secondary cellular walls and fiber biosynthesis, we propose evm.
model.scaffold7373.133_D1 as a likely candidate gene for qBT4a.

Ramie (Boehmeria nivea L. Gaud), which is commonly known as China grass, is a perennial and diploid (2n = 28) 
herbaceous plant that belongs to the Urticaceae and is one of the most important natural fiber crops. Ramie fibers 
are vegetative and are extracted from the plant’s stem bark. Therefore, fiber yield (FY) is markedly influenced by 
ramie stem bark (RSB) traits, like bark thickness (BT), bark weight (BW), and the output ratio of fiber from the 
bark (RFB), and understanding the genetic basis of these traits will facilitate molecular designing of the traits, as 
well as breeding programs for FY.

Many of ramie agronomic traits, including FY and RSB traits, are complex and are inherited in a quantitative 
manner1,2, which suggests that the traits are controlled by a variety of major and minor quantitative trait loci 
(QTLs). Owing to the development of molecular marker and QTL analysis methods during the past 20 years, 
a great number of quantitative traits have been characterized for important crop species, and thousands of cor-
responding QTLs have been identified2–8, some of which have also been fine-mapped and cloned9–13. In recent 
years, numerous SSR markers have also been developed in ramie, based on expressed sequence tags (ESTs) from 
the de novo assembled transcriptome of species14,15. However, only one expanded, low-resolution genetic map 
has been constructed2, and only 33 and 29 QTLs have been detected for yield- and flowering time-related traits, 
respectively2,8. Therefore, it is likely that many QTLs have yet to be identified, because of the QTL regions without 
markers observed in this low-resolution map, and a high-resolution genetic map of ramie is needed.

Ramie breeding programs often focus on RSB-related traits, owing to their effects on FY. However, only BT 
was included in the previous analysis that only identified six QTLs2, and no RSB development-related genes or 
QTLs have been cloned or functionally characterized. Therefore, the genetic and molecular mechanisms for the 
RSB traits remain completely unknown.

A major objective of this study is to characterize the genetic basis of RFB traits. To achieve this aim, 
whole-genome single nucleotide polymorphism (SNP) was identified, and used to construct a high-density 
genetic linkage map of ramie, using a genotyping-by-sequencing (GBS) technique and an F2 agamous line (FAL) 
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population that consisted of 134 lines derived from two ramie varieties, Qingdaye (QDY) and Zhongzhu 1 (ZZ1). 
Thereafter, QTL analysis for FY and three RSB traits was performed; and based on the QTL region sequences 
of two the parents, candidate gene for one of the BT QTLs (qBT4a) was further investigated. The present study 
provides a basis for understanding the genetic and molecular mechanisms of RSB development and will facilitate 
future breeding programs improving ramie fiber yield.

Results
GBS-based SNP identification. Over 329 million clean 125-bp reads were generated from the libraries of 
two parents and 134 F2 agamous lines (FALs) and were deposited in the NCBI-short read archive (SRA) database 
under accession number SRX2830696. Most of the sequence reads were uniquely aligned to the ramie genome, 
with an average mapping rate of 85.5% among 136 families (Table S1). From these reads, 489,057 sequence tags 
were generated, with depths of 9.11- to 17.26-fold (Table S1), and the sequence tags that aligned uniquely to the 
genome were used for genome-wide high-throughput SNP identification. A total of 197,353 unfiltered SNPs 
between two parents, QDY and ZZ1, were identified, and 34,870 exhibited the ‘aa × bb’ segregation pattern and 
were filtered further (Fig. S1), finally yielding 4338 high-quality SNPs.

High-density genetic map development. The 4338 high-quality SNPs formed 14 linkage groups, with 
total a length of 1942.9 cM and 2965 SNPs being used as bin markers, and constituted the first high-density 
genetic map of ramie (Table S2, Fig. 1). The individual linkage groups ranged from 98.3 to 237.3 cM in length, 
and the SNPs were evenly distributed in the genetic map, with 86–332 binned SNPs per linkage group, an average 
distance of 0.66 cM, and a maximum distance of 25.2 cM (Table S2). There were only 13 intervals with genetic 
distances of >10 cM (Table S2).

QTL mapping of FY and RSB traits. The FY and RSB traits of the two parent varieties (ZZ1 and QDY) 
were significantly different (Table 1). For example, ZZ1 possessed thick, heavy bark with a high RFB; whereas 
QDY had thin, light-weight bark and a relatively low RFB. Therefore, the bark from ZZ1 stems yielded more 
fiber than the bark from QDY stems. During both years, both high variation and transgressive segregation were 
observed for the four traits in the FAL population (Table 1). The heritability of BT, BW, RFB and FY were 72.8%, 

Figure 1. Genotyping-by-sequencing-based high-density genetic map of Qingdaye and Zhongzhu 1 ramie. The 
1942.9-cM map includes 4338 SNPs.
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74.3%, 75.6%, and 82.0%, respectively (Table 1). Significant positive correlations were observed among the four 
traits in the FAL population in the two environments (P < 0.01), except RFB and BT, and RFB and BW in 2015 
(Table 2).

The estimated LOD threshold (1000 permutations) indicated that the values for the four traits ranged from 
4.6 to 5.5 (Table 3). Based on these LOD threshold values, a total of five, two, four, and four QTLs were identified 
for BT, BW, RFB, and FY, respectively (Table 4; Fig. 2). Among five BT QTLs, all increased bark thickness by the 
ZZ1 alleles. For the BW, only one QTL was identified in 2015 and 2016, respectively; among these two BW QTLs, 
the qBW11 and qBW2 increased the weight by ZZ1 and QDY allele, respectively. There were one and three RFB 
QTLs detected in 2015 and 2016, respectively, and RFB was greater with ZZ1 alleles at the qRFB4a, qRFB4b, and 
qRFB13 loci and the QDY allele at the qRFB8 locus. In addition, a total of four FY QTLs were identified, two in 

Traits Heritability (%) Year Range Mean ± SD ZZ1 QDY

BT (mm) 72.8 2015 0.38–0.95 0.70 ± 0.10 0.94 0.72

2016 0.39–0.94 0.58 ± 0.08 0.76 0.60

BW (g) 74.3 2015 5.0–45.3 26.0 ± 8.5 38.3 21.0

2016 2.4–36.0 16.3 ± 3.9 28.9 17.5

RFB (%) 75.6 2015 8.0–17.7 12.2 ± 2.0 13.34 12.04

2016 9.8–19.9 14.3 ± 1.8 12.28 10.54

FY (g) 82.0 2015 0.40–6.00 3.17 ± 1.15 5.11 2.53

2016 0.24–3.87 1.91 ± 0.65 3.55 1.67

Table 1. Descriptive statistics of the traits for the parents and the FAL population.

BT BW FY RFB

BT 0.68* 0.65* 0.28*

BW 0.81* 0.93* 0.30*

FY 0.68* 0.90* 0.58*

RFB −0.05 0.07 0.46*

Table 2. The correlation among BT, BW, FY and RFB. *Represented the significant correlation at 1%, 
respectively; the lower and upper numbers of diagonal indicated the correlations among traits in FALs in 2015 
and 2016, respectively.

Traits BT BW RFB FY

2015 4.8 4.8 4.8 4.7

2016 5.5 4.6 4.7 4.8

Table 3. LOD thresholds determined by computing 1,000 permutations (P < 0.05).

Traits Year QTL LG LOD value 99%CI (cM) Add Var%

BT (mm) 2015 qBT4a 4 5.21 122.4–123.0 0.041 8.22

qBT4b 4 8.84 157.7–158.8 0.085 16.28

qBT5 5 6.06 52.0–56.7 0.016 6.61

qBT6 6 5.37 57.2–57.8 0.006 3.79

2016 qBT4c 4 7.53 102.7–105.6 0.092 23.98

BW (g) 2015 qBW11 11 6.04 53.0–54.1 6.26 32.78

2016 qBW2 2 6.90 74.3–75.9 −2.21 24.88

RFB (%) 2015 qRFB8 8 5.86 138.8–140.3 −1.09 6.77

2016 qRFB4a 4 11.25 85.3–85.7 1.33 12.92

qRFB4b 4 6.08 122.4–123.0 1.40 16.93

qRFB13 13 6.33 0.0–0.7 0.43 7.37

FY (g) 2015 qFY2 2 4.70 74.5–76.8 −0.301 8.33

qFY4a 4 5.13 78.6–80.2 0.349 8.60

qFY4b 4 6.24 102.7–104.1 0.352 9.10

qFY12 12 4.73 67.2–68.6 0.580 12.74

2016 qFY2 2 4.91 74.5–76.8 −0.328 9.72

qFY4b 4 5.16 102.7–104.1 0.238 8.281

Table 4. QTLs identified for four traits from ZZ1/QDY population in two years.
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either year, and yield was improved by the QDY allele at the qFY2 locus and by the ZZ1 alleles at the other three 
loci (qFY4a, qFY4b, and qFY12).

Candidate gene prediction for the qBT4a. The qBT4a was chosen for further candidate gene analysis. 
In case of a wave in the QTL location by statistical mapping, an enlarged 5.1-cM region (0.6-cM QTL interval 
and outer extending regions >2 cM from the bin1448 and bin1337 markers, respectively) that contained 614 kb 
genome sequence was used to identify the candidate gene of the qBT4a. Finally, 106 genes, including genes for 
a cellulose synthase (CesA; VIT_07s0005g04110.t01_D1), a glycosyltransferase (XP_010091051.1_D2), a MYB 
protein (evm.model.scaffold7373.133_D1), and a galactosyltransferase (XP_010091820.1_D1), were identified 
(Table S3). Because these proteins have been reported to play important roles in cellulose biosynthesis and sec-
ondary cell wall development in model species16, the four genes could be related to secondary cell wall develop-
ment and fiber biosynthesis, thereby influencing BT. Therefore, one of these four genes is likely the candidate gene 
of the qBT4a locus.

In order to further investigate the qBT4a locus, the cDNA sequences of the four candidate genes were iden-
tified in the two parent transcriptomes, which had been assembled previously17,18 (Table S4). No key mutations 
were observed in VIT_07s0005g04110.t01_D1, XP_010091051.1_D2, or XP_010091820.1_D1 (Table S4), which 
suggested that none of these three genes were related to the QTL. However, the ZZ1 allele of evm.model.scaf-
fold7373.133_D1 included a 760-bp insertion (Fig. 3A), as well as 14 SNPs that caused five amino acid substi-
tutions. These sequence differences were validated using Sanger sequencing. Furthermore, the gene comprises 
seven exons (Fig. 3A), and the QDY allele encodes a putative MYB transcription factor of 490 amino acids in 
length (Fig. 3B). In the ZZ1 allele, the 760-bp insertion is found in the sixth exon, and the first codon in the 
insertion is a termination codon (TGA; Fig. 3A) that results in a 348-amino acid truncation in the C-terminus 
of the predicted protein (Fig. 3B), thereby eliminating part of the MYB domain (Fig. S2). Because MYB proteins 
have important roles in regulating cellulose biosynthesis16, the truncation of the MYB domain in the putative ZZ1 
protein is likely to change its function in fiber biosynthesis. In other words, evm.model.scaffold7373.133_D1 is a 
likely candidate gene for the qBT4a locus.

To validate our conclusion, cDNA sequence of evm.model.scaffold7373.133_D1 in four varieties, including 
two thick-bark (Dazhuhuangbaima and Chuanzhu 8) and two thin-bark varieties (Qingyezhuma and Huazhu 
5; Table S5), was extracted from their transcriptomes19–21, and was further compared. Although there was not 
large-fragment insertion observed in four varieties, many nucleotide substitutions in the cDNA sequence were 
found, resulting in 4, 8, 7, and 8 amino acids changed in the predicted protein of Qingyezhuma, Huazhu 5, 
Chuanzhu 8, and Dazhuhuangbaima, respectively, by comparing with the protein of QDY (Fig. S3). Analyzing 

Figure 2. Quantitative trait loci (QTLs) for four ramie stem bark traits. The red line indicates the genome-wide 
significance LOD threshold, and the red arrow indicates the LOD peak of the QTLs.
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the putative protein sequence among these four varieties and two parents, an identical amino acids sequence in 
MYB domain was observed in three thin-bark varieties (Qingyezhuma, Huazhu 5, and QDY). However, in two 
thick-bark varieties Dazhuhuangbaima and Chuanzhu 8, there is a change of amino acids (Tyr/Cys) found in 
the MYB domain (Fig. S3), which possibly have an important influence on the protein function. Therefore, in 
three thick-bark varieties, either a truncation or a change of amino acids in the MYB domain was observed in the 
putative protein. This results further indicated that evm.model.scaffold7373.133_D1 is a likely candidate gene of 
qBT4a.

Discussion
First high-density genetic map of ramie. The construction of useful genetic linkage maps and identifi-
cation of agronomic trait-related QTLs will facilitate future genetic and breeding studies in ramie. However, until 
now, only a single low-resolution genetic linkage map, based on SSR markers, has been available2, and the result-
ing low number of mapped QTLs and large intervals made it difficult to use these QTLs for cloning or breeding 
programs. Compared with SSR markers, SNPs are more abundant in plant genomes, and their frequencies in 
plants are one in every 100–300 bp22. Their ubiquity makes them valuable for genetic mapping, as well, especially 
for generating high-density linkage maps. The recent origin and development of next generation sequencing 
(NGS) technologies have provided a powerful and cost-effective tool for high-throughput sequence determi-
nation and SNP discovery, and as a result, large numbers of high-density linkage maps have been successfully 
developed for many organisms, including non-model species23–28. In the present study, we developed a SNP-based 
genetic linkage map using GBS technology. Although the total length of this map (1942.9 cM) was shorter than 
the previously reported SSR-based map (2265.1 cM), the SNP-based map included a far greater number of mark-
ers (n = 4338) than the previous SSR-based map (n = 142), thereby reducing the average genetic distance between 
neighboring markers from 17.1 to 0.66 cM. Accordingly, the high-quality SNP-based map had a greater resolution 
than the previous one and will serve as a unique tool for molecular-assisted breeding and genomic studies that 
will contribute to the improvement of ramie.

Figure 3. Allele sequences of evm.model.scaffold7373.133_D1 from Qingdaye and Zhongzhu 1 ramie. (A) 
Zhongzhu 1 allele, including a 760-bp insertion. The rectangle and line represented the exon and intron, 
respectively, and the black and white rectangles indicate the coding sequence (CDS) and untranslated region 
(UTR), respectively. (B) Clustal X alignment of Qingdaye and Zhongzhu 1 protein sequences.
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QTL clusters for RSB traits and FY. There were only 6 RSB QTLs reported in previous study2. In this 
study, the RSB traits were systemically dissected, and a total of 15 QTLs identified. Of them, 6 QTLs constituted 
3 clusters, i.e., qBW2 and qFY2 formed a cluster, qBT4c and qFY4b made up of another cluster, whereas qBT4a 
and qRFB4b built up another one. The presence of many QTL clusters indicated that these four traits had a close 
correlation. Among these three QTL clusters, the cluster constituted by qBW2 and qFY2 increased traits by QDY 
alleles, whereas the other two improved the phenotypes by ZZ1 alleles. Therefore, these QTL clusters can be easily 
applied in ramie improvement by marker-assisted selection.

Identification of a qBT4a candidate gene. Sequence comparison of the qBT4a region of the two parents 
revealed a putative MYB-like gene (evm.model.scaffold7373.133_D1), the ZZ1 allele of which included a 760-bp 
insertion that causes premature termination. The textile fiber from ramie consists of bast cell walls, so the for-
mation and thickening of secondary cellular walls are important for fiber biosynthesis. Furthermore, secondary 
wall biosynthesis is regulated by a transcriptional network that includes NAC and MYB master switches and their 
downstream transcription factors29. Indeed, at least 16 MYB transcription factors are reportedly involved in reg-
ulating secondary wall biosynthesis in Arabidopsis16. Among them, MYB46 and MYB83 are regulated by the NAC 
protein and function as master switches that activate a battery of downstream transcription factors, including a 
large number of other MYB genes30,31. Therefore, MYB genes clearly play important roles in secondary wall bio-
synthesis, and because secondary wall development contributes to fiber biosynthesis in ramie stem bark, thereby 
improving stem bark thickness, and because of the large fragment-insertion identified in the MYB gene of the 
ZZ1 allele of the qBT4a region, we deduce that the MYB gene evm.model.scaffold7373.133_D1 is a candidate gene 
for the qBT4a locus. We also compared its putative protein sequences in three thick-bark and three thin-bark 
varieties, and found that an identical amino acids sequence in MYB domain was observed in three thin-bark 
varieties, whereas in three thick-bark varieties, either a truncation or a change of amino acids in the MYB domain 
was observed, which further validate our deduction.

Materials and Methods
Experimental population and phenotypic measurements. An FAL population that consisted of 134 
lines derived from two ramie varieties, QDY and ZZ1, was developed using a previously described strategy2. The 
134 FALs and the two parents were planted on the experimental farm of the Institute of Bast Fiber Crops, Chinese 
Academy of Agricultural Sciences, Changsha, China, in 2014. Field experiments were performed using a rand-
omized complete block design with two replicates. For each FAL, 10 cuttage seedlings were planted into a two-row 
plot, with a within-row distance of 70 cm between plants and a between-row distance of 45 cm. Boundary effect 
was eliminated by planting with two-row ramie in the area around the population. In June of 2015 and 2016, 
when more than two-thirds leaves had shattered, the ramie was harvested, and the traits of RSB were investigated. 
The bark was ripped from the stems and weighed, after which BT was measured using a vernier caliper and bark 
from the middle of the stems, and BW was calculated as the mean bark weight per stem. Fibers were harvested 
from stem bark of individual plants and dried, and FY was calculated as the mean weight of fiber per stem. 
Finally, the RFB was calculated for each FAL as the ratio of FY to BW. Additionally, four varieties (Chuanzhu 
8, Dazhuhuangbaima, Huazhu 5, and Qingyezhuma) from the National Ramie Germplasm Resource Garden 
located in the Wangcheng experimental farm of the Institute of Bast Fiber Crops were used for investigating the 
BT trait in 2017.

DNA and RNA extraction. Young leaf samples were individually collected from the 134 FALs and two 
parents for DNA extraction, and stem bark was collected from 40-day-old ZZ1 and QDY seedlings for RNA 
extraction. All the samples were immediately frozen in liquid nitrogen and preserved at −80 °C until extraction. 
The total genomic DNA and total RNA were extracted using a DNA extraction kit (Tiangen, Beijing, China) and 
E.Z.N.A. Plant RNA Kit (OMEGA Bio-Tek, USA), respectively, according to the manufacturers’ instructions.

High-throughput genotyping of FAL population. Restriction enzyme selection for the GBS was per-
formed by predicting fragment sizes that would result from various enzyme combinations, according to the pre-
viously described ZZ1 genome, and eventually, the combination of MseI and EcorI was selected for constructing 
the GBS libraries. GBS libraries were constructed for each line by incubating 0.1–1 μg genomic DNA at 37 °C 
with MseI (New England Biolabs, i.e., NEB, Ipswich, MA, USA), T4 DNA ligase (NEB), ATP (NEB), and MseI 
Y adapter N, which contained barcodes, and then heat-inactivating the reaction mixtures at 65 °C. EcoRI (NEB) 
was then added to the MseI digests and incubated at 37 °C. Thereafter, the fragments of each sample were purified 
using Agencourt AMPure XP (Beckman) and subject to PCR amplification using Phusion Master Mix (NEB), 
universal primer, and index primer. The resulting PCR products of each sample were purified using Agencourt 
AMPure XP (Beckman), pooled, and visualized on a 2% agarose gel, and fragments of 400–450 bp (including 
indexes and adaptors) were excised from the gel and purified using a gel extraction kit (QIAGEN, Valencia, CA, 
USA). The purified fragments were cleaned further using Agencourt AMPure XP (Beckman) prior to sequencing. 
Finally, paired-end sequencing was performed on the selected tags by Novogene Bioinformatics Institute (Beijing, 
China) using an Illumina 2500 platform (Illumina, USA).

Sequence data grouping. Sequence data from each FAL were sorted from the raw reads using their bar-
codes. To ensure that the reads were reliable, the raw reads were filtered using three stringent filtering criteria that 
removed: (1) reads with ≥10% unidentified nucleotides, (2) reads with >50% of bases having Phred quality scores 
of <5, and (3) reads with >10 nucleotides aligned to the adapter, allowing ≤10% mismatches. The resulting clean, 
filtered reads from each individual were aligned to the ramie genome (genome accession ID: NHTU00000000) 
using the Burrows-Wheeler Aligner (BWA) software32 (settings: mem –t − 4 –k 32 –MR), and the alignment 
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files were converted to bam files using SAMtools33 (settings: –bS –t). If multiple read pairs had identical external 
coordinates, only the pair with the highest mapping quality was retained.

SNP identification. SNP identification was performed for the two parents and 134 FALs using SAMtools33. 
Because the two parents were heterozygous, the polymorphic markers between them were classified into eight 
segregation patterns (ef × eg, nn × np, ab × cc, aa × bb, ab × cd, lm × ll, hk × hk, and cc × ab)23,28, according to 
the CP model in JoinMap 4.034. The numbers of SNPs, transitions, and transversions were also counted, and then, 
a Perl script was used to filter out the SNPs with more than two genotypes, retaining only polymorphic markers 
with the ‘aa × bb’ segregation pattern.

Linkage map construction. Markers that contained abnormal bases or exhibited significantly distorted 
segregation (P < 0.001) or non-integrity (missing data in > 30% progenies) were filtered out using JoinMap 4.032. 
The regression algorithm, three times circulation sequence, and Kosambi mapping function were used for marker 
distance calculation35, and the linkage map was drawn using Perl SVG.

QTL and heritability analysis. QTLs for FY and the three RSB traits in two environments were detected 
using composite interval mapping with Windows QTL CARTOGRAPHER2.536. Window size was set at 10 cM, 
and forward stepwise regression was used to identify significant markers as cofactors. The experiment-wise LOD 
threshold significance level was determined by computing 1000 permutations (P < 0.05) using a permutation 
test program in MapQTL37. These permutations can account for non-normality in marker distribution and trait 
values. The heritability for four traits was estimated in the population according to the description of Liu et al.2.

cDNA sequencing and analysis. The RNAs of the two parents were treated with DNase I (Fermentas, 
Canada) and subsequently used as templates to reverse-transcribe first-strand cDNAs using M-MuLV Reverse 
Transcriptase (Fermentas), according to the manufacturer’s instructions. For each sample, 2-μg total RNA was 
reverse-transcribed in 20 μL reactions. A standard PCR protocol was then performed to amplify evm.model.scaf-
fold7373.133_D1 cDNA from the two parents, using gene-specific primers (Table S6). For sequencing, 8 μL PCR 
product corresponding to each parent was digested using 5 U ExoI (NEB) and 0.13 U shrimp alkaline phos-
phatase (Fermentas) and sequenced using a 3730xl DNA Analyzer (ABI, USA). Sequence contigs were assembled 
using SEQUENCHER 4.1.2 (Gene Codes Co.), and the resulting ZZ1 and QDY evm.model.scaffold7373.133_D1 
cDNA sequences were submitted to GeneBank with the accession numbers MF100996 and MF100997, respec-
tively. DNA and protein sequences were aligned using CLUSTAL × 2.138, and the intron and exon were identified 
by comparing the cDNA with the corresponding genomic sequence (Supplementary File S1). The conserved 
protein-encoding domain was identified using the NCBI conserved domain database39.
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