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Manipulation of photoassociation 
of ultracold Cs atoms with tunable 
scattering length by external 
magnetic fields
Guosheng Feng1, Yuqing Li1,2, Xiaofeng Wang1, Jizhou Wu1,2, Vladimir B. Sovkov   1,3, Jie 
Ma1,2, Liantuan Xiao1,2 & Suotang Jia1,2

We demonstrate that for ultracold, optically trapped Cs atoms the photoassociation (PA) can be 
manipulated by using external uniform magnetic fields due to the alteration of the scattering 
wavefunction in the region of the free–bound optical transition. We present PA–induced atom loss 
measurements with the same intensity for PA laser but different external magnetic fields, and analyze 
main contributions of the PA to the variation of the number of atoms in the trap. The PA rate exhibits 
a strong dependence on the changing uniform magnetic field. The experimental data are simulated 
within the model of a single–channel one–well rectangular potential, whose depth is adjusted so as to 
assure the predicted variation of the scattering length with the magnetic field. The computational and 
experimental results are in a reasonable agreement to each other. The same model is used to illustrate 
some general properties of the two–body quantum system in the near–threshold state.

Rapid progress has been witnessed in the formation and manipulation of ultracold molecules, and this is closely 
related to their wide applications over recent years1. At ultralow temperature, extremely precise control over 
molecular coherent dynamics can be exerted, and even the reactivities of such molecules can be steered at vanish-
ing entropy2. Their rich internal structure makes them sensitive probes in precision measurements of fundamen-
tal physical constants up to a check of the hypothesis of the time variation of world constants3–6. Possibly strong 
dipolar interactions of heteronuclear dimers facilitate their application in quantum simulation of the strongly 
interacting regime and quantum computations7,8, and also enable proxy investigations of exotic condensed–mat-
ter phases9.

Laser–induced photoassociation (PA) and magnetic field–controlled Feshbach resonance are two typical 
ways in which ultracold atoms can be converted to the molecular bound states10,11. To effectively control over 
the atom-molecule conversion, an increasing number of theoretical and experimental researches provide new 
approaches to obtain an enhanced PA rate by increasing the density of atomic pairs in the short–range region12–17. 
A much–used method, investigated experimentally, is the Feshbach–optimized PA18–20, where PA had been also 
used to observe Feshbach resonances21,22. The near–Feshbach resonance wavefunction consists of strongly cou-
pled bound and free hyperfine components of both single and triplet symmetry, resulting in greatly increased PA 
rates23. A similar mechanism is developed theoretically to obtain an efficiently direct stimulated Raman adiabatic 
passage of ultracold atoms in the continuum state to ground state molecules near a Feshbach resonance24. The 
efficient formation of ultracold molecules via the effective manipulation of PA enables the multi-purpose appli-
cations of ultracold molecules.

However, there are very few studies on the effect of uniform magnetic fields away from a Feshbach reso-
nance position on the PA. These magnetic fields can be used to alter the atomic scattering length, which has 
a great effect on the PA rate10,25. In this paper, we present a feasable study on the efficient manipulation of the 
PA of the colliding pairs of ultracold Cs atoms by means of an external uniform magnetic field. Compared to 
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the previous investigation18, our Cs atomic sample has a low temperature and is trapped in an optical dipole 
trap(ODT). Beside, we describe a theoretical model with the depth–adjustable square potential to match the mag-
netic field-induced variation of scattering length of atoms in their ground state, and calculate the Franck–Condon 
coupling strengths. Reasonable agreement between theory and experiment confirms that the shift of scattering 
phase of the colliding atom pairs induced by a uniform magnetic field gives rise to substantial change in the den-
sity of atomic pairs in the short–range region.

Results
PA of ultracold Cs atoms.  The PA spectroscopy is measured by detecting the loss of Cs atoms optically 
trapped in a crossed ODT as a function of PA laser frequency. If the PA laser frequency is resonant with the 
energy difference between the scattering state of colliding atomic pairs and the bound excited state of diatomic 
molecule in a particular rovibrational level, the pure long-range state Cs2 molecule is produced in the outer well 
of the double–well potential of the −0g  ( +S P6 62

1/2
2

3/2) state26,27. Figure 1 shows a typical PA spectrum of the rovi-
brational level =v 10, =J 0 of the electronically excited state of Cs2. The number of the Cs atoms remaining in 
the trap is detected by the standard absorption imaging method. We identify the frequency location of the maxi-
mum trap–loss as a position of the PA resonance, the resonant frequency is obtained as ~ 11672.098 cm−1 by 
applying the Lorentz fitting to the observed PA spectrum. The binding energy of this rovibrational level is directly 
inferred to be Ebind ~ −70.085 cm−1 when referring to the +S P6 62

1/2
2

3/2 threshold.
We have investigated the influence of the magnetic field itself on the number of optically trapped atoms with 

a light field of an off-resonance frequency. For the Cs atoms in the hyperfine state =F 3, =m 3F , the three-body 
loss rate is strongly dependent on the uniform magnetic field. However, the number of atoms remains almost 
unchanged with the changing magnetic field. A reasonable explanation is given by considering a large number of 
reduction of the atomic density in the plain evaporation process of 500 ms at a large scattering length of ~1250 a0
(Bohr radii) before the exposure of the atoms to the PA laser, where the three-body loss rate is usually propor-
tional to both the fourth power of scattering length and the third power of the atomic density28. Thus, the dilute 
atomic sample makes it possible for the variation of B to have almost no influence on the number of atoms in the 
ODT, and the PA is the main contribution to the loss of optically trapped Cs atoms.

Dependence of PA rate on the magnetic field.  The dependence of PA rate on the uniform magnetic 
field is investigated for a direct illustration to the manipulation of the PA using the uniform magnetic fields. The 
PA rate is known in terms of the on-resonance rate coefficient KPA, which can be determined from the time evo-
lution of the atomic density n r t( , ) in the PA process29. The relationship between the atom loss and the PA rate is 
described by the differential equation

= −n r t K n r t( , ) ( , ), (1)PA
2

implying that the atom loss mainly originates from the two-body PA process without an additional nontrivial 
three–body loss. In this case, we analytically solve for the time-dependent density distribution and extract KPA by 
spatially integrating the density and matching the observed and calculated atom loss after some time τ. Compared 
to the previous experiments19,29,30, the exposure time τ of the PA laser on the atoms is longer than the trap oscil-
lation period, thus any possible time dependence of KPA that deduced in this experiment is averaged over, and the 
atomic density is described without accounting for the details of the time evolution

τ
τ

=
+

n r n r
K n r

( , ) (0, )
1 (0, )

,
(2)PA

Figure 1.  PA spectrum of ultracold Cs molecules in the v = 10, J = 0 rovibrational level in the outer potential of 
the long–range −0g  state with a double–well structure. The red line is a Lorentz fit of the observed data. The errors 
are mainly from the systematic uncertainty induced by the fluctuation of the number of optically trapped atoms 
in each experimental cycle and the uncertainty in the reading process of PA laser frequency.
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where n r(0, ) is the initial density before switching the PA laser on, τ is the duration time of PA laser, and τn r( , ) 
is the density after switching the PA laser off. The dependence of the PA rate KPA on the magnetic field is shown in 
Fig. 2, in which the variation of the PA rate with the magnetic field is corresponding but just opposite to the num-
ber of atoms in the crossed ODT, and this in turn demonstrates that the PA–induced two–body loss dominates the 
atom loss.

In Fig. 2, the theoretical curve shows reasonable agreement with the experimental result. The theoretical PA 
rate coefficient is estimated as the properly normalized squared overlap integral (Frank–Condon factor) of the 
model scattering wavefunction and the wavefunction of the upper bound state −0g  rovibrational level =v 10, 

=J 0. The atomic scattering wavefunction with the energy of ×k 5B  μK above the threshold is computed by using 
the analytical expressions of the square–well potential theory. The upper bound state wavefunction is computed 
with the standard Numerov algorithm using the potential function of the outer well of the −0g  state31.

Theory model
The theory of laser–assisted resonant cold collisions denotes that the strength of PA of ultracold atoms is deter-
mined by the coupling between the continuum wavefunction of the initially colliding atomic pairs and the wave-
function of the excited bound molecules under a PA laser field25. As has been already mentioned, the physically 
correct scattering wavefunction is presented by a mix of many channels formed by hyperfine components of the 
system. On the other hand, as is well known from the scattering theory32, the variation of the density of atomic 
pairs in short interatomic separations is strongly correlated with the asymptotic properties, such as the scattering 
length, which can be chosen as a governing parameter of the process, without much attention to the details of 
the short–range forces. This idea has been frequently exploited in the previous works33,34, where the simplified 
models of two coupled rectangular potentials were employed. The coupling of at least two channels looks to be 
important for a formation of the above–threshold Feshbach resonances, while the variation of atomic scattering 

Figure 2.  The on–resonance PA rate derived from the rate equation (1) for the atomic density, applied to the 
experimental atom loss, as a function of the magnetic field. The solid curve is obtained by the model calculation 
as described in the theory section.

Figure 3.  Illustration of the model depth–tunable square potential in a single channel system. The horizontal 
line in the outer region corresponds to the potential of U = 0; the dotted lines in the inner region indicate 
the depth of the potential tuned by the magnetic field so that to alter the scattering length and, consequently, 
the density of the atomic pairs in the short internuclear distance where PA occurs. r is the separation of two 
colliding atoms.
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wavefunction with the uniform magnetic field can be described within a simple model of a single–channel rec-
tangular potential with an adjustable well depth as shown in Fig. 3.

Following refs34,35 we have chosen the radius of the model square–well potential to be the mean scattering 
length π= = Γ −R a R4 (1/4)0

2
vdW, where =R m C(2 / )rvdW

1
2 6

2 1/4 is the van der Waals radius and C6 is the van 
der Waals coefficient at −R 6 in the realistic long–range potential. The mean scattering length of 95.7 a0 securely 
covers the range of an upper bound state wavefunction of excited Cs2 molecule in the long-range −0g  state.

The depth of the well for every magnetic field B is chosen so as to assure the predicted dependence36,37 of the 
scattering length a on B

= + . −
.

+ .
a B B

B
( ) (1722 1 52 )(1 28 72

11 74
),

(3)

where the units are the Bohr radius (a0) and Gauss (G). This equation must be valid for the ground state =F 3, 
=m 3F  of the Cs atoms in the observed range of magnetic fields.
The global wavefunction of atoms in the entire region is constructed by the requirement for the wavefunction 

itself and its first derivative to be continuous at the switching point R0; an additional condition is that the wave-
function turns to zero at =r 0 in the inner region. Scattering state wavefunctions are conventionally normalized 
on the constant asymptotic amplitude, and bound state wavefunctions are normalized on the unit L2 norm. The 
physically realizable bound states are those, for which < =∞E V 0; this is only possible if

+ =+ + −k R k ktan( ) / 0 (4)0

where the superscripts “ + ” and “−” designate the states with the energy E higher than and lower than the local 
value V  of the potential, = | − |±k m E V(2 / )2  is the local wavenumber. Sometimes in the scattering theory the 
virtual “antibound” states (not realizable physically) are also considered by − =+ + −k R k ktan( ) / 00 .

The scattering length a can be obtained via the coefficients of the threshold ( = =∞E V 0) solution. Hence, the 
wavenumber in the inner region of the asymptotically threshold state obeys the equation

= − .+ +k R k R atan( )/ (5)0 0

After solving the latter equation for +k , the well depth = +V m k( /2 )2 2 , providing the desired value of the 
scattering length a, can be found.

However, due to a periodicity of the tan function, the solution of this equation is not unique. The physical rea-
son for this is that the desired variation of the scattering length is governed by the properties of a near–threshold 
bound or antibound level, independently of how many states lay below this near–threshold level. In most of our 
calculations we have chosen the shallowest well containing only one bound state level. We do the model calcu-
lations based on the above theory and Eq. 3 for the scattering length. The most principal results of the modeling 
are shown in the theoretical variation of PA rate with the uniform magnetic field as shown in Fig. 2. The depth 
of the potential well decreases with the increasing magnetic field. As indicated in Fig. 4, a near-threshold bound 
state produces a big positive scattering length; a near–threshold antibound state produces a big negative scattering 
length. The big absolute value of the scattering length indicates the enhancement of the spatial density (wavefunc-
tion amplitude) of near–threshold states.

Discussion
To clarify the underlying physical mechanism, we discuss some intermediate results. Figure 4 shows the energies 
of the bound and antibound states relative to the threshold as functions of the magnetic field within the most 
representative range. We see that, besides the only one bound state, there exist two antibound states, which coa-
lesce and vanish at a switching point. To the left of this point the antibound states lay higher than the bound one, 

Figure 4.  Energies of the bound and virtual antibound states in the rectangular potential relative to the 
threshold as functions of magnetic field.
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so the upper of them affects the near–threshold scattering behavior in a first place. As soon as the bound state 
approaches the threshold to the right of this point, it begins to determine the scattering behavior. These properties 
are illustrated in Fig. 5, showing the square–well potential function and the wavefunctions (arbitrary normalized) 
of the scattering, bound, and antibound states at various values of magnetic field. The variation of the energies of 
the bound and antibound states in Fig. 4 also is consistent to the appearance of PA rate in Fig. 2.

In Fig. 5(a) with the magnetic field of =B 15 G, one of the antibound levels lays close to the threshold and, 
correspondingly, its wavefunction is very similar to the scattering state wavefunction, at least in the inner region. 
This causes a relative enhancement of the PA rate displayed in the left part of Fig. 2. Figure 5(b) shows the corre-
sponding results for B = 18.6 G, at which a very small PA rate coefficient is observed in Fig. 3. The reason is that 
there neither bound nor antibound near–threshold state exists: the antibound states have already gone, while the 
bound state is still rather far from the threshold. The resemblance between the bound and scattering state wave-
functions is not as good as in the other cases. When the magnetic field is tuned to the value of B = 117 G, the 
bound state level is very close to the threshold, its wavefunction is very similar to the scattering one, as shown in 
Fig. 5(c), and the PA rate increases again.

The widely used approximate expression for the scattering length via the binding energy of a near–threshold 
bound/antibound state is given as

| | ≈ = | − | .−a k m E V1/ /(2 ) (6)2

We have compared this estimate to the accurate model scattering length in Fig. 6. The experimental values, 
also shown here, have been computed by fitting our model to the experimental PA rates. We see that Eq. 6 pro-
duces reasonable estimates for the scattering length if only there indeed a near–threshold bound or antibound 
state presents; however, it breaks in the region of no such state. There is a small peak for the experimental scatter-
ing length and this local deviation may be attributed to the perturbation from the narrow d-wave Feshbach reso-
nance at the magnetic field of B = 47.9 G. Remaining discrepancies, noticeable at high magnetic fields, can be 
caused by a shallowness of the well, as the inequality | | | |E V  is definitely a condition for Eq. 6 applicability. 
Although our single-channel square-well potential model doesn’t include the bound state of Feshbach molecule, 
it can be used to give the effective wavefunction of two colliding atoms in the short separation and then to calcu-
late the overlap between the atomic scattering states and excited bound molecular states.

Figure 5.  The potential well and the wavefunctions at the magnetic fields of B = 15 G (a), 18.6 G (b) and 117 G (c).
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Methods
Preparation of ultracold Cs atom sample.  The experimental study on the manipulation PA of optically 
trapped ultracold Cs atoms using a uniform magnetic field is based on the trap–loss spectroscopy of the ultracold 
atomic sample at the changing magnetic field. To obtain an ultracold atomic sample, the three–dimensional (3D) 
degenerated Raman sideband cooling (DRSC) is employed to cool and polarize the Cs atoms in the desired state 

=F 3, =m 3F
38. After 10 ms of 3D DRSC, we obtain . ×1 5 107 atoms with the temperature of ~1.7 μK39. 

Subsequently, the cooled atoms are loaded into a large–volume crossed ODT operating at 1070 nm. The crossed 
ODT creates a confined potential of ≈ − ×k 45B  μK for Cs atoms. Due to a large anti–trapping potential induced 
by the gravity, the magnetic field gradient of 31.13 G/cm is produced using a pair of coils in the anti–Helmholtz 
configuration for the magnetically levitated loading40. Meanwhile, another pair of coils in the Helmholtz config-
uration provide the magnetic field of 75 G to cancel the resulting anti–trapping potential in the horizontal direc-
tion from the application of the magnetic field gradient.

Experimental procedure of PA at different magnetic fields.  Once the atoms are prepared in the 
crossed ODT, PA is performed by illuminating the atoms with a certain detuning to the Cs D2 transition 

→S P6 62
1/2

2
3/2 near the wavenumber of 11672 cm−1. The corresponding PA laser is obtained from a widely 

tunable continuous–wave (cw) Ti:sapphire laser, which yields an output power of 1 W with a narrow linew-
idth of ~75 kHz. The long–time frequency drift of the PA laser is less than 500 kHz by locking it to its self–
reference cavity. After optical alignment and fiber coupling, a beam with the power of 108 mW is focused to 
a waist of ω0 = 150 μm, resulting in the intensity of = .I 141 5 W/cm2. After 500 ms of the plain evaporation 
dominated by a three-body loss at the B of 75 G, the PA laser is switched on and the atomic cloud is illumi-
nated for 100 ms.

For investigating the effect of external uniform magnetic fields on the PA, we measure the PA of Cs atoms at 
different magnetic fields. Prior to switching on the PA laser focused on the Cs atoms, the magnetic field is ramped 
up or down over 30 ms to a magnetic field B, and afterwards the PA of the Cs atoms is performed for 100 ms at this 
B field. The dependence of the PA rate on the magnetic field is determined by recording trap loss spectra at differ-
ent magnetic fields. However, the variation of the magnetic field induces the shift of the resonant frequency 
between the scattering atomic and excited bound molecular states due to the Zeeman effect of the hyperfine state 

=F 3, =m 3F  of Cs atoms. Thus, the PA laser frequency is tuned with a few megahertz to compensate the shift of 
the resonant frequency, which is twice as much as the Zeeman shift.

Conclusions
To summarize, we show that it is possible to use an external uniform magnetic field to manipulate the PA of ultra-
cold atoms optically trapped in a crossed dipole trap, that, subsequently, makes it possible for enhancing the PA 
used to form ultracold molecules. The experimental results are reproduced with a reasonable quality by using the 
model of a single–channel square–well potential with the depth adapted to the magnetic field via the scattering 
length as a governing parameter. We present the clear physical mechanism for efficiently manipulating PA, the 
spatial density of near-threshold states in the short interatomic separation region can be manipulated by altering 
the scattering length that is related to the near-threshold bound and anti-bound states. Our result demonstrates 
that the one-channel square potential not only provides a tool for a reasonable modeling of the PA rate observed 
in our experiment, but can also serve as a very clear and well understandable illustration of the general near–
threshold physics in a two–body quantum system.

Figure 6.  The scattering lengths as functions of the magnetic field: accurate model, estimated from the binding 
energies of the bound and virtual antibound states, and the ones estimated from the experimental data within a 
framework of the model of the rectangular potential.
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