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Focal Spot and Wavefront 
Sensing of an X-Ray Free Electron 
laser using Ronchi shearing 
interferometry
Bob Nagler1, Andrew Aquila1, Sébastien Boutet1, Eric C. Galtier1, Akel Hashim1, Mark  
S. Hunter1, Mengning Liang1, Anne E. Sakdinawat1, Christian G. Schroer   2,3, Andreas 
Schropp2, Matthew H. Seaberg1, Frank Seiboth1,2, Tim van Driel1, Zhou Xing1, Yanwei Liu1 & 
Hae Ja Lee1

The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing 
many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS 
take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 
100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive 
imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a 
full characterisation of this beam has up to now not been performed. In this paper we for the first time 
characterise this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric 
technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive 
to spatial jitter.

Experimental Description
The start of operations of Free electron laser both in the Extreme UV1,2 and in the hard X-ray regime3–5 has 
created sources of unmatched brilliance, that are advancing many scientific fields at a rapid pace (see6,7 and ref-
erences therein). A complete focal characterization in both intensity and phase is of crucial importance in appli-
cation such as coherent diffractive imaging8, non-linear x-ray optics and high field physics, and single molecule 
imaging where the highest X-ray intensities are sought.

A standard technique currently used involves evaluating the size of damage craters created by the focused 
X-ray beam in a target9. While this method has the advantage that it measure the whole intensity profile (i.e. both 
the coherent and incoherent part), it requires a time consuming post mortem analysis of many such imprints, 
is not an in-situ method, and has limited spatial resolution. Scanning coherent diffraction microscopy or ptych-
ography has been successfully used to characterise a focused X-FEL beam10. However, ptychography requires a 
2D motorized translation stage with approximately 10 nm resolution and a beam pointing stability of the same 
order, which is not always available. Alternatively, interferometric methods using shearing interferometry have 
been pursued both at Free electron laser facilities11 and at synchrotron facilities12,13. Here we present a method to 
fully determine the focus of an X-FEL using Ronchi shearing interferometry. Ronchi testing has a long history in 
characterizing the quality of focusing optics in optical wavelengths14. It has more recently been used to qualita-
tively evaluate the X-ray optics at both synchrotron facilities15 and at X-ray Free Electron Lasers16. In this paper 
we show a full characterization of the amplitude and phase of a nano-focused X-FEL beam using Ronchigrams.

The experiments were performed at the Coherent X-ray Imaging instrument (CXI)17,18 beamline at the Linac 
Coherent Light Source (LCLS). The CXI instrument has a pair of highly polished Kirkpatrick-Baez (KB) mirrors19 
coated with Silicon Carbide20 to focus the beam to a theoretical minimal spot size of 90 nm by 150 nm17,21. In 
contrast to the beamlines that use Beryllium lenses to create a focus, it doesn’t suffer from chromatic abberation 
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and its aperture is large enough to capture the full beam. Therefore, it routinely creates the highest peak X-ray 
intensities of the facility, estimated to be in the order of 1 × 1020 W/cm2. It has been used in many fluence depend-
ent experiments such as the formation of hollow atoms22, anomalous nonlinear X-ray Compton scattering23, and 
radiation damage studies on protein microcrystals24. In the experiment presented here, the LCLS beam, with a 
photon energy of 7.2 keV was focused with the KB-mirror pair, which has focal lengths of 900 mm in the horizon-
tal direction, and 500 mm in the vertical direction. A one dimensional diffraction grating, (i.e. the Ronchi target) 
is placed 9.3 mm downstream of the X-ray focal plane. An X-ray detector is placed 982 mm downstream of the 
Ronchi target. A conceptual sketch of the setup can be seen in Fig. 1.

Ronchi gratings were fabricated on 4 μm thick polished diamond membranes (Diamond Materials GmbH). 
An 8 nm layer of Ti was evaporated on the diamond, and 150 nm hydrogen silsesquioxane (HSQ) resist was 
spun on top of the Ti. Electron beam lithography was performed using a 100 keV beam with doses ranging from 
2200–2600 μC/cm2. The gratings were then developed in 25% wt tetramethyl ammonium hydroxide (TMAH) 
for 100 seconds and rinsed with isopropyl alcohol and deionized water. Transfer of the HQ grating pattern into 
diamond was performed using reactive ion etching. A 15 second titanium etch using chlorine was used to remove 
the Ti layer. The diamond was then etched for 50 minutes using an O2/Ar plasma (33/17 sccm, 10 mTorr, RIE 
power = 100 W) until the etch depth reached 1.1 μm. Using atomic layer deposition (ALD), 78 nm platinum was 
deposited conformally to fill the diamond gratings.

The Ronchi target functions as a diffraction grating for the incoming, focused X-rays. The spatial frequency of 
the grating is chosen such that the first orders overlap with the fundamental, but do not overlap with each other. 
The best configuration is attained when the diffraction angle is half of the full-angle divergence of the focused 
X-ray beam. Indeed, for a larger diffraction angle the overlap is less, and there is a central part of the beam for 
which there is no interference data available, and therefore the phase will not be determined by the measurement 
in this area. On the other hand, if the diffraction angle is too small, the +1 and −1 orders will overlap, interfere 
with each other and not only with the zeroth order, and the phase recovery method will not work. When the 
spatial period of the grating equals 2f#λ, with f# the f-number of the optic and λ the wavelength of the X-rays, the 
ideal overlap between the first orders and the zeroth order is attained. The zeroth and first order interfere and 
cause a fringe pattern on the detector. Figure 1 shows that this pattern arises from the interference of two sources 

Figure 1.  Conceptual sketch (not to scale) of the setup. The period of the Ronchi grating is chosen such that 
order +1 and −1 do not overlap, while maintaining as large an overlap between order 0 and the first orders. 
Only the 0 and +1 orders are shown for clarity.
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that emit spherical wavefronts: the focus of the zeroth order, and the (virtual) focus of the first order. The fringes 
are therefore analogous to those of Young’s double slit experiment, and it can easily be shown that the phase dif-
ference between the zeroth order and first order changes linearly with x according to

φ π∆ = +
z

Dz
x C2

(1)x
1

2

with z2 the distance between the X-ray camera and the focus, z1 the distance between the Ronchi grating and the 
focus, D the period of the grating, and Cx a constant in x (see methods section for more details). The phase dif-
ference results in a linear fringe pattern on the detector, called Ronchigrams. Three Ronchigrams of the beam are 
seen in Fig. 2(a–c), where the analysis mask of the zeroth order is shown by the red rectangle, and the positions 
of the +1 and −1 orders by the blue and green rectangles respectively. The fringe density can be tuned to the res-
olution of the camera by translating the grating with respect to the focus, which effectively changes z1 in Eq. (1).

As can be seen in Fig. 2 the X-ray beam on the camera looks very asymmetrical, and has two big vertical lobes. 
The two lobes are caused by the fact the beam overfills a steering mirror located approximately 330 m upstream 
of the CXI endstation, causing this feature in the far field image. The total beam size in the vertical direction is 
roughly 70% bigger than in the horizontal direction. This is caused by the fact that the vertical KB mirror has a 

Figure 2.  Top (a–c): the three ronchigrams used to calculate the phase of the X-ray beam, with a magnified 
close-up of the fringes below. The images are taken with gratings with the different spatial periods (225 nm for 
(a,c), and 275 nm for (b)), at the same position with respect to the focus, but with an angle of the grating with 
respect to the vertical of −37.9° for (a), −15.4° for (b) and 29.6° for (c). The red rectangle is the analysis mask 
of the zeroth order, the green and blue rectangles are the position of the −1 and +1 orders respectively. There is 
no interference and hence no phase information in the white shade area in (a). Bottom (d–f): False-color image 
of the difference (i.e. errors) between the phase derived from the Ronchigrams, and the phase derived after re-
shearing the recovered wavefront of the beam. RMS error of the images is λ/55 for (a) and λ/40 for (b,c).
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smaller focal length and therefore sits closer to the focus (500 mm vs 900 mm), leading to a higher divergence and 
hence a larger vertical size on the detector.

Aberrations in the wavefront of the focused beam will result in a distortion of the fringe pattern. Standard 
Fourier transform and phase unwrapping methods25 are used to calculate the phase of the Ronchigrams. 
However, the retrieved phase is not the phase of the X-ray beam itself, but the phase difference between the beam 
and a shifted copy of itself. The Ronchi test is a shearing interferometer and quantitative analysis requires one to 
invert the shearing operator. Shearing interferometry is well described in the literature and many methods exist 
to analyse the interferograms26–30. The main difficulty stems from the fact that the shearing operator has a kernel, 
and therefore cannot be inverted mathematically. Indeed, if we define the shearing operator in the x-direction as:

= − −Ŝ f x y f x y f x s y[ ( , )] ( , ) ( , ) (2)x x

we see that any periodic function in x with a period sx gets mapped onto the null vector. Therefore, trying to deter-
mine the beam that gives rise to the Ronchigrams is a mathematically ill-posed problem31. The most common way 
to resolve this issue is by using standard regularization theory32. In this paper we will follow that road, and adapt 
an algorithm described in Servin et al.33, in which two orthogonal interferograms are used in combination with 
an a priori assumption of smoothness of the wavefront. However, an additional difficulty with the Ronchigrams 
is that the shear is half the beam-size which is large in comparison to typical shearograms. This can result in a 
large area of the beam where no shearing information is available. For example, in Fig. 2(a) we have no shear-
ing information and therefore no information on the phase in the white shaded area, which is approximately a 
quarter of the total beam aperture. Furthermore, the area where we do see fringes only yields information on 
the phase differences in one direction: we do not have any information on phase changes in the beam parallel to 
the fringes. This problem can be overcome by using enough Ronchigrams to ensure that every area where there 
is appreciable beam intensity is sheared along at least two angles. In the results presented here, we use the three 
Ronchigrams shown in Fig. 2(a–c). We only use the interference between the fundamental and the +1 order (i.e. 
right side of the image) since the interference with the −1 yields exactly the same phase information. Together, 
the three Ronchigrams contain enough information to retrieve the phase of the whole beam since they ensure we 
have shearograms in at least two direction in almost the entire aperture. An added bonus is that the three shear-
ograms effectively shear both the horizontal and vertical directions with two incommensurate shear values and 
since Jacobi has shown that a double periodic function with incommensurate periods is necessarily constant34, 
this removes nearly the whole kernel. Common to interferometric methods, the implicit assumption is made that 
the beam is spatially coherent, and hence only the coherent part of the beam will be measured. A full description 
of the inversion algorithm can be found in the methods section of this paper.

Results
To validate the inversion, we have sheared the recovered wavefront at angles −37.9°, −15.4° and 29.6° and com-
pared them to the measured phase of the Ronchigrams. The result is shown in Fig. 2(d–f). We find an RMS error 
of less than 1

40
 of a wavelength for each Ronchigram, ensuring that the inversion algorithm works accurately. We 

note that the use of three Ronchigrams over-constrains the optimization problem. Indeed, any two Ronchigrams 
with different shearing directions can always be used to invert the shearing operator with a vanishing error. 
However, this is not the case when three or more shearograms are used: only those derived from a physical field 
will result in an illumination phase that yields a small RMS error between the measured shearograms and the 
calculated ones. This is important since we use three shearograms from three different FEL pulses, and we make 
the implicit assumption that the phase of these pulses are the same. The fact that such a small RMS error is found 
validates this assumption and the method in general.

The recovered phase can be seen in Fig. 3(a), while Fig. 3(b) shows the measured intensity of the beam. Using 
this phase and measured intensity profile, we can calculate the X-ray profile at focus, which is shown in Fig. 3(c–e).  
The full width at half maximum of focal size of the central peak is 167 nm in the vertical and 123 nm in the 
horizontal. The uncertainty in the wavefront measurement of λ/40 mentioned above results in an uncertainty of 
approximately 2% in the peak intensity of the beam, applying the Strehl Ratio/Ruze formula35,36.

Discussion
In order to demonstrate the value of the information gained from the Ronchigram wavefront retrieval, a simula-
tion of the aberrations due to misalignment of the KB mirror pair was performed. In the simulation, the vertical 
focusing mirror (VFM) was misaligned by 9 μrad and the horizontal focusing mirror (HFM) was misaligned by 
7.5 μrad, resulting in a best focus 2 mm upstream of the nominal focus position. Horizontal and vertical lineouts 
are shown in Fig. 4, along with lineouts corresponding to operation of the system with the mirrors aligned to the 
design angle. From comparison with Fig. 3(d,e), it is clear that the majority of the observed vertical aberrations 
are captured in the simulated misalignment of the VFM. However, the horizontal direction is strongly affected 
by aberrations caused by two horizontal steering mirrors 330 m upstream of the KB pair. While an attempt was 
made to account for these aberrations in the simulation, the Ronchigram result suggests that there are additional 
aberrations that were not fully captured in the simulation. The analysis presented here underscores the impor-
tance of techniques which retrieve both the amplitude and phase of the focus. Other techniques, such as the use 
of imprints, rely on the assumption that the interaction plane has been chosen correctly. As can be seen in Fig. 4, 
a small error of 2 mm along the beam axis can result in a peak intensity that is a factor of two below what can be 
achieved with ideal alignment.

In conclusion, we have presented a method to determine the focus of Free electron laser using Ronchi shear-
ing interferometry. The method is fast, in situ and does not require high beam pointing stability. The method has 
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been applied to the nanofocus of the CXI beamline at LCLS, and is readily applicable to other X-ray beamlines 
and focal sizes.

Methods
Ronchigrams.  A Ronchi grating with a duty cycle of 1 and with the orientation of the grating in the x direc-
tion can be described as:

	 (3)

where ☆ denotes the convolution operator, T1 and T2 are the complex transmission functions the two parts of the 
grating, the Dirac comb  is defined as

	 (4)

and the rectangle function defined as

Figure 3.  (a) Wavefront of the x-ray beam, (b) Measured intensity of the beam. (c) Intensity of the focal spot 
at best focus. (d) Vertical lineout (red) and (e) horizontal lineout (blue) through focus, compared with the 
theoretical ideal focus (dashed) when no abberations would be present. The peak intensity is 3.9 1019 W/cm2 for 
the 3 mJ beam energy and 60 fs pulse length that was used in the experiment.
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Taking the two dimensional Fourier transform of the Ronchi grating we get:
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with sinc(x) = sin (x)/x and using the the two-dimensional Fourier transform defined as:

 ∫= =
−∞

∞ − +F k k f x y f x y e dx( , ) [ ( , )] ( , ) (9)x y
i k x k y( )x y

The Ronchi grating and its Fourier transform can be seen in Fig. 5. We now consider the X-ray beam with a focus 
located at z = 0, with electric field E0(x, y, 0). Using the paraxial approximation, we can propagate the electric field 
to the camera position, zc, using the Fresnel intergral:
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with k the wavenumber of the electromagnetic field and the spherical phase factor Pzc
 defined as:
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Basically, Ec
F
0 is the electric field at the camera position without the spherical wavefront curvature due to the prop-

agation distance zc. We now place the Ronchi grating at position z = z1, and propagate the beam from focus to the 

Figure 4.  (a) Simulation of the focus of the focal spots of a misaligned KB-pair. The vertical focusing mirror 
was misaligned by 9 μrad and the horizontal focusing mirror by 7.5 μrad. (b) Vertical lineout of the spot in (a), 
compared with the spot from a perfectly aligned mirror. (c) Horizontal lineout.
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grating using the Fresnel integral. We multiply the field with the transmission function of the Ronchi grating and 
then propagate the field back to the (now virtual) focus of the beam. We get the resulting (virtual) field ER0:

E R ik X E x X y ik x1
2

exp
2

( , , 0)exp( )
(13)R

l
l

l l
l l0 0∑π

=

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π
= ∈X z

kD
l l2 with (14)l

1

We use the Fresnel integral to propagate this field to z = zc. Substituting equation (11) we get:
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When different orders (i.e. different values of l) overlap, they will interfere, and form predominant linear fringes 
due to the linear phase in x. For our ronchi test, we choose D to have the half-beam overlap as shown in Fig. 2. 
From equation (15) we can calculate the phase difference between the zeroth and first order:

φ φ φ
π
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with φR0
 the phase of R0, φR1

 the phase of R1, φc0(x, y) the phase of E x y z( , , )c
F

c0 , and ŜXD
 the shearing operator 

defined as:

= − −Ŝ f x y f x y f x X y[ ( , )] ( , ) ( , ) (19)X DD

and ≡X XD D
1 . The first three terms give the constant phase difference between the orders (corresponding to the 

undetermined Cx in equation (1). This constant phase is a priory unknown, since we cannot know the exact posi-
tion of the beam with respect to the grating, and a shift of δx in this position will lead to a constant phase of π δ2 x

D
. 

The value of this constant phase is actually important during the shear-inversion, and will need to be optimized 
together with the rest of the wavefront. It could also be used to measure beam jitter, if it is not larger than the 
grating period. The last two terms show how the phase varies in x and y. The linear phase in x of the last term will 
result in linear fringes in the intensity of ERC, provided the spatial frequency πz

z D
2

c

1  is large enough. Using standard 
Fourier methods25 and phase unwrapping algorithms we can retrieve φŜ x y[ ( , )]X c0D

 as long as the spatial fre-

Figure 5.  The Ronchi target (left) and its 2D Fourier transform. T1 and T2 are complex transmission functions. 
The dots in the Fourier transform plot signify delta-distributions.
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quency πz
z D

2

c

1  is at least twice the highest spatial frequency that is present in the intensity of ERC; otherwise aliasing 
will occur. To retrieve the phase of the electric field at the camera location φco(x, y), we will have to invert the 
shearing operator ŜXD

. Measuring the intensity of Ec0 is trivially done without Ronchi grating. Therefore, we will 
have full information of both phase and amplitude of the electric field at the camera location, which allows us to 
propagate the beam to any z location, and therefore fully determine its focal characteristics.

Inverting the shearing operator.  As shown above, the phase retrieved from the Ronchigrams is not the 
actual phase of the X-ray beam, but the sheared phase. In general we have:

φ φ φ= − − −Ŝ x y x y x s y s[ ( , )] ( , ) ( , ) (20)s x y

with the shear vector =s s s( , )x y  orthogonal to the lines of the Ronchi grating. The measured data will be sampled 
in x and y, and defining φi,j as the phase at the sample points (i.e., pixels), we have the corresponding discrete 
operator

φ φ φ= − − −Ŝ [ ] (21)s i j i j i s j s, , ,x y

with sx and sy expressed in number of pixels. We call φi j
s
,  the measured sheared phase retrieved from the 

Ronchigram. We now search for a solution of φi,j that minimizes the cost function of the mean-square error 
between the sheared phase and the measured one:

∑ φ φ φ= − +ˆ( )U S P[ ]
(22)
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s i j i j
s

c
s
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,
, ,

2
,

with φc
s the constant phase that is jitter dependent mentioned above and Pi j

s
,  the masking function that is equal to 

1 where good sheared data is available and 0 where there isn’t. As mentioned above, we need multiple 
Ronchigrams to recover the phase, due to the limited overlap between the beams after shearing. Therefore the 
total cost function will be the sum for different values of the sheared direction s :

∑=U U
(23)s

s
2 2

In the reconstruction that is shown in the main body of this paper we use three values of s , corresponding to 
shears at −37.9°, −15.4° and 29.6°, but in principle we could use more shearograms and reduce the error. As in 
Servin et al.33 we will add a cost function that corresponds to our a priori assumption of smoothness in x and y:
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where Pi,j is masking function equal to 1 inside the aperture of the beam, and 0 outside it. Note that in principle 
we could use

= − −P P P (26)i j
s

i j i s j s, , ,x y

although in practise we may need to take the mask slightly smaller. Alternatively, we could allow values in the 
masking function between 0 and 1 to allow for a weighted average in in the cost function. With the regularization, 
the total cost function becomes:
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with η the regularization parameter. Efficient minimization of the cost function requires the partial derivatives 
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We can now minimize equation (27) using a conjugate gradient descent method; alternatively a limited memory 
Broyden-Fletcher-Goldfard-Shanno algorithm37–41 runs very fast.
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