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Equation of state and self-bound 
droplet in Rabi-coupled Bose 
mixtures
Alberto Cappellaro1, Tommaso Macrì2, Giovanni F. Bertacco1 & Luca Salasnich1,3

Laser induced transitions between internal states of atoms have been playing a fundamental role 
to manipulate atomic clouds for many decades. In absence of interactions each atom behaves 
independently and their coherent quantum dynamics is described by the Rabi model. Since the 
experimental observation of Bose condensation in dilute gases, static and dynamical properties 
of multicomponent quantum gases have been extensively investigated. Moreover, at very low 
temperatures quantum fluctuations crucially affect the equation of state of many-body systems. Here 
we study the effects of quantum fluctuations on a Rabi-coupled two-component Bose gas of interacting 
alkali atoms. The divergent zero-point energy of gapless and gapped elementary excitations of the 
uniform system is properly regularized obtaining a meaningful analytical expression for the beyond-
mean-field equation of state. In the case of attractive inter-particle interaction we show that the 
quantum pressure arising from Gaussian fluctuations can prevent the collapse of the mixture with the 
creation of a self-bound droplet. We characterize the droplet phase and discover an energetic instability 
above a critical Rabi frequency provoking the evaporation of the droplet. Finally, we suggest an 
experiment to observe such quantum droplets using Rabi-coupled internal states of K39 atoms.

In atomic physics, laser beams can stimulate transitions among different hyperfine states. Inspired by remarkable 
experiments with both fermionic1,2 and bosonic clouds3,4, in the recent years an extensive theoretical research 
was devoted to understand static and dynamical properties of quantum mixtures with artificial coupling beween 
their internal states. Concerning fermionic mixtures, for example, in the attempt to search for itinerant ferro-
magnetism driven by Rabi coupling, it was shown that a critical coupling frequency marks the transition of a 
two-state Fermi gas to a ferromagnetic phase. A detailed investigation in three spatial dimension was performed 
by Conduit5 and, very recently, for a two-dimensional Fermi gas6. On the other side, for bosonic atoms at temper-
atures below the transition to the superfluid phase, coupling of hyperfine states offers the possibility to address 
fascinating phenomena such as the internal Josephson effect7–9 emulating a space dependent double well poten-
tial, analogues of the Hawking radiation10,11, non-abelian gauge potentials12 like magnetic monopoles13,14, Rashba 
spin-orbit coupling15–18, or they can be used for applications to quantum metrology19–21 and for the quantum 
simulation of spin models with short or long-range interactions22–25.

In this article we study the effects of a Rabi coupling on a two-component Bose mixture deriving the corre-
sponding beyond-mean-field equation of state. To achieve this result we perform a non-trivial regularization 
of Gaussian fluctuations, which have a divergent zero-point energy due to both gapless and gapped elementary 
excitations. In particular, we obtain a meaningful analytical formula for the ground-state energy of the Bose 
mixture as a function of Rabi coupling and scattering lengths. Setting the Rabi frequency to zero in our formula 
one recovers Larsen’s equation of state26. In the case of attractive inter-particle interaction we investigate the 
conditions for the formation of a self-bound droplet finding that its density profile and collective oscillations 
crucially depend on the interplay between Rabi coupling and interaction strengths. A similar equation of state, 
albeit in absence of internal coupling, has been recently used by Petrov27,28. He shows that, in the case of negative 
inter-component scattering length, quantum fluctuations can arrest the collapse of the mixture inducing the 
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formation of a stable self-bound droplet. In a different context, the stabilization induced by quantum fluctuations 
has been found also in dipolar Bose-Einstein condensate, both in trapped configuration29,30 and in free space31–34.

Remarkably, we find that above a critical Rabi frequency the self-bound droplet evaporates into a uniform 
configuration of zero density. Finally, we analyze the most favorable conditions to obtain a stable self-bound 
droplet made of 39K atoms in two Rabi-coupled hyperfine states.

Results
Microscopic theory for Rabi-coupled mixtures. We consider a Bose gas with two relevant hyperfine 
states in a volume L3, at temperature T and with chemical potential µ. In addition to the usual intra- and inter-
state contact interactions, transitions between the two states are induced by an an external coherent Rabi coupling 
of frequency ωR. We adopt the path integral formalism, where each component is described by a complex bosonic 
field ψi ( =i 1,2). Given the spinor ψ ψΨ = ( , )T1 2

35–37, the partition function of the system reads:

Z D
�

¯ ¯∫= Ψ Ψ − Ψ ΨS[ , ]exp( 1 [ , ]) , (1)

where the Euclidean action Ψ ΨS[ , ] is given by
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with β ≡ k T1/( )B  and π=g a m4 /ij ij
2  being aij the scattering length for collisions between component i and 

component j (specifically a11, a22, and a12). All relevant thermodynamical quantities can be derived from the 
grand potential Ω = −

β
ln( )1 . We work in the superfluid phase, where a U(1) gauge symmetry of each bosonic 

component is spontaneously broken. The presence of the Rabi coupling in the Euclidean action in equation (2) 
implies that only the total number of atoms is conserved. We can then set ψ τ η τ= +vr r( , ) ( , )i i i , where vi are the 
uniform order parameters of the two-component Bose-Einstein condensate, and η τr( , )i  are the fluctuation fields 
above the condensate. The mean-field plus gaussian approximation is obtained by expanding equation (2) up to 
the second order in η τ(r, )i  and η τ⁎(r, )i . The corresponding beyond-mean-field grand potential is then given 
by37,38

µ µ µΩ = Ω + Ωv v v v v v( , , ) ( , , ) ( , , ), (3)g1 2 0 1 2 1 2
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is the mean-field grand potential, while µΩ v v( , , )g 1 2  is the grand potential of Gaussian quantum and thermal 
fluctuations.

In our scheme, the Bose-Einstein order parameters vi satisfy the saddle-point equations µ∂Ω ∂ =v v v( , , )/ 0i0 1 2 , 
leading to coupled equations for the uniform and constant fields v1 and v2:

ω µ+ − =g v g v v v v( ) (5)ii i ij j i R j i
2 2

with =i 1, 2 and ≠j i. The analysis of the minima of µΩ v v( , , )0 1 2  at the solution of equations (5) leads to the 
mean field phase diagram of Fig. 1 (top panel) which is obtained for the case of equal intra-component repulsive 
interaction strength = ≡g g g11 22 .

One finds a symmetric configuration where the two internal states are equally populated, a polarized phase 
with non-zero population imbalance, and an unstable phase when the attractive inter-state interaction overcomes 
the intra-state repulsion < −g g12

39–42 (see Methods for some technical details).
In the rest of this article we focus on the symmetric ground state existing in presence of Rabi coupling, where 

= ≡v v v/ 21 2  and equal intra-component interaction. The corresponding mean-field grand potential µΩ v( , )0  
is then given by
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By solving equation (5) in the case of symmetric ground-state, we get the crucial relation between the order 
parameter and the chemical potential: µ ω= + +v g g2( )/( )R

2
12 . In this case, equation (6) reduces to
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It is important to stress that we work in a regime where Rabi coupling cannot produce polarization in the 
ground state. However, as shown in the following section, it still influences the stability of balanced configuration, 
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i.e. the region between the symmetric and unstable phase in the diagram reported in Fig. 1 (top panel), also when 
Gaussian fluctuations are taken into account.

Gaussian Fluctuations. To compute µΩ v( , )g  for the symmetric ground state and for equal interaction 
strengths, we consider the quadratic terms in ηi and η ⁎

i  of equation (2). In reciprocal Fourier space one finds

∑ω ω ω ω ωη η η η= − .
ω

S q q q q q[ ( , ), ( , )]
2

( , ) ( , ) ( , )
(8)

n n n n n
q

2
, n



Here ω{ }n n are the bosonic Matsubara frequencies and  ω− q( , )n  is the ×4 4 inverse of the fluctuations propa-
gator, whose definition is reported in the Methods. At zero temperature, the Gaussian grand potential corre-
sponds to the zero-point energy of bosonic excitations and it reads37,43

∑µ µ µΩ = ++ −v E v E v( , ) 1
2

[ ( , ) ( , )],
(9)
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where µ±E v( , )q
( )  is the spectrum of elementary excitations, which can be obtained by diagonalizing 

 I M− ⋅ q[ ( ,0)]35,37,44. The diagonal blocks of  are two-by-two identity matrices 12, while the off-diagonal ones are 
the Pauli matrix σz. The eigenvalues are the two branches of the Bogoliubov spectrum:
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where we set ε = a a/12 , with a the intra-component scattering length and a12 the inter-component scattering 
lengt,  µ ω ε ε ω= + − + +A ( )(1 )/(1 ) 2R R and ω µ ω ε ε ω= + − + + .B 4 [( )(1 )/(1 ) ]R R R    In the con-
tinuum limit ∫ π∑ → L d q/(2 )q

3 3 3, the zero-temperature Gaussian grand potential is ultraviolet divergent. We 
employ the convergence-factor regularization37,43,45 which generates proper counterterms in the zero-point 
energy completely removing the divergence. These counterterms can be determined by expanding the two 
branches of the Bogoliubov spectrum at high momenta. The zero-temperature beyond-mean-field grand poten-
tial is then given by equation (7) plus the regularized zero-point energy, namely

Figure 1. Grand canonical phase diagram and grand potential. (Top) Mean field phase diagram based on the 
grand potential µ ν νΩ ( , , )0 1 2  of equation (4). In the symmetric ground state the two components appear with 
the same particle density ν ν| | = | |1

2
2

2, whereas in the polarized phase densities are unequal. Dotted lines 
represent the asymptotic phase boundaries of the polarized region for large g g/12  and µ ω/ R  ratios respectively. 
For < −g g/ 112  the symmetric solution is unstable in the thermodynamic limit. The grey region for µ ω< R  
corresponds to the trivial solution ν ν| | = | | = 01

2
2

2 . (Bottom) Grand potential µΩ( ) (dashed blue line) with the 
inclusion of gaussian fluctuations of equation (12) and its mean field approximation µΩ ( )0  (red solid line) of 
equation (7) as a function of the chemical potential µ for = .g g0 912  within the symmetric phase.
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The function µ ω εI( , , )R  is given by
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In Fig. 1 (bottom panel) we plot the grand potential µΩ( ) of equation (12), including gaussian fluctuations, as 
a function of the chemical potential for = .g g0 912 . We compare it with the mean field approximation µΩ ( )0  of 
equation (7). The energy density of the system is  µ= = Ω +E L L n/ /3 3  where the number density n is obtained 
via = −

µ
∂Ω
∂

n
L
1
3 . In the limit of small Rabi-coupling, which is also the most relevant experimentally10 (see below), 

it is possible to get an analytical result for the energy density. By taking =E ma/B
2 2  as energy unit (then 

ω ω= ER R B) and defining the diluteness parameter =n na3, up to the linear term in ωR, from equation (12) we 
obtain the scaled energy density of the mixture components with constant densities:
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Notice that for ω =0R  one recover the Larsen’s zero-temperature equation of state26. From equation (14) one finds 
that for ε| |>1 the uniform configuration is not stable. If ε > 1, at the mean field level, one expects phase separa-
tion or population imbalance39. Instead, if ε < − 1 the term proportional to ε+ n[(1 ) ]5/2 becomes imaginary. 
This imaginary term does not induce dynamical instability, but only dissipation. As for other sources of losses (for 
instance three-body recombination), to study short-time dynamics this dissipative term can be neglected if n is 
not too large. The resulting real energy density displays a characteristic n5/2 dependence which competes with the 
negative mean-field contribution, opening the door to the possibility of observing a droplet phase for finite sys-
tems. This stabilization mechanism based on quantum fluctuations has been proposed for the first time in 
two-component mixtures without Rabi coupling27,28 and recently applied to dipolar condensates32–34. For ε < −1 
the equilibrium density is obtained upon the minimization of the energy density in equation (14) with respect to 
n neglecting the imaginary term:
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The solution −n  is a local maximum, while the equilibrium value is given by +n  which is a local minimum of the 
energy per particle. Moreover to obtain a real solution, Rabi frequency is limited by: ω < π ε

ε

| + |

+ | |R
15
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4
. For larger 

ωR there is only the absolute minimum with zero energy at =n 0.

Droplet phase. For a finite system of N  of particles we define a space-time dependent complex field φ tr( , ) 
such that φ= | |n t tr(r, ) ( , ) 2 is the space-time dependent local number density, and clearly ∫=N d n tr r( , )3 . The 
dynamics of φ tr( , ) is driven by the following real-time effective action

∫φ φ φ φ
φ

φ=




 ∂ −

|∇ |
− | |







⁎ ⁎S dt d i
m

r[ , ]
2

( ) ,
(16)

t NDeff
3
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where ND is obtained from equation (14) neglecting the imaginary term proportional to ε+ n[(1 ) ]5/2. In the 
inset of Fig. 2 we plot the density profile of the stationary solution obtained by numerically solving with imagi-
nary time-evolution the Gross-Pitaevskii equation associated to equation (16) varying the number of particles for 
ω π =/2 1R  kHz. The solution indeed corresponds to a self-bound spherical droplet whose radial width increases 
by increasing the number of atoms. For a very large number of atoms, the plateau of the density profile approaches 
the thermodynamic density given by equation (15). Instead, for a small number of atoms the self-bound droplet 
does not exist.

One can model the droplet by using a Gaussian wavefunction

∏φ
π σ σ σ σ
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− +
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where σ


t( )i  and β t( )i  are time-dependent variational parameters rescaled in units of a. Here we set = ar r and 
φ φ| | = | |n . The normalization condition then becomes ∫ φ| | =

∼


d Nr3 2  where the particle number is =
∼N N n. 

By inserting equation (17) in the rescaled version of equation (16), one gets six Euler-Lagrange equations for the 
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parameters σ β


{ , }i i i, i.e β σ σ= �� �� /2i i i and σ σ σ σ σ= −∂ ∂
    

̈ U( , , )/i i1 2 3 . σ σ σ
  

U( , , )1 2 3
46 is a variational energy functional 

which is function of the width of the droplet only (see Methods). The variational stability diagram of the droplet 
phase is illustrated in Fig. 2. Upon increasing the atom number droplets stabilize. For small particle numbers we 
find a metastable region where σ σ σ

  
U( , , )1 2 3  has a local minimum with positive energy, the global minimum cor-

responding to zero energy for a dispersed gas with zero density. Interestingly, tuning the Rabi coupling to large 
values, as shown with the red dashed line for =N 1200 particles in Fig. 2, we move into the unstable phase. 
Therefore, differently from dipolar gases32 or bosonic mixtures with attractive inter-species interactions27, where 
transition to the instability is driven by interactions, here, a direct coupling between the two components serves 
as an additional tunable knob to cross from a stable into an unstable phase.

The low-energy collective excitations of the self-bound droplet are investigated by solving the eigenvalues 
problem for the Hessian matrix of effective potential energy in equation (31). From the form of the variational 
ansatz we naturally describe the monopole (breathing) mode of frequency ωM and the quadrupole mode of fre-
quency ωQ.

The upper panel of Fig. 3 displays monopole and quadrupole frequencies as a function of the number N of 
atoms in the droplet, fixing Rabi coupling and scattering lengths. The lower panel of Fig. 3 reports the collective 
frequencies as a function of the Rabi coupling and two different values of N. Both frequencies go to zero at the 
Rabi coupling above which the droplet evaporates.

The experimental observation of a droplet phase with Rabi coupled internal states is within experimental 
reach. A promising candidate is a gas of 39K atoms loaded in hyperfine states | = = 〉F m1, 0F  and 
| = = − 〉F m1, 1F . The narrow Feshbach resonance at .B 54 5 G for collisions between atoms in | 〉1,0 , allows to 
tune intra-component scattering length to equal values to the intra-component one for the state | − 〉1, 1 , then 

= a a 401 2  a0, where a0 is the Bohr radius47,48. The corresponding inter-component scattering length is 
−a a6012 0, which gives ε − . 1 5. For a Rabi coupling frequencies of the order of ω π =/2 1R  kHz49 and 

=N 105 particles, we predict a droplet with a FWHM .1 45 µ m.

Discussion
We derived the beyond-mean-field grand potential of a Rabi-coupled bosonic mixture within the formal-
ism of functional integration, and performing regularization of divergent Gaussian fluctuations. In the small 
Rabi-coupling regime we also obtained an analytical expression for the internal energy of the system. In the case 
of attractive inter-particle scattering length we have shown how the Gaussian terms of the internal energy help to 
stabilize the system against the collapse and that, for a finite number of atoms, a self-bound droplet is produced. 
Rabi coupling works as an additional tool to tune the stability properties of the droplet, inducing an energetic 
instability for large inter-component couplings. The evaporation of the droplet is also signaled by both the breath-
ing and quadruple modes which vanish at a critical Rabi coupling. Notably, our predictions provide a benchmark 
for experimental observations of Rabi-coupled self-bound droplets in current experiments.

Figure 2. Stability diagram of the droplet phase. We identify the phases of a Rabi-coupled Bose mixture with 
equal number of particles upon the minimization of the energy functional σ σ σ

  
U( , , )1 2 3  of equation (31). We 

observe three phases: a stable droplet-phase region (light green) of spherical self-bound droplets, a metastable 
droplet phase (yellow) where the energy of the droplet is positive and larger than a uniform background with 
vanishing density, and an unstable (white region) for small particle number N or high Rabi coupling ω where 
droplet evaporate. Here we consider ε| + | = .1 0 5 which corresponds to ω . 31 8c  kHz. In the inset we plot the 
three dimensional density profile n r( ) of droplets from the numerical solution of the Gross-Pitaevskii equation 
for different particle numbers at ω π =/2 1R  kHz, from the metastable region =N 977 and gaussian density 
limit = ⋅N 5 103 to the Thomas-Fermi regime = ⋅N 2 104 and =N 105 where system density is roughly 
constant up to a critical droplet radius. Moving along the vertical axis, increasing the Rabi coupling, droplets 
become metastable and finally unstable. Red dashed line refers to a system of =N 1200 particles (see Methods).
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Methods
Mean-field phase diagram. Our description of mean-field phase diagram starts from the mean-field 
free-energy density, where we identified =v na a

2 , =v nb b
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2 2
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The equilibrium configuration has to stationarize the energy density, namely
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It is possible to characterize the equilibrium configuration by means of the population imbalance between the 
species ∆ = −n na b. In terms of ∆, the solutions of equation (19) are given by39
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In order to clarify the stability of these equilibrium points, one has to compute the determinant of the 
free-energy Hessian matrix (we assume an intra-species repulsion). Over the symmetric ground state, one finds
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and by imposing it to be positive, the following stability condition39

ω
< + .g g

n
2 (22)ab

R

In the symmetric ground-state, the density in terms of µ reads µ ω= + +n g g/2 ( )/( )R ab , so we easily derive 
equation (7). In the polarized ground-state, since µ=n g/ , the normalized imbalance equals

ω
µ

∆
= ± −
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1 2
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,
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R
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2
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ω
µ

> .g g2
(24)ab

R

Figure 3. Collective excitations of droplets. Monopole (breathing) mode frequency ωM (solid) and quadrupole 
mode frequency ωQ (dashed) with ε| + | = .1 0 5. Upper panel: frequencies as a function of particle number and 
ω π =/2 1 kHzR . Below N 977 the droplet becomes unstable. Lower panel: frequencies as a function of Rabi 
coupling for = ⋅N 2 103 (red), and =N 105 (blue). The critical Rabi frequency occurs at ω π = ./2 31 8c  kHz.
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The results of stability analysis of the stationary points of mean-field free energy are summarized in Fig. 1 (top 
panel).

Quantum fluctuations and equation of state. The inverse propagator introduced in equation (8) is 
defined by:
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describes the inter-component coupling.

Convergence-factor regularization technique. Among the available methods to regularize the 
zero-point energy of bosonic excitations43, we employ the convergence-factor technique. It consists in adding a 
factor ω +

ei 0n  before performing the Matsubara summation contained in equation (8); this notation has to be 
intended as a limit procedure, i.e δ

ω δ
→ +lim ei

0
n . As an example, we consider single-state bosons37 with energy ε. The 

partition function is given by  ^ ^
†

β ε µ ψ ψ= − −Tr[exp( ( ) )], and in the path-integral framework, one formally 
writes

Z D
�

�
�

∫ ∫ψ ψ τ ψ τ ε µ ψ τ= − ∂ + − .
β

τ
∗ ∗d[ , ]exp{ 1 ( )( ) ( )} (28)0

Since the path-integral relies on a time-axis discretization, this notation introduces an ambiguity37. We are not 
specifying on which time slice the field ψ τ⁎( ) (corresponding to the operator ψ̂

†
) acts. If ψ τ( ) acts on the time slice 

τi, then we can choose that ψ τ δ+( ) acts on the τ+i 1 one, and δ → +0  is needed to specify this prescription. In the 
Fourier space, it corresponds to the appearance of the convergence factor presented at the beginning of this sub-
section. If one instead chooses the opposite time-ordering, by taking the limit δ → −0 , one can then verify that the 
corresponding partition functions differ only in a β ε µ− −e ( ). factor. Then, from a partition function as the one in 
equation (28), with fields computed at the same time, we need to add a term such as ε µ−( )1

2
 in the grand poten-

tial to take this fact into account. This justifies the first two counterterm appearing in equation (13).
However, this equal-time prescription does not completely remove the ultraviolet divergences in the 

zero-point energy of bosonic excitations. The remaining ones are due to the presence of a gapped spectrum 
branch and to the zero-range approximation for the interaction potential. The grand potential of our system with 
Gaussian contribution is given by

∑µ
β

ωΩ = Ω +
ω

iq( ) 1
2

logdet ( , ),
(29)

n
q

0
, n

where  ωiq( , )n  is defined in equation (25). Gapped excitations induce a branch cut in the complex logarithm on 
the real q-axis at higher energy, corresponding to the single-particle continuum of states. This divergent contribu-
tion is removed as shown by Diener et al.45, giving rise to the third counteterm in equation (13). Finally, the fourth 
counterterm arises by making use of standard scattering theory at the second order44, namely

 ∫π π
= + .

m
a g

d m
q

q
4

1
(2 ) (30)s

2

3

3 2 2

Indeed, one of the divergences encountered integrating the zero-point energy is due to the delta-shaped 
potential37. Its Fourier transform is constant for all momenta, while a reasonable interaction potential should fall 
at least as q1/ 2, giving back a finite contribution.

Variational and numerical analysis. The equation for σ
i is the classical equation of motion for a particle 

of coordinates σ σ σσ =
  

 ( , , )T1 2 3  moving in an effective potential given by the derivative of the potential energy per 
particle:



www.nature.com/scientificreports/

8Scientific REPORTS | 7: 13358  | DOI:10.1038/s41598-017-13647-y

∑σ
σ

ε
π σ σ σ

α
ε

σ σ σ
γ

ε ω
σ σ σ

= −
| + |

+
+ | |

+
+ | |

=



  

     

U N N N( ) 1
2

1
2

1
2 2 ( )

(1 )
( )

(1 )
( ) (31)i i

R

1

3

2
1 2 3

5/2 3/2

1 2 3
3/2

3/2 1/2

1 2 3
1/2

where α =
π

128
75 5 7/4

 and γ =
π

112
9 3 5/4

.
The energy per particle of the ground state is simply σ=


E N U/ ( )mgs  where σ

m is the minimum of the effective 
potential energy. In absence of an external trapping, the system preserves its spherical symmetry, i.e. the critical 
point of the effective potential in equation (31) is for σ σ σ= =

  m m m1 2 3. The time dependence of βi is completely 
determined by the one of σ

i
46.

Figure 4 shows the energy per particle of the self-bound droplet: the numerical approach relying on 
imaginary-time evolution is in reasonable agreement with the variational one based on equation (17). 
Remarkably, above a critical Rabi frequency the internal energy of the droplet becomes positive, signaling that 
the droplet goes in a metastable configuration. Moreover, at a a slightly larger critical Rabi frequency the droplet 
evaporates.

Data availability. Data are available upon request. Requests should be addressed to either author.
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