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Discriminative Prior - Prior Image 
Constrained Compressed Sensing 
Reconstruction for Low-Dose CT 
Imaging
Yang Chen1,2,3, Jin Liu1,2,3, Lizhe Xie4, Yining Hu1,2,3, Huazhong Shu1,2,3, Limin Luo1,2,3,  
Libo Zhang5, Zhiguo Gui7 & Gouenou Coatrieux6

X-ray computed tomography (CT) has been widely used to provide patient-specific anatomical 
information in the forms of tissue attenuation. However, the cumulative radiation induced in CT scan 
has raised extensive concerns in recently years. How to maintain reconstruction image quality is a 
major challenge for low-dose CT (LDCT) imaging. Generally, LDCT imaging can be greatly improved 
by incorporating prior knowledge in some specific forms. A joint estimation framework termed 
discriminative prior-prior image constrained compressed sensing (DP-PICCS) reconstruction is 
proposed in this paper. This DP-PICCS algorithm utilizes discriminative prior knowledge via two feature 
dictionary constraints which built on atoms from the samples of tissue attenuation feature patches 
and noise-artifacts residual feature patches, respectively. Also, the prior image construction relies on 
a discriminative feature representation (DFR) processing by two feature dictionary. Its comparison to 
other competing methods through experiments on low-dose projections acquired from torso phantom 
simulation study and clinical abdomen study demonstrated that the DP-PICCS method achieved 
promising improvement in terms of the effectively-suppressed noise and the well-retained structures.

X-ray computed tomography (CT) is widely used in diagnostic imaging, image-guided surgeries and radiother-
apy tasks for clinic applications1–3. Recent years, more and more attention has been paid to the risk of ionizing 
radiation received during CT scans in recent years. CT dose levels should be kept ALARA (as low as reasonably 
achievable) if enough diagnostic information is provided. Reducing the exposure level (low-exposure protocol) 
can be simply implemented to lower doses in clinic application4–6. Conventional analytical reconstruction algo-
rithms (e.g. Filter Back Projection (FBP) method, Feldkamp-Davis-Kress (FDK) method7) often lead to unsat-
isfactory diagnostic CT image quality with increased mottle noise and streak artifacts due to the deteriorated 
projections.

Derived from statistical models of projection data, iterative methods have demonstrated better performance 
in noise-artifacts suppression in reconstruction, and lead to improved image quality. With the rapid develop-
ment of compressed sensing (CS)8,9, sparsity-promotion (e.g., total variation (TV)10–13, tight frame (TF)14, wavelet 
transform15, and dictionary learning16–23) based constraint had been considered to alleviate the ill-posedness 
in low-dose CT (LDCT) reconstruction. For example, the TV minimization based constraint (or regulariza-
tion) reconstruction, which was developed based on the sparse distribution of discrete gradient. Such constraint 
has demonstrated its effectiveness in preserving edges and suppressing noise11–23. Recently, dictionary based 
sparse representation was introduced to improve medical imaging16–23. In16, Xu. et al. proposed a dictionary 
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learning (DL) based method for LDCT reconstruction and demonstrated performance superior to the TV based 
method. Containing rich feature information, the composing atoms in dictionary work well in representing struc-
tured features, which lead to significantly enhanced reconstruction quality. In19, Liu. et al. proposed an iterative 
reconstruction by feature constrained to improve LDCT imaging, which relies on a pre-defined 3D feature dic-
tionary constructed from standard-dose CT (SDCT) sample. The pre-defined 3D feature dictionary contains 
patient-specific anatomical structures, which have significant morphological discrepancy with the undesirable 
noise-artifacts features. This 3D feature constraint approach has good potential for suppressed noise-artifacts and 
the better retained anatomical structures.

Prior knowledge can also be utilized by directly including some available high quality prior image into the 
cost function, which leads to the algorithms termed prior image constrained compressed sensing (PICCS)24. 
Some PICCS type algorithms have gotten successful applications in interventional imaging, treatment monitor-
ing, and 4D cardiac reconstruction24–27. Nevertheless, the prior image term takes effect in PICCS algorithms via 
the minimization of subtracted residual function, which requires an exact position correspondence between the 
prior image and the current image. This requirement, however, is often hard to meet due to the unavailability of 
precisely matched high quality prior images, which often greatly limits the practical feasibility.

This paper presents a reconstruction approach termed discriminative prior - prior image constrained com-
pressed sensing (DP-PICCS) for LDCT, which improves current PICCS reconstruction by utilizing discriminative 
prior knowledge. The discriminative prior knowledge works through feature dictionaries which containing rich 
tissue attenuation feature information and noise-artifacts residual feature information. The proposed DP-PICCS 
algorithm can be easily implemented via an alternative optimization scheme with a good parameter robustness. 
Experiments with simulated torso phantom and clinical abdomen data were conducted though the comparison 
with three state-of-art reconstruction algorithms. In summary, this paper is structured as follows: in section II, we 
present a detailed description of the proposed method and the implementation procedure for LDCT reconstruc-
tion. Experimental results and quantify the performance from simulated torso phantom and clinical abdomen 
projection are given and parameters setting of our proposed method are discussed in section III. Finally, conclu-
sions the paper and plans for future work are sketched in section IV.

Method
Discriminative prior - prior image constrained compressed sensing model (DP-PICCS). The 
standard CT reconstruction problem can be considered as an inverse problem. Directly solving the it may not be 
feasible due to the measurement incompletion or noise contamination in projection data. Approaches based on 
sparse representation can be used to overcome the ill-poseness by incorporating representation related knowl-
edge in the form of a regularization term11,28. The formula for CT image reconstruction with a constraint term 
can be expressed as:
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matrix, Rg denotes some specific global constraint term. Specifically, further reconstruction improvement can be 
brought via the PICCS approach by directly incorporating a high-quality prior image uprior into cost function24. 
This is accomplished by incorporating an image similar to that which we want to reconstruct into the reconstruc-
tion procedure. The PICCS algorithm can be formulated as a constrained optimization procedure as follows:
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Here, uprior is the vector of attenuation coefficients of prior image and λ ∈ [0, 1] is the weight parameter of 
prior image constraint terms in the objective function. The first prior image constraint term Rp in Eq. (2) con-
strains the reconstructed image toward the prior image uprior, while the second one Rg works as a global con-
straint term to overcome the ill-posedness in LDCT. Effect of the two constraints is modulated through the 
parameter λ in Eq. (2).

Nevertheless, two limits exist for the PICCS model in Eq. (2). The first one is the position displacement 
between a prior image and the current target image. A high quality prior image with exactly matched position 
correspondence is often not available. The second one is that the unitary analysis transform model (i.e. global and 
prior image constraint are both TV constraint) is used in most PICCS methods. The global constraint Rg and prior 
image constraint Rp give penalization with respect to the information on anatomical structures and residuals, 
which inherently have significant morphological discrepancy. The L1 norm based TV constraint is not effective 
in tackling with the versatile features in practical reconstructions. Some blocky artifacts and smeared details tends 
to appear in the reconstructed LDCT images for the PICCS reconstruction with TV constraints.

In this study, to overcome these limits, we improve PICCS reconstructions by imposing two discriminative 
feature dictionary constraints built specifically for the desirable tissue attenuation features and the noise-artifacts 
residual features in the terms in the PICCS framework. The feature dictionary constraints to solve29–32:
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where D is the pre-defined feature dictionary, and Es denotes an operator to extract the s-th 3D patch in the vol-
ume space, αs is the sparse representation coefficients of E us  and v is the Lagrange multiplier. Then the corre-
sponding developed DP-PICCS framework is formulized in the following minimization problem:
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where Dr and Dt are the pre-defined feature dictionaries which composed of atoms featuring the anatomy struc-
tures for normal tissue attenuation and the noise-artifacts in the reconstruction image, rs

α  and ts
α  are the sparse 

coding, vr and vt are the Lagrange multiplier. Here, the discriminative prior (DP) is reflected in two aspects: the 
discriminative representation with the dictionaries Dr and Dt, and the high-quality prior image uprior generated by 
the discriminative feature representation (DFR) method in20.

Implementation of the DP-PICCS method. The prior image construction. In the implementation of the 
DP-PICCS method, the initial iteration is set to the FDK reconstruction, and then the DFR approach in20 is 
applied as the post-processing method to generate the prior image. The discriminative composite dictionary 

=D D D[ , ]t r  is composed of a tissue attenuation feature dictionary Dt and noise-artifacts residual dictionary Dr. 
It is noted that the atoms in D need not to be inter-independent, which can provide over-complete representations 
of CT image features. All the overlapped patches in the 3D LDCT volume u are represented by the linear combi-
nation of the atoms in dictionary D with the linear coefficient vectors [ , ]t r

Tα α α=  calculated by the orthogonal 
matching pursuit (OMP) algorithm. After this, we obtain the processed volume (approximate tissue attenuation 
featured volume ut ) by DFR: u E D E E( ( ))/ ( )t s s

T t
t s s

T
ss

 α= ∑ ∑ 20.
Figure 1(a) depicts one slice of clinical LDCT image from one GE Discovery HD750 CT unit. Figure 1(b) and (c)  

are the corresponding DFR processed image and the noise-artifacts residual component. We can see the DFR 
approach works well in separating undesirable noise-artifacts features from the original LDCT images, and has 
the potential to provide a high quality prior image (

u utprior = ).

Iteration reconstruction. With the initial prior image uprior
0 , tissue attenuation feature dictionary Dt and 

noise-artifacts residual feature dictionary Dr, Eq. (4) is in fact a non-convex L0-norm constrained optimization 
procedure with respect to u. We solve Eq. (4) using an alternative iteratively of image updating task and sparse 
coding task33. Using the FDK reconstruction as the initial volume u0, the implementation of the DP-PICCS 
method includes the following three steps:

 (1) Image update:
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where the superscript k and n are the update index, β is the global parameter for the fidelity term.
 (2) Tissue attenuation feature sparse coding:

Figure 1. (a) LDCT abdomen image; (b) Tissue attenuation component image after DFR; (c) Residual 
component after DFR.
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 (3) Residual feature sparse coding:

α α α= − − . . ≤ ∀
α

+ +( )E u u D s t T sarg min ,
(7)r

k
s

k n r
r r r

1 1
prior

2

2

0s
rs

s s

where Tr and Tt are the sparsity level parameters which limiting the maximum atom numbers in the two diction-
aries used for a 3D patch sparse coding.

The sup-problem of Eq. (5) is a typical quadratic form. By the separable paraboloid surrogate method, it can 
be optimized as28:
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The sparse coefficients α +
t
k 1
s

 and a
k 1
s

α +  in Eqs (6) and (7) can be solved by the greedy strategy based BP, MP or 
OMP algorithm29–32,34. In this paper, the Batch-OMP algorithm is considered as the solver for improving high 
computational efficiency35.

The overall DP-PICCS algorithm is implemented based on Algorithm 1, which contains two loops: the inside 
loop labeled by n for prior image update (the total inside iteration number is Nmax), and the outside loop labeled 
by k. To get a stable solution, the whole reconstruction proceeds until the image update between two consecutive 

Figure 2. A flowchart of the proposed DP-PICCS algorithm for LDCT reconstruction.
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iterations falls below a pre-defined threshold θ ( θ− ≤+u u u/k k k1
2 2 ). In practice, the threshold parameter θ 

is hard to be normalized for different objective function and the measured projection. So, in this study we just use 
Kmax and Nmax as the simply stopping iteration numbers for the outer loop and inner loop, respectively. The full 
flowchart of the proposed DP-PICCS algorithm is shown in Fig. 2

Construction of the Feature Dictionaries. The DFR approach considers a LDCT volume u as the sum of 
a volume with normal tissue attenuation features and a volume with noise-artifacts residual features20. So atoms 
with distinctly different features should be used to represent the different image constraint terms. With an aim 
to giving specific sparse representation, we build the two dictionaries using the SDCT projections acquired from 
the same CT scanner as the target LDCT images to reconstruct, in which the same scan protocol except the tube 
current is used. Performance of the proposed DP-PICCS method is highly determined by tissue attenuation fea-
ture dictionary Dt and residual feature dictionary Dr, which are respectively the collections of the atoms learned 
from sample patches. Schemed in Fig. 3, this strategy of dictionary construction includes the following two steps:

Step 1, Sample patches preparation: From the same CT scanner geometry as the LDCT images to recon-
struct, we acquire the SDCT image samples Vsd. Then, from this SDCT images, a set of LDCT images Vid are 
simulated via Eq. (10) and FDK reconstruction with ramp kernel.

= + =−N N e r m MPoisson { }, 1, 2 (10)m m
p

m0 m

where Nm, N0m and rm are the numbers of transmitted photons, incident x-ray photons and read-out noise along 
the m-th X-ray path, respectively. Pm is the attenuation integral of the m-th X-ray path. Note that a lower number 
of incident photons N m0  is used to ensure a rich information of residual features in Eq. (10). We then extract tissue 
attenuation features patches Ft from the SDCT volume Vsd, and the extract residual patches Fr from the difference 
volume Vr between the two matched SDCT and LDCT. To avoid great many training samples for calculation, the 
extraction operation is performed with a 3D interval ΔD specified by the intervals Δx, Δy, and Δz in the three 
directions (axes x, y and z).

Step 2, Dictionary construction: Here, the dictionaries Dt or Dr are trained from the Ft or Fr  by solving the 
following minimization problem via K-Singular Value Decomposition (K-SVD) method29–32:

Figure 3. Outline of the feature dictionaries construction.
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where Γt and Γr are the sparse coefficient arrays for each block in Ft and Fr, and are alternatively updated with the 
dictionary atoms in K-SVD algorithm. TL is the sparsity level limiting the term . −row 0, a pseudo-norm counting 
the number of non-zero coefficients in each block representation. It should be noted that the atom number of the 
learned dictionaries is much smaller than the block number in Ft and Fr.

Experiment and Results
To evaluate the performance of the proposed DP-PICCS method, the FDK method (with ramp filter), the DFR 
post processing method (DFR-post)20, the iterative TV minimization based reconstruction13, the PICCS method 
with TV constraint and DFR-post prior image (PICCSDFR) and a global feature dictionary-based statistical itera-
tive reconstruction (GDSIR) approach16 were adopted for comparison.

The traditional PICCS algorithm under the TV constraint framework and DFR-post prior image (PICCSDFR) 
is formulated as24:

λ λ= 
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− + − 
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−u u u u
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arg min TV( ) (1 ) TV( )
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⁎

where the sparsifying transform •TV( ) is the TV constraint12.
The GDSIR is a patch-based approach by extracting the prior information via a global dictionary trained from 

a high-quality CT image, and the associative image reconstruction is equivalent to solve the following minimi-
zation problem25:

Dataset PICCSDFR GDSIR DP-PICCS

Phantom Case D1 λ = 0.4, β = 4 × 10−3 λ = 1.4, L = 8, ε = 1.6 × 10−3 λ = 0.36, β = 0.24, Tt = 8, Ta = 6

Phantom Case D2 λ = 0.3, β = 2 × 10−3 λ = 2.3, L = 8, ε = 2.6 × 10−3 λ = 0.35, β = 0.21, Tt = 8, Ta = 8

Phantom Case D3 λ = 0.3, β = 1.4 × 10−3 λ = 2.3, L = 8, ε = 3.6 × 10−3 λ = 0.35, β = 0.19, Tt = 8, Ta = 8

Clinical Abdomen 
Data A and Data B λ = 0.3, β = 2.5 × 10−3 λ = 1.8, L = 8, ε = 3.6 × 10−3 λ = 0.35, β = 0.2, Tt = 8, Ta = 8

Table 1. Parameter Settings Of Different Iterative Reconstruction Methods.

Figure 4. The constructed 3D tissue attenuation feature dictionary and residual feature dictionary for 
experiments.
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In this study, the global dictionary Dg was the same as tissue attenuation dictionary in DFR (D Dg t= ), and an 
alternating minimization scheme described in16 is applied to find the solution of Eq. (14).

All algorithms were implemented in Matlab 8.3 environment on a personal computer (Intel i7-4790k CPU 
and 32-GB RAM). The reconstruction parameters used for all the experiments are listed in Table 1. All recon-
structions were stopped after 50 iterations and updated to a stable solution. Two dictionaries Dt and Dr were 
respectively built using four set clinical abdomen SDCT volumes containing total 100 slices acquired from the 
Siemens CT scanner following the steps in the Fig. 3. The sparsity level TL was set 8, the atom number C and 
patch size B in the dictionary construction stage were respectively set to 1000 and 8 × 8 × 5. The built 3D feature 
dictionaries were illustrated in Fig. 4. We can observe that the atoms in the two dictionaries can well reflect the 
attenuation features and the noise-artifacts features in CT images. It is also noted that some atoms in the tissue 
attenuation dictionary Dt present the textures with random intensity distribution, which were actually related to 
some background regions in the SDCT images when mean values are removed. Though not presenting obvious 
structural textures, these atoms with random intensity distribution in Dt practically contribute to the restoration 
of realistic SDCT image textures.

Anthropomorphic torso phantom simulation study. Data Acquisition. In torso phantom simulation 
study, a set of high quality CT volume (SDCT images) was scanned at 600mAs protocol on a GE Discovery 
HD750 CT scanner (tube voltage: 120KVp). The high quality torso phantom volume was reconstructed by FDK 
method with standard ramp filter. The torso phantom and the middle slice of axial views are illustrated in Fig. 5. 
For simulation, the source-to-axial distance and source-to-detector distance of the trajectory was respectively set 
to 57.3 cm and 101 cm. The detector panel has 960 × 256 elements with element size 1.024 × 1.10165mm2. 360 
projections covered one cycle axial scan were uniformly collected. Three different Poisson noise intensity were 
superimposed onto the raw projection data to synthesize low dose projection data (Photon intensities are 
bm = 5×104, 1 × 104 and 5 × 103 in Eq. (10) for Case D1, Case D2 and Case D3, respectively). For all the iterative 
algorithms, the whole projections were split into 20 subsets to accelerate computation.

Visual Assessment. Reconstructions with induced prior image depend heavily on the quality of prior image. 
From top to bottom, Fig. 6(a1–a3) provides the FDK reconstructed images for the scanner protocols of Case D1, 
Case D2 and Case D3. Fig. 6(b1–b3) provides the corresponding prior images produced by the DFR-post method 
form LDCT FDK images. All images are illustrated with the display window center 60HU and display window 
width 450HU. From the Fig. 6, we can observe the presence of strong noise and artifacts in the FDK reconstruc-
tion, which become severer as the doses decrease. From the second row in Fig. 6, the DFR-post method shows 
good performance in noise-artifacts suppression and structure preservation, and can provide as prior image in 
good quality and without deformation.

Figure 7 depicts the results from different reconstruction algorithms with three scanner protocols. From top to 
bottom, the scanner protocols are Case D1, Case D2 and Case D3, respectively. From left to right, the reconstruc-
tion algorithms are TV, PICCSDFR, GDSIR and DP-PICCS, respectively. We can observe that the smooth regions 
are plagued by some block and sharp artifacts, which may have resulted from the TV piecewise smooth constraint 

Figure 5. (a) The anthropomorphic torso phantom (Kyoto Kagaku co. LTD Japan); (b) Middle slice of this torso 
phantom volume axial view.
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in TV and PICCSDFR methods results in Fig. 7(a3) and (b3). This is because the gradient variation based TV con-
straint fails to provide good discrimination ability between desirable tissue structure features and streak-artifacts. 
In the third columns in Fig. 7, the GDSIR method works well in suppressing noise and artifacts but at the cost of 
smoothing out some organ edges (see the zoomed region and yellow arrow in Fig. 7(c3)). Comparing the results 
in all the zoomed regions, we can see that the proposed DP-PICCS method achieves the best image quality in 
structure retention and noise-artifact suppression for all the three dose levels.

PSNR and UQI Measure. Quantitative evaluation is performed using two metrics the peak signal to noise ratio 
(PSNR) and universal quality index (UQI). Here the PSNR and UQI are calculated via Eqs (15) and (16)36:

Figure 6. FDK reconstruction images and corresponding DFR-post images. (a1–a3) are the FDK reconstructed 
images correspond to Case D1, Case D2 and Case D3, respectively; (b1–b3) are the DFR-post images 
correspond to Case D1, Case D2 and Case D3, respectively.

Figure 7. Selected axial views in the simulated phantom reconstruction. From left to right, images 
reconstructed using the TV, PICCSDFR, GDSIR and DP-PICCS methods from Case D1 (the first row), Case D2 
(the second row) and Case D3 (the third row) projection, respectively.
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where u represents the reconstructed image from the LDCT, and uGS denotes a golden standard image, n indicates 
the voxel index and N is the number of voxels, u  and uGS are the mean pixel values of u and uGS, respectively, uσ  and 
σuGS

 are the standard deviation of image pixel values of u and uGS, respectively, and u u, GS
σ  is the correlation coeffi-

cient between u and uGS. The UQI is unitless and has a dynamic range of [−1, 1] reflecting the similarity degree 
between the reconstructed and golden standard images.

In calculating the PSNR and UQI of the reconstructed images, FDK reconstructed SDCT images (tube volt-
age: 120KVp, tube current: 600mAs, Fig. 5(b)) are used as the golden standard reference. The PSNR and UQI 
results are shown in Fig. 8. It can be seen in Fig. 8 that the FDK method obtains the worst scores for all the three 
cases dose levels, and the proposed method performs better than the competing methods in terms of the two 
metrics (with margins of 1–2 dB for PSNR and 0.01–0.02 for UQI). We can also see that such quantitative results 
are consistent with the visual performance in Fig. 7. After the LDCT FDK images processed by DFR-post method, 
the images quality gets significant improvement in both PSNR and UQI. As shown in Fig. 8, the PICCSDFR recon-
structed CT images obtained higher quality scores than the TV reconstructed CT images, and such improvement 
is brought by the use of high quality prior images from the DFR post-processing. The PSNR indexes of GDSIR 
reconstructed images are higher than those of the TV and PICCSDFR reconstructed images, while the UQI indexes 
remain in the similar level.

Convergence Analysis of the DP-PICCS Method. As described in section II.B, we solve the DP-PICCS recon-
struction using split alternating optimization iteration between feature sparse coding and reconstruction image 

Figure 8. PSNR and UQI measures on the different reconstruction images in Fig. 7. (a) PSNR; (b) UQI.

Figure 9. Plots of PSNR and UQI versus DP-PICCS iteration number in Case D1, Case D2 and Case D3. (a) 
PSNR; (b) UQI.
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Figure 10. The axial views for Data C1. (a,b) are the images reconstructed by the FDK and TV methods for 
standard dose protocol; (c–h) are the images reconstructed by the FDK, DFR-post, TV, PICCSDFR, GDSIR, DP-
PICCS methods for low dose protocol; (a1–h1) are the white zoomed regions of the rectangles delineated in 
(a–h).

Figure 11. The axial views for Data C2. (a–b) are the images reconstructed by the FDK and TV methods for 
standard dose protocol; (c–h) are the images reconstructed by the FDK, DFR-post, TV, PICCSDFR, GDSIR, DP-
PICCS methods for low dose protocol; (a1–h1) are the white zoomed regions of the rectangles delineated in 
(a–h).
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update. In image updates step, sub-problem Eq. (5) is a quadric constraint minimization problem and we solved it 
with a separable paraboloid surrogate method. This step can be considering a convergence process.

In feature sparse coding step, the non-convex sub-problems of sparse coding in Eq. (6) and Eq. (7) are 
NP-hard problem. To solve them, the Batch-OMP algorithm employs greedy strategy only to obtain a local min-
imizer in most cases30,35. Such alternating process cannot be guaranteed to converge to a global minimum due to 
the non-convexity L0-norm of the objective function in Eq. (4). To analyze the iteration stability of the DP-PICCS 
method, the global PSNR and UQI measures on the entire to-be-reconstructed anthropomorphic torso phantom 
image were calculated. The plotted PSNR and UQI values in Fig. 9 show that the reconstruction quality increases 
as the iteration proceeds for the proposed algorithm. This observation is confirmed by the study on both torso 
phantom and clinical abdomen data. Considering the formulation of our problem is similar to that in DLMRI, we 
can make a similar statement of a stable iteration as in37.

Clinical abdomen data study. Data Acquisition. In the clinical abdomen imaging study, two sets of clin-
ical abdomen projection data (Data C1 and Data C2) were provided by the Mayo Clinic (USA), which scanned 
from a Somatom Definition AS + CT scanner in a helical mode (tube voltage: 100KVp; tube current: 360mAs)38. 

Figure 12. The sagittal views for Data C1. (a,b) are the images reconstructed by the FDK and TV methods for 
standard dose protocol; (c–h) are the images reconstructed by the FDK, DFR-post, TV, PICCSDFR, GDSIR, DP-
PICCS methods for low dose protocol; (a1–h1) are the white zoomed regions of the rectangles delineated in 
(a–h).

Figure 13. The coronary views for Data C2. (a–b) are the images reconstructed by the FDK and TV methods for 
standard dose protocol; (c–h) are the images reconstructed by the FDK, DFR-post, TV, PICCSDFR, GDSIR, DP-
PICCS methods for low dose protocol; (a1–h1) are the white zoomed regions of the rectangles delineated in (a–h).
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The protocol of this study (data collection and processing) was approved by the institutional ethical review board 
of the Mayo Clinic and was conducted in accordance with the principles of the 1964 Declaration of Helsinki. 
Two patients were involved in the experiments. All these patients have given their written informed consent to 
the participation. A non-conflict of interest for this work was declared. The proposed method was carried out in 
accordance with the approved guidelines. The data were analyzed fully anonymously. Specific Poisson noise was 
superimposed onto the raw projection data for each case in the library to synthesize a low dose level that corre-
sponded to 1/4 the standard dose assuming 85mAs for tube current value38. The detector has 736 × 64 elements 
with element size 1.2856 × 1.0947 mm2. The source-to-axial distance and source-to-detector distance of the tra-
jectory was respectively set to 59.5 cm and 108.56 cm. The helical trajectory of source was covered by 1152 view 
angles per cycle with a pitch equal to 0.6. For all the iterative algorithms, the whole projections were split into 32 
subsets to accelerate computation.

Visual Assessment. Figure 10 and Fig. 11 display the selected axial views from the reconstructed results of Data 
C1 and Data C2. In Figs 10–11, images (a)–hepatic vein (see the zoomed region illustration(b) are respectively 
the illustrations for FDK and TV methods for the standard dose protocol, which the TV reconstructed images 
(Figs 10(b) and 11(b)) are used as reference; images (c)–(h) are respectively the illustrations for FDK, DFR-post, 
TV, PICCSDFR, GDSIR, DP-PICCS methods for the low dose protocol.

From the Figs 10 and 11, we can see that the DFR method works well with effective noise and artifacts suppres-
sion in images (b). It is found in Fig. 11(e,f) that the PICCSDFR approach leads to reconstruction in similar quality 
as the TV algorithm. Though demonstrating good performance in artifacts and noise suppression, the GDSIR 
method suffers from edge structure blurring of the hepatic vein (see the zoomed region illustration in Figs 10(g1) 
and 11(g1)). The illustrations in Figs 10 and 11 also show that, though still suffer less from noise-artifacts residual, 
the DP-PICCS reconstructed LDCT images present a better tiny structure identification than competing methods 
(see the red arrows in Figs 10 and 11).

Figures 12 and 13 display the selected sagittal and coronal views from the reconstructed CT volumes of Data 
C1 and Data C2. In Figs 12 and 13, it can be seen that the proposed DP-PICCS method performs better than the 
PICCSDFR and GDSIR methods, providing images with improved visual quality if using the TV reconstructed 
SDCT images (Figs 12(b) and 13(b)) as the references. Compared to other methods, the DP-PICCS method 
achieves a better preservation of anatomical features (see the zoomed region on liver tissue boundaries and arter-
ies in Fig. 12(h1)) than the TV and PICCSDFR methods. From the Figs 12 and 13(g), we can see that the featured 
atoms in GDSIR method can be used to provide improved structure preservation in reconstruction. Also, it is 
found in Figs 12 and 13 that the proposed DP-PICCS method achieves the best performance in noise-artifacts 

Scanner 
Protocol

Reconstruction 
Methods

Data C1 Data C2

ROI 1 ROI 2 ROI 3 ROI 1 ROI 2 ROI 3

SDCT
FDK 50.15 49.23 54.89 25.43 33.87 38.79

TV 90.69 114.49 109.95 111.52 118.27 126.54

LDCT

FDK 24.22 21.94 28.47 13.77 15.60 16.78

DFR-post 72.88 77.63 85.91 42.23 49.36 53.19

TV 78.73 91.01 101.11 66.28 99.52 93.49

PICCSDFR 75.53 105.05 97.41 94.82 109.31 136.73

GDSIR 79.45 99.93 98.29 87.91 94.34 103.54

DP-PICCS 87.86 105.73 104.59 95.72 121.51 114.23

Table 2. The lSNR (Unit: dB) Values Of The Clinical Data Results.

Figure 14. Calculated CNR values on the three ROIs in the two cases of (a) Data C1; and (b) Data C2.



www.nature.com/scientificreports/

13Scientific RepoRts | 7: 13868  | DOI:10.1038/s41598-017-13520-y

suppression and anatomical features preservation among all competing reconstruction methods (see the struc-
tures pointed by red arrows in the Figs 12(h1) and 13(h1)).

lSNR and CNR Based Quantification. For clinical reconstruction data quantitative study, two metrics were uti-
lized to give evaluation, namely, local Signal to Noise Ratio (lSNR) and Contrast-to-Noise Ratio (CNR). Here the 
lSNR and CNR are calculated by Eqs (17) and (18):

= ∑

∑ − ∑

=

= =

u
N u

N u N u
lSNR( )

1/

1/ ( 1/ ) (17)

n
N

n

n
N

n n
N

n

1

1 1
2

σ σ
=

−

−
u u

u u
CNR( , )

(18)
BG

BG

u u
2 2

BG

where u  and uBG are the mean intensities of the region of interest (ROI) and background region, respectively. σu 
and uBG

σ  are the associated standard deviations, respectively.
The lSNR values of the three different ROIs in Table 2, as indicated by the blue circles in Figs 10(a) and 11(a), 

were measured in the Data C1 and Data C2. The methods, i.e. DFR-post, TV, PICCSDFR, GDSIR, and DP-PICCS; 
yielded some gains on lSNR over the FDK reconstructions in the three different ROIs. It shows that, for the 

Figure 15. Axial ROI illustrations of the DFR-post prior image when using dictionaries with different atom 
number and patch size. The rows from above to bottom correspond to the cases with patch sizes B = {6 × 6 × 3, 
7 × 7 × 4, 8 × 8 × 5, 10 × 10 × 6}, respectively. The columns from left to right correspond to the cases with 
dictionaries in atom number (500, 500), (1000, 1000), (1500, 1500), (2000, 2000), respectively. The computation 
cost was tagged in unit second (s) in the right-bottom corner in each ROIs.
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low-dose case, the FDK method obtains the worst value, and the DP-PICCS method yields the highest value (in 
metric of lSNR for most ROIs) which are closer to the scores of TV SDCT reconstruction images than competing 
methods. We can also see that such quantitative results are consistent with the visual comparison in Figs 10-11.

Figure 14 lists the CNR values of the images reconstructed by the different cases for Data C1 and Data C2. 
The ROIs for the CNR measure are marked in Fig. 14(a) and (b) (red squares are ROIs and blue squares for 
backgrounds). It is also observed in Fig. 14 that the DFR-post processing significantly enhances the CNRs of 
LDCT images (most of them even higher than FDK reconstructed SDCT images) for Data C1 and Data C2, and 
the DP-PICCS algorithm leads to further higher CNRs. The plots in Fig. 14 also show that most of the CNRs of 
DP-PICCS indices are nearer to the TV reconstruction in SDCT case. This confirms the above visual comparison 
that the proposed method has good performance in terms of contrast preservation.

Sensitivity of dictionary building parameters. Performance of the proposed DP-PICCS is closely 
related to the parameters in dictionary construction, e.g. atom number C (dictionary size), and patch size B. 
Figure 15 displays the selected ROI (the LDCT images in Fig. 10(a) processed by DFR-post method) using dif-
ferent atom number C and patch size B. The computation cost (in unit second (s)) is tagged in the right-bottom 
corner in each ROI. The rows from above to bottom correspond to the results with B = {6 × 6 × 3, 7 × 7 × 4, 
8 × 8 × 5, 10 × 10 ×6 }, and the column from left to right respectively correspond to the results related to diction-
aries with different atom numbers (500, 500), (1000, 1000), (1500, 1500), (2000, 2000) (in the format of (Ct, Cr) 
for the dictionaries Dt and Dr).

We can observe in Fig. 15 that an effective restoration of desirable attenuation information can be obtained 
if an (1000, 1000) sized dictionary with 8 × 8 × 5 sized atoms are used in patch representation. It is also found in 
Fig. 15 that almost no visual difference can be discerned when the patch size and dictionary size increase over 
8 × 8 × 5 and (1000, 1000). Considering significantly larger computation cost is to be induced when enlarging the 
dictionary or atoms therein, in this study we use the dictionary size Ct = Cr = 1000 and B = 8 × 8 × 5 to maintain 
a good balance of representation accuracy and computation cost.

Analysis of the parameters in the DP-PICCS reconstruction. Several parameters need to be suitably 
set in the proposed DP-PICCS method, and these parameters include the fidelity parameter β, prior-image con-
straint parameter λ and the sparsity parameters Tt and Tr. In general, the fidelity parameter β should be well set 
to balance the data fidelity and prior information constraint terms. The data fidelity term β reflected the distance 
between the iterated images to the measured projection data, so should be lowered in the case of low dose noise 
projections17,22. The parameter λ for prior image term should be set according to the prior image quality. In 
fearture patch sparse coding, the sparsity level parameters Tt and Tr are the maximum numbers of atom permitted 

Figure 16. Evaluation of different parameter for torso phantom Case D2 data. (a) PSNR and UQI plots versus 
fidelity parameter β; (b) PSNR and UQI plots versus prior image parameter λ; (c) Axial ROI illustrations of 
reconstructed when using different β and λ; (d) PSNR and UQI plots versus sparsity level Tt and Tr. Here, the 
parameters were analyzed with the other parameters fixed to the values given in Table 1.
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in representing each patch. Generally, larger Tt and Tr will give rise to a higher accuracy but increased computa-
tional cost. They should be set according to the measured projection noise level in reconstruction.

Figure 16(a) plots the PSNR and UQI values for different fidelity parameter β, using torso phantom Case D2 
data with λ = .0 35 and Tt = Tr = 8. We can observe that the PSNR and UQI values are major affected by the fidelity 
parameter β and attain the highest values when β lies around 0.2. Figure 16(b) shows that prior image constraint 
parameter also have large impacts the reconstruction performance when λ ranges from 0.31 to 0.43, and the 
highest PSNR and UQI value are reached when the λ is 0.37. From the plots in Fig. 16(a,b) we can see that the 
performance of proposed method is quite sensitive to the fidelity parameter β and prior image constraint param-
eter λ. The figures in Fig. 16(c) reflects that a large β implies an increased fidelity weight of the measured noisy 
projections which results in increased noise and artifacts in the reconstruction, and a small β leads to relatively 
increased weight of the regularization term which is related to increased smoothing effect. Figure 16(c) also shows 
that the reconstruction gets smoother when the value of λ is increased. Figure 16(d) depicts the PSNR and UQI 
values for different sparsity level Tt and Tr with the other parameters set based on Table 1. The plots show that the 
proposed method is robust to sparsity level Tt and Tr from 8 to 12. The PSNR variation is less than 0.5 dB and UQI 
variation is less 0.01. The reason is due to fact that the same size dictionary is used and eight atoms to twelve 
atoms are enough to representation these volume patches. So, by taking into consideration both the reconstruc-
tion performance and the computation burden, we selected sparsity level Tt = Tr = 8 for the used dictionaries with 
1000 atoms in this study.

We select parameters in the proposed approach following the assumption that the same parameters set can 
be used in reconstructing the data from the same type of CT scanner. Before large volume data reconstruction in 
our study, the feature dictionaries and parameters are trained to give satisfying results using a small amount of 
data in the same type.

Computation cost. Table 3. lists the computation overheads required per iteration (in seconds) for all recon-
struction methods considered in our experiments. Both the GDSIR method and the proposed DP-PICCS method 
suffers from high computational operations to the sparse coding. In our experiments, it takes about 2148 s to train 
two 3D feature dictionaries (320 × 1000) from 1105142 sample patches for the proposed method. Specifically, 
we can notice that the GDSIR method and the proposed method require about 63 ± 2 seconds and 154 ± 3 sec-
onds per iteration to reconstruct a 512 × 512 × 30 CT volume in torso phantom data experiment, respectively. 
In the clinical abdomen data experiment, one DP-PICCS iteration takes about 167 ± 5 seconds to reconstruct a 
512 × 512 × 30 CT volume. We can see that the DP-PICCS method is about twice time consuming as much the 
GDSIR method due to the two 3D feature sparse coding for each volume patch. Besides, one of the biggest advan-
tages of the TV method and PICCSDFR is its low computation complexity.

Conclusion
The proposed DP-PICCS method is an extension of the PICCS method by using prior image knowledge from dis-
criminative feature representation, which is reflected by a discriminative feature representation based constraint 
terms and high quality prior image. This discriminative feature representation is realized using a composite dic-
tionary containing both desirable tissue attenuation features and undesirable noise-artifacts residual features.

In this study, three sparse constraint based methods were evaluated, i.e., TV, GDSIR and the proposed 
PICCSDFR. The TV and PICCSDFR methods can be regarded as voxel-wise updating methods while the GDSIR 
and DP-PICCS method are the patch-wise updating ones. Experiment results show that the PICCSDFR method 
cannot achieve satisfactory performance in suppressing noise-induced artifacts as the indistinguishability true 
tissue structures and image noise-artifacts are significant, and, the GDSIR method cannot also effectively deal 
with the tiny tissue structures in LDCT reconstruction. The proposed DP-PICCS method obtains PSNR values 
1-2 dB higher than the PICCSDFR reconstruction, and the visual results also validate the improved ability of tissue 
structure discrimination. In the case that the projection data were seriously corrupted by excessive X-ray photon 
noise, the associative reconstructed images will suffer from serious noise-induced streak and mottle artifacts. 
In this case the DFR-post method cannot yield satisfactory results due to its ability in distinctive tissue and 
noise-artifacts structural.

The proposed DP-PICCS method can be feasibly implemented using the joint optimal reconstruction strategy 
in section II.B. However, due to the split alternating iteration scheme, the DP-PICCS method in sub-problem Eq. 
(6) and Eq. (7) are nonconvex for a global optimization. Similar to many existing dictionary learning based algo-
rithms whose global convergence is an open issue, the proposed method also suffers from a lack of strict global 
convergence. Also, the DP-PICCS method needs to be accelerated to be more practically feasible. In the proposed 

Method
Phantom data 
(Size:512 × 512 × 30)

Clinical data 
(Size:512 × 512 × 30)

DFR-post 219 ± 2 225 ± 3

TV 3 ± 1 5 ± 1

PICCSDFR 7 ± 1 11 ± 1

GDSIR 63 ± 2 77 ± 2

DP-PICCS 154 ± 2 167 ± 5

Table 3. Computation Cost Between The DFR-post TV PICCSDFR, GDSIR And DP-PICCS Methods (Unit: 
Second per Iteration).
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approach, parameters were selected following the assumption that the same parameter setting can be used in the 
reconstructing the data from the same type of CT scanner. In39, a gradient projection method is applied in param-
eter selection where the regularization parameter is updated in an alternating mode. In40, a reweighted objective 
function is defined to guide the selection of the regularization parameters. These approaches can be applied to 
guide the parameter selection of the proposed DP-PICCS reconstruction22,39,40.
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