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Laboratory cryo x-ray microscopy 
for 3D cell imaging
Emelie Fogelqvist1, Mikael Kördel1, Valentina Carannante2, Björn Önfelt1,2 & Hans M. Hertz1

Water-window x-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact 
unstained cells in their cryofixed near-native state with unique contrast and high resolution. Present 
operational biological water-window microscopes are based at synchrotron facilities, which limits their 
accessibility and integration with complementary methods. Laboratory-source microscopes have had 
difficulty addressing relevant biological tasks with proper resolution and contrast due to long exposure 
times and limited up-time. Here we report on laboratory cryo x-ray microscopy with the exposure 
time, contrast, and reliability to allow for routine high-spatial resolution 3D imaging of intact cells and 
cell-cell interactions. Stabilization of the laser-plasma source combined with new optics and sample 
preparation provide high-resolution cell imaging, both in 2D with ten-second exposures and in 3D with 
twenty-minute tomography. Examples include monitoring of the distribution of carbon-dense vesicles 
in starving HEK293T cells and imaging the interaction between natural killer cells and target cells.

X-ray methods are emerging as a prime candidate for three-dimensional (3D) nano-imaging of intact cells in their 
native or near-native state. X-rays have the necessary absorption and scattering properties for such 3D imaging of 
thick objects while classical techniques have difficulty examining nanometer-scale detail in the unperturbed con-
text of the full biological system: Electron microscopy and scanned-probe methods require thin samples or sur-
faces, respectively. Far-field optical microscopes1 lack the resolution while super-resolution optical microscopies2 
(STED, PALM etc) have intrinsic difficulties providing 3D imaging with reasonable exposure times. However, 
present x-ray microscopes are typically based on synchrotron-radiation sources to provide sufficient flux for short 
exposure time, making them less accessible than the non-x-ray laboratory instruments discussed above. Here we 
report on laboratory cryo x-ray microscopy with the exposure time, contrast, and reliability to allow for routine 
high-spatial resolution 3D imaging of processes in intact cells and cell-cell interactions.

The two major methods for 3D x-ray imaging of intact cells are lens-based soft x-ray microscopy3 and lens-less 
hard x-ray methods based on coherent diffraction imaging (CDI)4,5. The CDI methods, which potentially have a 
dose advantage by avoiding lenses, presently typically claim 40–100 nm resolution with acceptable dose on cry-
ofixed eukaryotic cells6 and algae7. Lens-based x-ray microscopes show better resolution on cryofixed hydrated 
cells and has also demonstrated many relevant biological results. Both methods presently rely on large-scale 
accelerator-based x-ray facilities, synchrotrons or free-electron lasers.

Lens-based soft x-ray microscopy in the water-window region (λ≈2.3–4.4 nm, E = 284–540 eV) allows 
high-resolution imaging of intact, thick hydrated samples with natural contrast. The basic idea is to use the 
large natural difference in absorption between proteins and lipids (i.e., carbon) and water (i.e., oxygen) in 
the water window for contrast while the short wavelength allows for far-field imaging with high resolution. 
Synchrotron-based microscopes were early to demonstrate that 3D water-window microscopy of cryofixed cells 
(x-ray cryo-tomography) allowed detailed visualization of subcellular organelles in relevant biological mate-
rial8–10. In recent years several quantitative biological studies have delivered significant biological insight11–14. As 
in electron microscopy, cryofixation is essential for mitigating dose damage. Presently, a few synchrotron radia-
tion facilities house soft x-ray cryo microscopes.

Here we demonstrate laboratory water-window x-ray microscopy with high resolution and high contrast on 
cryofixed cells with routine 10 s exposure time in 2D imaging and twenty-minute exposure time for 3D tomog-
raphy. Such exposure times and reliability are prerequisites not only for enabling the tomographic 3D imaging 
but also to allow investigations on realistic biological samples, which typically are large and often heterogeneous, 
such as in the examples discussed below. The resolution is down to 50 nm half-period in the 2D and 100 nm 
half-period in the 3D. Previous laboratory x-ray microscopes provided imaging with similar resolution but with 
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exposure times of a few hours15 for 3D and typically few minutes for 2D16, although noisy images could occa-
sionally be recorded in 10 s17. The combination of long exposure times and low reliability essentially prohibited 
work on relevant biological samples. The improvement demonstrated in the present paper is due to improved 
source performance and higher-efficiency condenser optics. As for the sources, laboratory water-window 
microscopy has been performed with gas discharges and laser plasmas. The nitrogen pinch discharge typically 
operates at average line brightness of 4 × 109 ph/(s × mm2 × mrad2 × line) at the λ = 2.88 nm line18, while the 
laser plasmas have demonstrated reliable operation at 4 × 1010 ph/(s × mm2 × mrad2 × line) at the λ = 2.48 nm 
using liquid-nitrogen-jet target19. Martz et al.17 demonstrated that this source could produce > 1.5 × 1012 ph/
(s × mm2 × mrad2 × line)  and we have recently stabilized the liquid jet to allow for long-term operation at these 
brightness levels20. The fabrication of normal-incidence condenser optics has reached a new level of perfection 
the last few years, typically increasing the average reflectivity from 0.6% to over 4.5%.

The improved laboratory cryo x-ray microscope provides a new laboratory window for high-resolution and 
high-contrast observations of cell-biological processes in 2D and 3D. We demonstrate the improved system per-
formance on two biological topics, monitoring the development and distribution of carbon-dense vesicles in 
starving cells and imaging the interaction between natural killer cells and target cells.

Nutrient starvation causes cellular stress that may induce autophagy21,22. This and other important cellular 
degradation pathways involve the formation and transformation of several types of µm and sub-µm vesicles in the 
cytoplasm. Determining the distribution and development of such vesicles by imaging the unstained cell is intrin-
sically difficult with classical methods23,24 but has been observed with synchrotron-based soft x-ray microscopy25. 
Here we show that the improved laboratory x-ray microscope can image these often carbon-dense vesicles in 
unstained starving HEK293T cells in both 2D and 3D with significant contrast, allowing for quantitative analysis 
of the vesicle development.

Natural killer (NK) cells are part of the innate immune system and kill target cells in a carefully regulated 
process26–28. The detailed molecular steps of the process, the formation of the NK-cell-target-cell immune syn-
apse27, have been investigated with confocal microscopy as the primary imaging tool, recently complemented by 
super-resolution imaging29 while the immune synapse between T-cells and dendritic cells has been imaged with 
synchrotron-based soft x-ray microscopy14. Here we show that the improved laboratory x-ray microscope allows 
2D and 3D imaging of the interaction between NK cells and HEK293T target cells.

Results
Short-exposure laboratory water-window cryo microscopy. Figure 1 shows the laboratory cryo 
x-ray microscope. In its basic arrangement it consists of a liquid-nitrogen-jet laser-plasma source, a normal-inci-
dence multilayer mirror as condenser, a cryo sample stage, a Ni zone plate, and a backillumated CCD detector, all 
in vacuum15. In the present experiments the liquid-jet source is powered by a 100 W 2 kHz 600 ps diode-pumped 
Nd:YAG slab laser to produce narrow-bandwidth λ = 2.48 nm line emission and a 30 nm outer zone width 200 
μm diameter Ni zone plate was used for the imaging. The longer focal length (2.42 mm at λ = 2.48 nm) provides 
enough space between sample holder and zone plate not to limit the tilt range for the tomographic recordings. 
The magnification M is 770 × resulting in 17.5 nm pixels in the object plane from 13.5 µm detector pixels. More 
details are given in Methods.

The key hurdle for reaching the microscope performance demonstrated here has been the source. Jet insta-
bilities have lowered reliability, uptime and average brightness. Here we have integrated the radiation heating 
stabilization of ref.20 in the microscope as well as a flash-imaging system allowing the continuous monitoring 
of the jet with ~5 µm spatial resolution and 4 ns temporal resolution. With these means the laser-plasma can be 
moved further away from the nozzle orifice and thereby create less disturbance to the jet and a more stable source 
emission. Despite that we typically operate the laser at lower power than in ref.17, the average λ = 2.48 nm bright-
ness is higher or similar and, more importantly, stable over hours. This improvement is combined with recent 
advances in normal-incidence multilayer mirrors. The new Cr/V condenser mirror has an average reflectivity of 
4.66%, as compared with our previous Cr/V mirror of 0.6%. In total, this results in an improvement of approx-
imately 8 times in the flux at the sample compared our previous arrangements, reducing the normal-incidence 

Figure 1. Short-exposure laboratory water-window cryo microscopy. The Stockholm laboratory x-ray 
microscope is based on a liquid-nitrogen-jet laser-plasma source producing 2.48 nm line emission. A normal-
incidence multilayer condenser mirror (MLM) focuses the 500 eV x-rays onto the sample, which is imaged by 
the zone plate (ZP) onto the CCD detector. A central stop (CS) creates a hollow-cone illumination and a 200 nm 
aluminum filter absorbs scattered visible light while transmitting the soft x-rays. The heating coil around the 
nozzle tip is a recently added feature to improve the liquid nitrogen jet stability.
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2D exposure time to the 10-s range. In addition, the improved reliability of the stabilized source is essential for 
working with relevant cell-biological samples and for the multiple exposures necessary for tomography. As for 
the spatial resolution, Fourier Ring Correlation analysis (cf. Methods) of all 2D images presented below result 
in 50–100 nm half-period resolution. A more detailed analysis of the spatial resolution of the imaging system is 
found in the Discussion.

2D x-ray microscopy of starving HEK293T cells. Figure 2a–d show 10-s exposure cryo x-ray micros-
copy of human embryonic kidney cells (HEK 293 T) in increasing stages of starvation. In Fig. 2a a slightly starved 
cell (less than 1 day of starvation) still appears healthy with stretched-out lamellipodia (marked lp) adhering 
to the carbon film. The cell shows 25–30 small (diameter 0.37 ± 0.06 µm) carbon-dense vesicles (cd), sparsely 
distributed in the cytoplasm. As starvation increases (Fig. 2b, 1–2 days of starvation) adhesion and lamellipo-
dia decrease, cell shape changes, and the number and size of the carbon-dense vesicles increase (50–55 and 
0.44 ± 0.07 µm, respectively). In Fig. 2c the process has gone further (approx. 2 days of starvation) and we count 
80–90 large (0.88 ± 0.15 µm) carbon-dense vesicles. Figure 2d, finally, shows a cell starved approx. 3 days to the 
point of what appears to be close to cell death. Here the cell has changed its shape and it contains multiple large 
carbon-dense vesicles(up to 1.3 μm). We also note clearly observable nuclear envelopes (ne) surrounding what 
appear to be multiple nuclei. Several nucleoli (n) are also clearly visible in the nuclei. The nucleoli are clearly 
distinguishable from the carbon-dense vesicles by changing the focus, which is done for every image to obtain 
best focus.

In Fig. 2e–h we depict fluorescence confocal microscopy of the same HEK293T cell-line at similar stages of 
starvation, for comparison with the x-ray microscopy. Here nuclei are stained Hoechst NucBlue (blue), mem-
branes with DiO (green), and acidic vesicles with LysoTracker (red). The laboratory x-ray microscopy images 
agree well with the confocal microscopy. As the starvation progresses, a similar change in cell shape, adhesion, 
and lamellipodia protrusion is observed in the confocal images as is the general trend that the membrane-bound 
and/or acidic vesicles grow larger and more numerous. Such vesicles are an important part of the autophagic 
process21. It is interesting to note that the x-ray microscopy images provide more details as regards, e.g., number 
and size of the vesicles despite that no staining is used. This quantitative information was not possible to retrieve 
from our confocal images.

Figure 2. HEK293T cells in different stages of starvation. (a–d) Laboratory x-ray absorption microscopy of 
HEK cells with increasing starvation. (a) Slightly starved cell with lamellipodia (lp) spread across the carbon 
grid and few and small (0.37 µm diam) carbon-dense vesicles (cd). (b) Early-stage starvation results in rounding 
of cell shape, decreasing adhesion and lamellipodia, and growth in number of carbon-dense vesicles. (c) 
Increasing starvation results in strong increase in number as well as diameter (0.88 µm diam) of carbon-dense 
vesicles. (d) A highly starved HEK 293 T cell showing a few nuclear envelopes (ne), nucleoli (n), and large 
carbon-dense vesicles. (e–h) Confocal imaging of HEK293T cells at approximately same stages of starvation, for 
comparison. Here the cells have been stained for nucleus (blue), membranes (green) and acidic organelles (red).
The fluorescent images are overlaid on the grey DIC image. Scale bars 10 µm.
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3D x-ray tomography of a starving HEK293T cells. The 3D volume image of a highly starved HEK293T 
cell was reconstructed from a tomographic dataset with 69 projections over a tilt range of 102° with 1.5° angular 
increments (cf. Methods). Figure 3a and b show two slices separated by 2 µm through the reconstructed cell vol-
ume. In both slices carbon-dense vesicles (cd) and what appears as several vacuoles (v) are clearly visible. The vac-
uole membranes are clearly observed in the slices, although they are too thin to be fully resolved. Figure 3c shows 
one of the 2D projections, for comparison. It is clear that the tomography provides better contrast in addition to 
the obvious benefit of full 3D localization information. The full 3D data stack and an example of segmentation are 
shown in Supplementary Material.

2D x-ray microscopy of NK-cell target-cell interaction. Figure 4a–d show 10-s exposure cryo x-ray 
microscopy of NK-cell interaction with HEK293T cells at four different stages of the killing process. Figure 4a 
shows an NK cell loosely adhered to the target cell while Fig. 4b and c depict NK cells firmly adhered to the target 
cells. The target cell in Fig. 4c has rounded-up, and appears to have a diffuse cell border as well as several vacuoles 
(v), possibly induced by an NK-mediated cytolytic attack27,30. Figure 4d shows an NK cell in loose contact with 
a dead target cell, possibly captured during the detachment phase27 after NK-mediated killing of the target. Also 
here we note the formation of vacuoles (v). In all four images a pattern of a partially unresolved filament structure 
at the NK-target cell interface is observed.

For comparison, Fig. 4e–h show confocal scanning microscopy of the corresponding stages, from the forma-
tion of the immune synapse to the target cell death. Here the NK cell is marked with Calcein Red-Orange (orange) 
and the target cell is marked with Calcein Green (green) and DDAO-SE Far-Red (red).

3D x-ray tomography of NK-cell target-cell interaction. The 3D volume of two NK cells interacting 
with a starved HEK293T cell was reconstructed from a tomographic dataset with 75 projections over a tilt range 
of 111° with 1.5° angular increments (cf. Methods). Figure 5a and b show two slices located 0.7 μm apart in the 
3D volume with vacuoles (v), nuclear envelope (ne), and carbon-dense vesicles (cd) clearly distinguishable. From 
browsing through the volume (full stack, see Supplementary Material), it is clear that all carbon-dense vesicles 
are located outside the nucleus of the HEK 293T cell. Figure 5c shows a 10 s exposure time projection image, for 
comparison. In Supplementary Material another reconstruction of NK-HEK interaction is depicted, probably 
at a somewhat later stage in the killing process given the rounded target cell with a vacuolated appearance. An 
example of segmentation is also presented in Supplementary Material.

Discussion
We have demonstrated that laboratory cryo x-ray microscopy can be routinely employed for 2D and 3D 
high-resolution high-contrast imaging of intact biological structures in unstained cellular samples in their 
near-native (cryofixed) environment with short exposure times and high reliability. The key advances to the 
microscope enabling this capacity include improvements in source stability, source reliability, condenser reflectiv-
ity in combination with sample preparation. This allows laboratory x-ray microscopy to investigate realistic bio-
logical samples and the system is demonstrated by monitoring the development and distribution of carbon-dense 
vesicles and morphological changes in starving cells and imaging the interaction between natural killer cells and 
target cells.

In the starving HEK cells of Figs 2 and 3 we show that the unstained x-ray imaging of the cell development is 
consistent with the parallel confocal imaging as regards all the major structural factors such as cell shape, with-
drawal of lamellipodia, and formation of vacuoles and vesicles. Of particular interest is the demonstrated pos-
sibility to quantitatively monitor the growth in number as well as in size of the carbon-dense vesicles. Although 
our present arrangement does not have the molecular sensitivity to designate these carbon-dense vesicles to be 
part of an autophagic process, the results suggest that the laboratory x-ray microscope should be applicable for 

Figure 3. 3D tomographic reconstruction of a starving HEK 293T cell. (a,b) Two slices through the 3D 
reconstructed cell volume. Vacuoles (v) and carbon-dense vesicles (cd) are marked in the image. The full 
volume and a segmentation are given in Supplementary Material. (c) One of the 2D 10-second projections used 
for the tomography, for comparison. Scale bar 10 µm.
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quantitative autophagy studies, albeit after being combined with fluorescence microscopy for direct correlation 
of molecular imaging with the x-ray imaging of the same samples13.

Also for the NK-cell target-cell imaging, the unstained x-ray imaging of the killing process compares well with 
the confocal imaging, as regards cell shape, membrane attachment, and final disintegration of the target cell. Here 
the possibility to image the immune synapse in unstained NK-target-cell complexes in 3D may become a pow-
erful tool. Conventional techniques for optical microscopy, e.g., wide-field and confocal microscopy, suffer from 
lower spatial resolution and electron microscopy requires tedious sample preparation. A better understanding 
of the observed but unresolved filament structure in the interface as well as the observed vacuolization process 
would be of large importance. Such studies would, however, require further improvements of the x-ray micro-
scope performance, especially as regards resolution and contrast.

The spatial resolution as assessed by FRC was 50–100 nm half-period in all 2D x-ray images presented here. 
Better matching of zone plate parameters with source bandwidth (cf. Methods) and a reduction of minor resid-
ual vibrations could improve this. In the 3D images the reconstructed tomographic slices presented here show 

Figure 4. 2D x-ray microscopy of the interaction of an NK cell with a HEK target cell. (a–d) X-ray microscopy 
images obtained with 10 s exposure time showing different stages of NK-target cell interaction, from (a) initial 
adhesion, (b) over firm adhesion, (c) starting apoptosis and (d) target cell death. (e–h) Snap-shots from a time-
lapse sequence by confocal microscopy of an NK cell forming an immune synapse and killing a HEK target cell. 
The NK cell is stained orange and the HEK target cell is stained green and red. Transition from green to red 
indicates cell death. Scale bars 10 µm.

Figure 5. 3D tomographic reconstruction of NK cell interaction with starving HEK293T cell. (a,b) Two slices 
from the reconstructed 3D volume of two NK cells interacting with a starved HEK293T cell. Vacuoles (v), 
nuclear envelope (ne), and carbon-dense vesicles (cd) are marked. The full volume and a segmentation are 
provided in Supplementary Material. (c) One of the 2D 10-second projections used for the tomography, for 
comparison. Scale bar 10 µm.
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features down to the 100 nm-range in the central parts of the sample, while being more blurred towards the outer 
parts. The main reasons are the limited depth of focus (DOF) of the Fresnel zone plates and the missing wedge 
in the tomographic data set. These problems are inherent for all x-ray microscopes when using a TEM-type cryo 
sample stage, which is the standard arrangement for studying adherent cells or cell interactions. Naturally, smaller 
cells like algae and/or cell types that accept capillary sample stages8 avoid this problem. As for the DOF problem 
Selin31 has proposed a method, focus-stack back-projection, which would be helpful. The missing wedge is in 
practice determined by the shadowing of highly absorbing features, neighboring cells, and the ice layer thick-
ness. A specialized sample holder with lower bars and smaller diameter should help. Also the recently invented 
dual-axis tomography at the Alba microscope reduces this problem32. Contrast may be improved by increasing 
the partial coherence9. Increasing coherence has previously not been possible at laboratory x-ray microscopes 
since this intrinsically decreases the photon flux, making exposure times prohibitively long. With the improved 
source and condenser arrangement, this may be an alternative.

Methods
Laboratory water-window cryo x-ray microscopy. Figure 1 shows the experimental arrangement, 
which builds on previous versions of the Stockholm laboratory x-ray microscope15. The water-window λ = 2.48 
nm (E = 500 eV) source is generated by focusing the λ = 1064 nm beam of a 2 kHz, 600 ps diode-pumped Nd:YAG 
slab laser (Inst. f. Lasertechnik, FHG Aachen) typically operated at 80–100 W onto a 30 µm diameter 40–60 m/s 
liquid nitrogen jet17,19. The stability of the jet is recently improved by a radiative heating arrangement20. In par-
allel, the jet position is continuously camera-monitored with an integrated flash-illumination system consisting 
of a fluorescent dye excited by a 4 ns, λ = 532 nm, 4 W, 20 Hz Nd:YAG laser providing ~5 µm spatial resolution. 
These two measures allow the operation at a larger distance (typically 3.5 mm) from the nozzle orifice providing 
the necessary long-term reliability and stability for microscopy in both 2D and 3D of relevant biological samples.

The typically 30 µm diameter plasma source is imaged with 1.6 × magnification onto the sample by a 58 mm 
diameter Cr/V multilayer condenser mirror (radius of curvature 350 mm) (Optix fab, Jena). This 500 double-layer, 
λ/Δλ = 450 bandwidth, and R = 4.66% average reflectivity mirror selects the λ = 2.48 nm hydrogen-like (NVII) 
line emission for monochromatic illumination of the sample. A 200 nm Al filter blocks scattered light and a 
central stop produces the hollow-cone illumination. The sample stage used in the microscope is a modified TEM 
goniometer stage (FEI) that allows movement in all spatial dimensions, including tilt along one axis. The samples 
are prepared on commercial holey carbon Au TEM grids, mounted on a temperature regulated custom-made 
cryo sample holder (Gatan) and inserted into the sample stage.

A 30 nm outer zone width, 200 µm diameter Ni zone plate images the samples onto the CCD. The choice of 
zone plate parameters reflects a balance between the need for large working distance for the tomography while 
still avoiding the influence of chromatic aberrations on the resolution. This long-working-distance objective 
(f = 2.42 mm at λ = 2.48 nm) allows ±90° tilt range of the custom cryo sample holder. However, the intrinsic large 
number of zones (N = 1667) may start introducing chromatic aberrations given the estimated source band width 
of λ/Δλ ≈ 700–100033.

The images are recorded by a cooled back-illuminated CCD (iKon-L, Andor) with 2048 × 2048 13.5 µm pixels. 
All experiments were performed at a magnification M = 770, resulting in a pixel size of 17.5 nm in the sample 
plane and a field of view (FOV) of 35.9 µm, large enough to fit several cells in one image and to search for inter-
esting specimen over large sample areas.

Sample preparation for x-ray microscopy. The HEK cells (cf. below) were seeded (~105 cells/well) and 
cultivated on carbon Au TEM grids in 4-well plates under physiological conditions (37 °C and 5% CO2). For the 
carbon-dense vesicle visualization, the cells were imaged after one to three days of starvation, i.e., no nutrients 
were added. We note that the number of starved days is a very approximate indication of the cell’s stage of star-
vation since it also depends on several other parameters, such as number of cells, volume of medium etc. For 
the NK-target cell experiments, ~5 × 105 primary IL-2 activated NK cells (cf. below) were added to each well 
after 24 h incubation. The abundance of NK cells was to guarantee multiple interactions on the grid. Most of the 
non-interacting NK cells were removed by blotting.

The grids were blotted to remove excess liquid and plunge-frozen in liquid ethane. To ensure a thin amor-
phous ice layer, we monitored that the liquid surface was concave, indicating a thickness smaller than the height 
of the gold bars (10 µm). The grids were then transferred to the microscope and kept at −170 °C throughout the 
experiments on the custom cryo sample holder.

Data acquisition. The grid was first searched for an interesting specimen with 1 s exposures and then the 2D 
imaging was done with 10 s exposures. The photon flux is approximately 160 ph/pixel (per 10 s) with no object 
(i.e., flat-field recordings) and 60 ph/pixel with a typical sample amorphous ice layer (corresponding to 8 μm ice). 
The dose for a 10 s exposure is estimated to 105 Gy.

For the tomography we record approximately 70 projections, typically in a range of angles up to ±57°, where 
the upper limit is determined by shadowing of the sample by the grid bars or neighboring cells as well as reduced 
x-ray transmission through the slightly concave ice layer. To compensate for the latter, 10 s exposures were used 
for angles < ±30° and 20–30 s exposures for higher angles. Although the total exposure time for a tomography 
series is in the 20 min range, the total data acquisition time is in the 2-hour range due the still manual sample 
repositioning between exposures.

Data processing and reconstruction. All 2D images are baseline corrected and normalized for the source 
movement and thickness variations in the ice-layer by dividing each image with a heavily blurred version of itself. 
The images were then smoothed by applying a Gaussian filter 
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The tomographic reconstruction was performed with the simultaneous iterative reconstruction algorithm 
(SIRT) in TomoJ34,35 with 50 iterations and relaxation coefficient 0.5. Projections were treated as the 2D images 
but with a σ = 2 Gaussian filter, reflecting the lower detail obtainable given the depth of field and limited tilt-range. 
Alignment of the projections were performed by manual correlation correction in TomoJ and refined using the 
automated landmark alignment. Images were binned 2 × 2 for faster reconstruction.

Image analysis. The quantitative analysis (of, e.g., the carbon-dense vesicles) was done manually by two 
independent observers, whose results typically differed less than ± 5%, both in number and diameters. Given the 
low difference and high contrast, the microscope method demonstrated here should allow for automatic quanti-
fication in both 2D and 3D.

The resolution in all 2D x-ray images was assessed using Fourier ring correlation (FRC) with the standard 
½-bit resolution threshold7,36. This threshold was also found to produce conservative values of the highest resolv-
able spatial frequencies when applied to images of a Siemens star.

Human embryonic kidney (HEK) cell culture. The human embryonic kidney cells 293T (HEK293T) 
were cultured in RPMI-1640 (SH30027 Thermo Scientific, MA, USA) supplemented with 10% fetal bovine 
serum (SV30160; Thermo Scientific, MA, USA), 100 U ml−1 penicillin–100 mg ml−1 streptomycin, 1 × MEM 
Non-Essential Amino Acids Solution (Thermo Fisher Scientific, MA, USA), 1 mM sodium pyruvate, 2 mM 
l-glutamine (Sigma Aldrich, MO, USA) and maintained at 37 °C, 5% CO2. For confocal microscopy, HEK293T 
cells were cultured in 35 mm glass-bottom petri dishes (MatTek Corporation, MA, USA) for two days before the 
experiment.

Natural killer (NK) cell isolation and culture. Peripheral blood mononuclear cells (PBMCs) were 
obtained from healthy donor buffycoats by Ficoll–Hypaque gradient separation (GE-Healthcare). NK isolation 
from PBMCs was performed by negative selection using the NK cell Isolation Kit (Miltenyi Biotec GmbH, GE) 
according to manufacturer’s instructions. Purity of enriched polyclonal NK cells was measured as percentage 
of CD56+ CD3− population by flow cytometry and confirmed to be >95%. Purified polyclonal NK cells were 
maintained in RPMI 1640 supplemented with 10% FBS and 100 U/ml of r-IL-2 (R&D System Inc., MN, USA).

Live cell confocal microscopy. Images were acquired using inverted laser scanning confocal microscopy 
(LSM 880 or LSM510 META, Zeiss, Germany) equipped with an environmental chamber maintaining the cells 
under physiological condition, using the laser lines 405 nm, 488 nm, 561 nm and 633 nm combined with tunable 
emission filters set to match the emission spectra of the used probes. For fluorescent staining, cells were washed, 
incubated with the appropriate dye according to the manufacturer’s instructions,washed, and used for experi-
ments. Except for the staining, similar protocols were used for x-ray and confocal microscopy.

Figure 2 was acquired in single optical sections or Z-stacks of several optical sections (≈0.5 μm apart) with 
a 63×/1.4 oil immersion objective. The cells were stained with Hoechst 33342 NucBlue® Live ReadyProbes® 
Reagent (Thermo Fisher Scientific, MA, USA), DiO Cell-labeling solution (Thermo Fisher Scientific, MA, USA), 
and LysoTracker® Deep Red (Thermo Fisher Scientific, MA, USA) for nuclei, membranes and acidic organelles, 
respectively. Membrane-bound and acidic organelles are involved in the autophagic process21,22. The time-lapse 
sequence of NK-HEK interactions (Fig. 4) were performed with a 20×/0.3 objective acquiring one image every 2 
min for 12 hours37. The NK cell was stained with CellTrace™ Calcein Red-Orange, AM (Thermo Fisher Scientific 
MA, USA) and the HEK cell with CellTrace™ Calcein Green, AM (Thermo Fisher Scientific MA, USA), and 
DDAO-SE Far-Red (Thermo Fisher Scientific MA, USA).
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