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Estimation of the age of human 
bloodstains under the simulated 
indoor and outdoor crime 
scene conditions by ATR-FTIR 
spectroscopy
Hancheng Lin1,2, Yinming Zhang1, Qi Wang1, Bing Li1, Ping Huang2 & Zhenyuan Wang1

Estimation of the age of human bloodstains is of great importance in forensic practices, but it is a 
challenging task because of the lack of a well-accepted, reliable, and established method. Here, the 
attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique combined with advanced 
chemometric methods was utilized to determine the age of indoor and outdoor bloodstains up to 107 
days. The bloodstain storage conditions mimicked crime scene scenarios as closely as possible. Two 
partial least squares regression models—indoor and outdoor models with 7–85 days—exhibited good 
performance for external validation, with low values of predictive root mean squared error (5.83 and 
4.77) and high R2 values (0.94 and 0.96) and residual predictive deviation (4.08 and 5.14), respectively. 
Two partial least squares–discriminant analysis classification models were built and demonstrated 
excellent distinction between fresh (age ≤1 d) and older (age >1 d) bloodstains, which is highly 
valuable for forensic investigations. These findings demonstrate that ATR-FTIR spectroscopy coupled 
with advanced chemometric methods can be employed as a rapid and non-destructive tool for age 
estimation of bloodstains in real-world forensic investigation.

Bloodstain is one of the most frequently encountered biological evidences at crime scenes1, especially those for 
violent crimes. Accurate estimation of the age of bloodstains can be a tremendous help for forensic investigators 
in the reconstruction of the event timeline, determination of the time of death or injury of the victim, and reduc-
tion of the pool of suspects2.

Numerous methods have been investigated to determine the age of bloodstains, such as use of oxygen elec-
trodes3, electron paramagnetic resonance (EPR)4, high-performance liquid chromatography (HPLC)5 and RNA 
degradation6,7. Unfortunately, these approaches are not robust, limiting their forensic application. In recent years, 
Agudelo et al.8,9 investigated human serum for determining the age of bloodstains using bioaffinity-based and 
biocatalytic assays. However, this method was inappropriate for forensic practice because it in actual cases it is 
difficult to extract an adequate amount of serum from dried bloodstains. Additionally, several novel techniques 
have been explored to determine the age of bloodstains, including fluorescence lifetime measurements10,11, atomic 
force microscopy12 and the use of smartphones for quantifiable colour change correlations13.

Vibrational spectroscopy techniques are becoming more and more popular in forensic science because of their 
non-destructive, rapid, quantitative, and confirmatory features14. The results of several noteworthy studies (2011 
and later) investigating the use of spectroscopic methods to estimate bloodstain age are summarized in Table 1. 
These methods showed an ability to determine bloodstain age, especially when combined with chemometric 
methods. However, most of the studies were conducted using simulated bloodstain samples under ideal labora-
tory conditions. In real-world case work, varying ambient conditions will affect the process of bloodstain dena-
turation and aggregation and ultimately contribute to the complexity and difficulty of bloodstain age estimation. 
In the present work, an approach combining ATR-FTIR spectroscopy with chemometric methods was established 
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for determining the age of bloodstains up to 107 days. The bloodstain samples were created and stored in indoor 
and outdoor environments, and the storage conditions closely simulated real crime scenes.

Chemometric methods are capable of extracting useful information from complex spectral datasets to yield 
more comprehensive and accurate results15. The development of reliable and robust chemometric framework to 
handle analytical data has been identified as an important step in the biological spectroscopy analyses16–18. In 
our study, partial least square regression (PLSR) and partial least square -discrimination analysis (PLS-DA) were 
employed to analyse blood spectral dataset, since these two PLS approaches have experienced a broad acceptance 
in the spectral analysis with their powerful ability of dealing with noisy and collinear spectral variables. A good 
example of PLS approaches in clinical applications is outlined in the study by Khoshmanesh et al.19, in which, 
the aim was to detect early-stage malaria parasites in infected erythrocytes. In the field of forensic science, these 
two methods have also been used, such as in the identification of species’ blood20,21 and bone22, investigation of 
burned bones23, and profiling of cocaine in seizures24. In our laboratory, ATR-FTIR in combination with PLSR 
has proven to be a good tool for the characterization of post-mortem biochemical changes in rabbit plasma25,26. 
However, one main problem of PLS approaches is over-fitting. To tackle this problem in our study, the con-
structed PLSR and PLS-DA models based on the resulting spectral dataset were validated with two independent 
sample datasets, both of which originated from two volunteers whose samples were separate from those used to 
develop the models.

Materials and Methods
Sample preparation. This study was conducted in accordance with the guidelines of the National Institute 
of Health, China. The protocol was approved by the Ethical Committee of Xi’an Jiaotong University and informed 
written consent was obtained from all blood donors. Fresh whole-blood samples (without anticoagulants) were 
obtained from four healthy volunteers (two males and two females) and deposited immediately onto glass slides 
to form bloodstains. Nineteen time points were set: 0.25, 1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 19, 24, 30, 40, 50, 65, 85, and 
107 d. For each time point, 6 bloodstain samples per donor were prepared, of which 3 samples were stored in an 
indoor environment and 3 in an outdoor environment. It should be emphasized that the indoor condition was 
not specifically controlled and the samples were exposed to dim sunlight during the day and no light at night. 
Bloodstain samples placed in the outdoor environment were exposed to the light, heat, and humidity of the out-
door environment but not rain. A total of 556 bloodstain samples were ultimately collected, encompassing an 
indoor training group of 228 samples and an outdoor training group of 228 samples. These two groups were used 
for chemometric model constructions. Additionally, according to the aforementioned method, two bloodstain 
groups (indoor and outdoor groups; each group contained 114 samples with bloodstain age ranging from 0.25 to 
107 d) from two other healthy individuals (one male and one female) were prepared. These two groups, called test 
groups, were employed to validate the constructed chemometric models.

Spectra collection and data preprocessing. Spectral acquisition was performed using a Nicolet iS 50 
FTIR Spectrometer (Thermo Fisher Scientific, Waltham, WA, USA) equipped with an ATR accessory (Thermo 
Fisher Scientific, Waltham, WA, USA) containing a diamond crystal face approximately 2 mm in diameter. Before 
each measurement, the bloodstain sample was collected in an Eppendorf tube and mixed with 10 µL of normal 
saline uniformly. Subsequently, 1 µL of sample was deposited on the ATR crystal face and dried with an air dryer 
for approximately 4 min. The spectra were recorded in the range of 900–1800 cm−1 at a resolution of 4 cm−1 with 
32 scans. The background spectra were subtracted automatically from the sample spectra. For each sample, 3 
replicated spectra were collected and then averaged to form a single spectrum. The spectra were recorded with 
OMNIC software version 9.2 (Thermo Fisher Scientific, Waltham, WA, USA).

Next, baseline correction, unit vector normalization and multiplicative scatter correction (MSC) preprocess-
ing methods were applied to the 1800-900 cm−1 region to eliminate baseline offsets, remove artefacts related to the 
analytical techniques and samples under study, and reduce the effects of light scattering27. The data preprocessing 
was carried out by Unscrambler 9.7 (CAMO software, Oslo, Norway). The original and pre-processed raw spectra 
are shown in the Supporting Information.

Multivariable statistical analysis. PLSR is a multivariate regression method that can decompose the 
X-variable with the guidance of the Y-variable and find latent variables (LVs), which are linear combinations 

Year Methods Storage environment Chemometrics
Range of 
age

Error of age 
prediction Ref

2011 Reflectance spectroscopy laboratory conditions — 0–60 d — 38

2011 Reflectance spectroscopy laboratory conditions LDA 1–19 d ±0.71 d 46

2012 Hyperspectral imaging simulated crime scene — 0.1–200 d 13.4% of the actual 
age 39

2012 Near infrared spectroscopy laboratory conditions PLSR 0–28 d 8.9% of the actual 
age 47

2013 Hyperspectral imaging laboratory conditions LDA 0–7, 
0–30 d

±0.27 and ± 1.17 d, 
respectively 48

2016 Raman spectroscopy laboratory conditions PLSR 1–168 h ±2.19 h 41

2017 Visible reflectance spectroscopy calorstats PCA-SVMR 2 h–45 d ±42.79 h 42

Table 1. Summary of spectroscopy techniques proposed for the age determination of bloodstains.
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of the original variables to maximize the co-variation between X and Y during regression28. In this work, the 
X-variable corresponded to the matrix of spectral intensity and the responding Y-variable was associated with 
age values. PLS-DA is a classification method based on the PLS approach in which the Y-variable is chosen to 
represent the class membership29. PLSR and PLS-DA were established using Matlab software version R2014a 
(MathWorks, Natick, MA, USA) equipped with PLS Toolbox 8.1.1 (Eigenvector Research, Manson, WA, USA).

To evaluate the stability and predictive ability of PLSR and PLS-DA models, both internal cross-validation 
(CV) and external validation were performed30. In our study, the CV was performed using 10 folds with the 
Venetian blinds procedure. External validation was performed using constructed models to predict the test 
bloodstain samples that were stored in the same environment as the training bloodstain samples. Another test, 
called the “expanding test” (actually, this test is another type of external validation), was performed using con-
structed models to predict the test samples whose storage environment differed from that of the training samples. 
The purpose of the expanding test was to explore the predictive power of the models in estimating bloodstain age 
under multiple environmental conditions.

Root mean square error (RMSE), including calibrated RMSE (RMSEC), cross-validated RMSE (RMSECV) 
and predicted RMSE (RMSEP), and R2 and residual predictive deviation (RPD), as the three main parameters of 
the model’s calibrated and predicted results, were used to evaluate the regression model reliabilities. High values 
of R2 and RPD and a low value of RMSE demonstrate a well-established PLS regression model. Notably, an RPD 
value above 3 indicates that the model is very reliable for prediction purposes31,32.

Data availability. All data generated or analysed during this study are available from the corresponding 
author on reasonable request.

Results and Discussion
In this work, the studied spectral range of 1800-900 cm−1, also called the “biofingerprint region”, offers the most 
information on the chemical compounds of biological samples33, including lipid esters (1800–1700 cm−1)34; 
amide I, II and III proteins (1700–1500 cm−1, 1350–1200 cm−1)34,35; and nucleic acids and carbohydrates (1200–
900 cm−1)36. As for bloodstains, the corresponding infrared spectra provide detailed information regarding hae-
moglobin, which makes up 97% of the dry content of blood2.

Figure 1a shows a comparison of the average spectra for the outdoor bloodstains with seven selected ages. 
The assignments of the main observed bands are tabulated in Table 2. As can be seen in Fig. 1b, the highly varied 
vibrational bands were at 1649 (corresponding to the α-helix structures of haemoglobin)37 and 1533 cm−1 (repre-
senting amide II). The average absorbance intensity at 1649 cm−1 decreased at first, reached the minimum value at 
age = 19 d, and increased slowly thereafter. However, the average absorbance intensity at 1533 cm−1 did not show 
a decreasing trend until 19 days after deposition. These findings suggest that the secondary structures of haemo-
globin changed constantly as age increased, and the most probable cause was associated with the kinetic efforts 
of haemoglobin (Hb → HbO2 → met-Hb → hemichrome) during bloodstain aging38–40. When fresh blood was 
exposed to air, autoxidation of haemoglobin would occur immediately, followed by denaturation and aggregation 

Figure 1. (a) FTIR averaged spectra of outdoor bloodstains at different time points in the range of 1800-
900 cm−1. (b) The trends of the intensities of the peaks at 1649 and 1533 cm−1 for all spectra over time with 
polynomial curve fit lines (model = 4).
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as time progressed41. These findings also helped to confirm that the process of bloodstain degradation started 
immediately and can be detected in a few hours and over a longer period of time.

Our results also demonstrated the capacity of the ATR-FTIR technique for detecting changes in minor com-
ponents such as blood glucose (probable bands around 931, 972, and 1103 cm−1), except the dominant spectral 
changes of haemoglobin and its derivative components of aging bloodstains. However, it is impracticable to esti-
mate the age of a bloodstain with the selection of one or several absorption peaks by visualizing intensity changes 
because of the overlapping spectral features of bloodstain samples. Hence, in our next step, multivariate chemom-
etric methods, which are powerful in the extraction and analyses of information-rich spectroscopic signals, were 
utilized to construct the model for bloodstain age estimation.

Age delimitation by the PLSR model. PLS regression analysis was performed with 12 and 14 LVs, to 
deliver satisfactory prediction performances and to build models for age estimation of indoor and outdoor blood-
stains over the entire age period (0.25–107 d). Figure 2a and b illustrate the calibration results of the indoor and 
outdoor PLSR models, both of which exhibited good predictive ability as reflected by the R2 of 0.96 and 0.98 and 
RMSEC of 5.97 and 4.73 d, respectively.

Internal cross-validation, as a routine method to determine the number of LVs, was also employed to evaluate 
the robustness of the calibration model. A stable prediction PLSR model is expected to have a high R2 value and a 
low RMSECV value while achieving prediction performance comparable to that of the calibrated model.

The cross-validated results are presented in Table 3. The R2 and RMSECV values were 0.94 and 7.51, respec-
tively, for the indoor regression model and 0.96 and 6.31 for the outdoor regression model. Although the 
RMSECV values were slightly higher than those of RMSEC, the comparable values of R2 demonstrated a good 
overall fit for the internal cross-validations; thus, our two PLSR models can be considered robust and reliable.

Due to the limited scale of training bloodstains and high intra-species biodiversity, external validation was 
subsequently conducted to assess the models’ predictive power using bloodstain samples from two other donors 
(these donors were outside the training dataset). The external validation performances of the two PLSR models 
are summarized in Table 3. The high values of RPD and similar values of RMSE and R2 of the external validations 
compared to those of the cross-validations indicated that our PLSR models could be considered very reliable 
for estimating bloodstain age under the same environmental conditions. Expanding tests were also performed 
to assess how well our established PLSR models predicted the age of bloodstains under multiple environmental 
conditions. However, the higher RMSEP values and poorer values of RPD and R2 (see Table 3) indicated the unre-
liability of the established models to predict bloodstain age under various environmental conditions.

In the ideal linear regression with regard to Fig. 2, all spectra (symbols) should lie directly on the line of best 
fit (the green line), and the minimal spread should be within the symbols for each age point. However, it was 
observed by visualization that the bloodstain spectra in the “fresh” time period (0.25-7 d in indoor and outdoor 
PLSR models) exhibited relatively larger discrepancies than the spectral points at age onwards. In particular, the 
discrepancies were even larger at the 0.25-d and 1-d time points in the indoor PLSR model. It was also observed 
that the spectral points at 107 d were almost off the fitting line in the indoor PLSR model. This result indicated 
that the indoor PLSR model was not appropriate for estimating the age of bloodstains that were approaching 107 
days old.

Given the great forensic importance of timely estimation of bloodstain age and the PLSR models’ limited 
capacity for estimating the age of older bloodstains, in the next step we reconstructed indoor and outdoor PLSR 
models with split age periods (one age period from 0.25 to 7 days and one from 7 to 85 days before performing the 
external validation and expanding tests. The age period of the test samples was consistent with that of the training 
samples for calibration in this study. The calibrated and validated results of the models are presented in Fig. 3 and 
Table 3, respectively. As can be observed, the calibration and internal cross-validation statistical parameters for 
the outdoor model in the 7-85-d time period were slightly lower than those for the outdoor model in the entire 
time period. Nevertheless, the much better validated results—higher RPD value (5.14) and lower RMSEP value 
(4.77)—and the smaller number of LVs (10) demonstrated that our model was simple, robust and very reliable 

Frequency (cm–1) Assignment

~931 Symmetric C-O stretching from 
carbohydrates

~972 Symmetric C-O stretching from 
carbohydrates

~1088 Symmetric vibration of PO2
−

~1103 Symmetric C-O stretching from 
carbohydrates

~1165 C-O vibration

~1238 Asymmetric vibration of PO2
−

~1302 Amide III band

~1392 Symmetric vibration of COO− of fatty acids 
and polysaccharides

~1452 C-H bending from CH3

~1533 Amide II band

~1649 α-Helical structures of proteins, amide I

Table 2. ATR FT-IR peak component assignment of bloodstains.
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for prediction purposes. Better performance was also achieved with the indoor model in the 7- to 85-d time 
period; lower values of RMSEC (4.96), RMSECV (5.88), and RMSEP (5.83) indicated a higher accuracy of age 
predictions.

Our study also revealed that the indoor and outdoor PLSR models in the 0.25- to 7-d period were not appro-
priate for prediction of bloodstain age as reflected by the lower values of RPD (1.90 and 2.09, respectively). This 
apparent uncertainty in the early stage of the models was similar to that with the results published by Sun et al.42, 
who employed visible reflectance spectroscopy coupled with SVM to determine bloodstain age.

A possible explanation for the early-stage uncertainty is associated with the reaction kinetics of haemoglobin. 
According to the results obtained by Tsuruga et al.43, the autoxidation process of HbO2 can be divided into an 
initial fast decay and final slow decay. In one study by Bremmer et al.40, the initial fast decay lasted a few hours and 
then transited to the slow decay. In another study by Bremmer et al.38, the slow decay probably lasted ten days and 
entered into a slower decay phase subsequently. Additionally, the study results of the Bremmer research group 
demonstrated that oxidation rates of HbO2 are strongly temperature-dependent and that the transition of met-Hb 
into hemichrome is strongly humidity-dependent40. It is conceivable that the fluctuating temperature and humid-
ity in both the indoor and outdoor environments where the bloodstains were stored resulted in the instability of 
the autoxidation process of HbO2 and increased the complexity of the haemoglobin reaction kinetics in the 0.25-
7-d period, which was probably corresponding to the early phase of slow decay. As a consequence, the variety 
and relative quantity of secondary structures of haemoglobin and its derivatives changed rapidly and irregularly, 

Figure 2. PLSR plots for (a) indoor and (b) outdoor bloodstain samples in the 0.25- to 107-d period showing 
the calibrated age predictions versus the actual age.

Time since 
deposition

Cross-validation External validation Expanding test

RMSECV R2 RMSEP R2 RPD RMSEP R2 RPD

Indoor model

  0.25–7 d 1.20 0.72 1.18 0.72 1.90 1.53 0.53 1.19

  7–85 d 5.88 0.94 5.83 0.94 4.08 12.93 0.71 1.73

  0.25–107 d 7.51 0.94 7.24 0.94 4.20 13.34 0.80 2.24

Outdoor model

  0.25–7 d 0.91 0.84 1.10 0.76 2.09 2.15 0.08 0.99

  7–85 d 6.35 0.93 4.77 0.96 5.14 19.99 0.31 0.70

  0.25–107 d 6.31 0.96 6.43 0.95 4.42 23.61 0.38 0.77

Table 3. The validation results of PLSR models in the three time periods.
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which in turn led to a relatively trendless variation of the corresponding spectral features (mainly amide regions; 
see Fig. 1) and resulted in a relatively large variation in the age prediction of bloodstains in the early time period 
(0.25-7 d). Additionally, the unreliability of all four reconstructed models (presented in Table 3), as well as that 
of the two previous PLSR models, in predicting bloodstain age under different environments in the entire time 
period showed that the contribution of environmental factors to the degradation of bloodstains was large.

Distinguishing between fresh and older bloodstains via PLS-DA. Two binary PLS-DA classification 
models (indoor and outdoor models) were developed using spectra originating from 228 indoor training samples 
and 228 outdoor training samples. Each spectrum was classified as either a fresh (age ≤ 1 d) or older (age > 1 d) 
bloodstain. The models were built with 8 and 9 LVs, respectively—the minimum numbers of LVs that delivered 
satisfactory classification. As seen from Fig. 4a and b, both models demonstrated good separation between these 
two classes. All the spectra belonging to the fresh bloodstains were classified as the fresh-bloodstain class, and 
spectra for only two indoor older bloodstains and four outdoor older bloodstains were misclassified in their 
respective model. The accuracies of the models were 0.99 and 0.98, respectively.

Receiver operating characteristic (ROC) analyses44 were conducted to evaluate the discriminatory power of 
our PLS-DA classification models. The ROC curve was plotted as a function of sensitivity versus 1-specificity 
(see Fig. 4c and d). The area under the ROC curve (AUC)44 was calculated to assess how well the classification 
model divided the samples to the positive class. AUC has values in the interval [0, 1], where a value of 0.5 means 
a random classification and 1 means perfect performance. For our two models developed to differentiate between 
fresh and older bloodstains under indoor and outdoor environments, the AUC values of ROC curves were 1 and 
0.9996, respectively, which confirmed the classification capabilities of the models. Validations were also per-
formed to evaluate the reliability and classification ability of the classification models in three different manners. 
The validated results are summarized in Table 4.

Classification performances of internal cross-validation and external validation were as perfect as that of the 
calibrated PLS-DA models. The classification parameters such as accuracy rate, class sensitivity and specificity 
were close to 1, similar to those obtained in the calibrated models, indicating that these two calibrated PLS-DA 
models were robust, reliable and well-fitted for classification purposes. The expanding test was used to attest the 

Figure 3. PLSR plots for indoor bloodstain samples in the (a) 0.25- to 7-d and (b) 7- to 85-d periods and 
outdoor bloodstain samples in the (c) 0.25- to 7-d and (d) 7- to 85-d periods showing the calibrated age 
predictions versus the actual age.
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ability of each PLS-DA model to discriminate between fresh and older bloodstains in different environments. 
With regard to discriminating fresh bloodstains, the outdoor classification model showed better performance 
with a sensitivity value of 0.92 (only one fresh bloodstain from the indoor environment was misclassified) com-
pared with the indoor classification model for classifying outdoor fresh bloodstains (the sensitivity value was 
only 0.25). The characteristics of the PLS-DA classification models, as well as the aforementioned PLSR models, 
were defined by each LV’s loading variable, which contained numerous peaks throughout the spectral “fingerprint 
region” (1800-900 cm−1). In other words, spectral information related to all chemical components of a bloodstain 
during aging contributed to the constructions of the models. This was in accordance with the degradation of 
bloodstains, which incorporates oxidation of haemoglobin, RNA degradation, and degradation of serum proteins 

Figure 4. (a) Prediction scores of the indoor training dataset using the indoor PLS-DA model. (b) Prediction 
scores of the outdoor training dataset using the outdoor PLS-DA model. The red dotted line represents the 
default classification threshold. ROC curves with AUC for fresh and older bloodstain classes in the (c) indoor 
and (d) outdoor PLS-DA classification models. Random choice is denoted by the grey diagonal line.

Accuracy

Fresh bloodstain (age ≤ 1 d) Older bloodstain (age > 1 d)

Sensitivity Specificity Sensitivity Specificity

Indoor model

Cross-validation 0.99 0.99 1 1 0.99

External validation 0.99 1 0.99 0.99 1

Expanding test 0.92 0.25 1 1 0.25

Outdoor model

Cross-validation 0.96 0.96 0.96 0.96 0.96

External validation 0.99 1 0.99 0.99 1

Expanding test 0.85 0.92 0.84 0.84 0.92

Table 4. PLS-DA classification parameters obtained in the cross-validation, external validation and expanding 
tests.
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of blood plasma and other blood components2. Therefore, this is one feature of our approach that can easily probe 
the spectroscopic statistical differentiation of the chemical components of bloodstain samples without knowing 
the specific components.

In conclusion, ATR-FTIR spectroscopy is rapid, easy to use, and non-destructive—properties that are favour-
able in forensic practice. Its application in bloodstain identification and species determination has been reported 
previously21,45. Nevertheless, to the best of our knowledge, this is the first study demonstrating that ATR-FTIR 
spectroscopy can be a valuable tool for estimating bloodstain age in mimicked indoor and outdoor crime scenes. 
Chemometric analysis proved to be powerful for extracting and analysing the universal biospectral information 
of bloodstains with aging and establishing prediction models for age estimation.

Notably, our approach was more useful for longer-term (7-85 d) estimation of the age of bloodstains regard-
less of whether they were in an indoor or outdoor environment. The rough performance of our PLSR models in 
predicting the age of bloodstains in the 0.25- to 7-d time period was partly compensated for by two PLS-DA clas-
sification models, which could easily discriminate fresh (age ≤ 1 d) bloodstains from older (age > 1 d) bloodstains 
in both indoor and outdoor environments. This discrimination was a key finding of our study, and it is highly 
desirable because it can be applied to forensic practices to help reconstruct a more realistic timeline of events. 
Nevertheless, prior to applying our approach in real forensic practice, more work needs to be done. Expanding 
the number of donors, determining the effect of common substrates and contaminations, and developing a robust 
chemometric framework are important tasks for the future studies.
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