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Involvement of Ubiquitin-
Conjugating Enzyme (E2 Gene 
Family) in Ripening Process and 
Response to Cold and Heat Stress of 
Vitis vinifera
Yingying Gao1,2,3, Yi Wang2,3, Haiping Xin1, Shaohua Li2 & Zhenchang Liang2,4

Ubiquitin-conjugating (UBC) E2 enzyme plays crucial roles in plant growth and development. Limited 
information can describe the function of UBC enzyme E2 in grapes. A total of 43 UBC enzyme E2 genes 
with conserved UBC domain were identified in grapes. These genes were divided into five groups 
based on phylogenetic tree with tomatoes. Sequence analyses indicated that VvUBCs in the same 
group possessed similar gene structures and conserved motifs. Gene distribution in chromosomes was 
uneven, and gene duplication existed in 36 VvUBCs. Transcriptome and qRT-PCR analysis indicated 
that most VvUBCs are involved in ripening and post-harvest stage, and feature functional roles in grape 
organs. According to the transcriptome and qRT-PCR results, seven and six VvUBCs in grape responded 
to cold and heat stress, respectively, whereas no remarkable VvUBCs change was noted under salt or 
water-deficit stress. This study provides new insights to physiological and developmental roles of these 
enzymes and regulation mechanism of E2 genes in grapes.

Ubiquitination is an important type of post-translational modification of proteins among all eukaryotes. This 
important process regulates a wide range of biological processes1, including intracellular translocation of proteins, 
chromosomal organization, DNA repair, cell cycle control, and apoptosis2–4.

Ubiquitin covalently binds with target proteins, causing a series of enzyme catalytic effects. This process 
requires coordination of three types of enzymes, namely, ubiquitin-activating enzyme (E1), ubiquitin-conjugating 
(UBC) enzyme (E2), and ubiquitin-ligase enzyme (E3)5. Ubiquitin is activated in an ATP-dependent manner 
linked with E1; E2 accepts ubiquitin from E1, passes it to active-site cysteine, and then transfers ubiquitin to a 
targeted protein aided by E35. Additional ubiquitin can be further ligated to initial ubiquitin molecule through 
sequential ubiquitination cycles, ultimately forming a poly- ubiquitin chain; finally, targeted proteins are modi-
fied5. Then, substrates can be degraded to generate other biological effects. E2 plays a crucial role in ubiquitina-
tion and is responsible for attachment of ubiquitin to targeted proteins5. E2 protein contains a conserved catalytic 
domain, called the UBC domain, spanning 140–200 amino acids in length. Various studies indicated that UBC 
domain mediates the interaction between E2 and E36–10. A special interaction occurs between UBC domain in E2 
and RING domain in E311.

E2 genes exist as a multi-gene family and are involved in many plant physiological activities. A total of 14, 50, 
41, 39, and 75 E2 genes were identified in Saccharomyces cerevisiae12, humans13, Arabidopsis14, rice15, and maize16, 
respectively. A number of E2 genes are involved in environmental stresses. For example, VrUBC1 of mung bean 
responded to osmotic17 stress, and E2 genes in soybean and peanut reacted to drought and salt stress in transgenic 
Arabidopsis18–20. Recently, researchers discovered that fruit-ripening regulator (RIN) can directly bind to the 
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promoter of E2 genes in tomato, pigmentation of fruit was altered at orange ripening by silencing of E2 genes21. 
E2 genes are also involved in plant disease resistance throng positive plant immune regulation22,23. Some research-
ers observed association of E2 genes with cryogenic autolysis in Volvariella volvacea24. GhUNC1/2 is involved in 
auxin-associated effects and is related to degradation of target proteins, delaying senescence in cotton25.

Grapes (Vitis vinifera) are one of the most important fruit species in the world. Genome sequence of this fruit 
was released in 2007, it provides foundation for ongoing studies at the genome level26. At present, limited infor-
mation can describe the role of E2 enzyme in grapes. For example, 45 E2 genes family members were identified in 
8× coverage assembly of Vitis vinifera PN40024 genome27. E2-21 is down-regulated at veraison stage in Cabernet 
Sauvignon (Vitis vinifera)28. Until now, no systematical analysis has been performed on E2 genes family to identify 
their expression during grapevine development and response during abiotic stress.

The following are objectives of the present study: to identify and clarify members of E2 genes family from the 
12× coverage assembly grapevine genome, to characterize their expression pattern during grapevine develop-
ment and berry ripening, and to explore their functions in abiotic stress. Understanding functions of E2 enzymes 
bears significance in analyzing regulation mechanism of enzymes in grapevines.

Results
Identification of Vitis vinifera UBC enzyme E2 proteins. In this study, 43 unique UBC enzyme mem-
bers were identified using Hidden Markov Model (HMM) and BLAST search methods (Table 1). All these genes 
contained the UBC domain. A phylogenetic tree was constructed, with 43 VvUBC members in grapes and 52 
SlUBC members in tomatoes. VvUBCs showed the relationship between grapes and tomatoes on the phylogenetic 
tree.

Phylogenetic analysis of VvUBC family. Phylogenetic analysis showed that 43 VvUBC members can 
be classified into five groups (Fig. 1 and Table 1). Groups I to V (Table 1) contained 15, 8, 6, 11, and 3 members, 
respectively. Compared with grapes, SlUBC members in tomatoes were classified into six groups. Group I, II, and 
IV each included 12 members. Group III and V contained 9 and 6 members, respectively. SlUBC14 existed in 
Group VI alone (Fig. 1).

Conserved domain analysis. UBC enzyme E2 gene family possesses a highly conserved UBC domain. 
Similar to E2 of human, VvUBC members can be divided into four classes according to existence of additional 
extensions to UBC domain29 (Fig. 2). In the present study, 50 amino acid residues (or less than 50 amino acid but 
performing other structural domain) beside UBC domain were regarded as additional extension. Most VvUBCs 
(28 members) possess a single UBC domain and are categorized as Class I. Class II (three members) features 
an N-terminal extension, Class III (six members) presents a C-terminal extension, and Class IV (six members) 
exhibits both extensions (see Supplemental Fig. S1). Interestingly, two VvUBCs contain other domains except 
for UBC, VvUBC27 contains a ubiquitin-associated domain30 (UBA) at C-terminal, and VvUBC12 contains X8 
domain31 at N-terminal.

Conserved motifs, gene structure, and promoter analysis of VvUBCs. Ten motifs were iden-
tified to illustrate VvUBC protein structure using MEME program and further annotated by InterPro Scan 5 
(Fig. 3 and Fig. S2). Eight of 10 motifs (except motif 5 and motif 7) were localized within the UBC/RWD (RING 
finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD or DEXD like helicases) domain, 
which contained an alpha-beta(4)-alpha(3) core fold, and was found in E2 and related proteins32, RING finger 
and WD repeat-containing proteins33, all VvUBCs contained at least two of them. VvUBC proteins contained 2–6 
motifs, and length of motifs ranged from 11–50 amino acids (see Supplemental Fig. S1). Motifs 1 and 5 existed 
in almost all 43 VvUBCs except for five VvUBCs in Group I; by contrast, motifs 3, 2, and 4 existed in 39, 30, and 
25 VvUBCs, respectively. The remaining motifs were detected in less than half of VvUBCs. Motifs 6 and 8 only 
existed in five VvUBCs in Group IV. Motifs 9 and 10 only existed in three VvUBCs in Group I. Group II and 
Group V respectively featured the same motifs except for VvUBC12.

Figure S3 shows gene structure of VvUBC genes. All VvUBC genes contained at least one untranslated region 
(UTR) in their 5′ or 3′ terminal and 3–11 exons. VvUBCs presented varying gene lengths ranging from 1267 bp 
(VvUBC11) to 23957 bp (VvUBC44). Length of coding sequence (CDS) averagely accounted for 10.45% of the 
whole gene length. This length did not relate to gene length.

Locations of promoter region compared to transcriptional initiation site range from −15000 bp (VvUBC15) 
to −115 bp (VvUBC38). Tween-three VvUBCs are located in the positive strand, whereas 20 VvUBCs are in the 
negative strand (Fig. S4).

Chromosome localization and gene duplication analysis of VvUBCs. A total of 43 VvUBCs were 
distributed in all chromosomes except for chromosome 10, and most genes were close to chromosome terminal 
(Fig. S5). Chromosomes 6 and 8 contained the most VvUBCs (5 members), and other chromosomes contained 
1–3 VvUBCs.

According to the whole genome duplication (WGD) related gene duplication analysis, WGD of VvUBCs 
occurred during grape genome evolution (Fig. 4), and a group of 36 VvUBCs were involved in 71 WGD events. 
For example, VvUBC26 located in Chromosomes 1 and VvUBC4 in Chromosome 14 are relative genes. These 
WGD events accounted for 83.72% (36 of 43) of VvUBCs gene expansion.

Temporal and spatial expression patterns of VvUBCs. A total of 42 VvUBCs (without VvUBC5b) were 
identified by transcriptome analysis (GSE36128) of 54 organs in Corvina (Vitis vinifera) (Fig. S6). Expression 
of numerous VvUBCs showed significant changes during grapevine development. VvUBC12 showed decreas-
ing tendency in all organs (Fig. S6). During berry ripening, VvUBC3 increased in three berry tissues (berry 
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pericarp, berry flesh, and berry skin), whereas VvUBC34 decreased, VvUBC7 was up-regulated first and then 
down-regulated. In post-harvest withering stage, VvUBC3 was rapidly up-regulated in three berry tissues (berry 
pericarp, berry flesh, and berry skin) and reached the highest level in post-harvest withering-III stage, whereas 
VvUBC7/29/34 were down-regulated significantly. Several VvUBCs were expressed specially in different organs. 
For example, VvUBC11 showed low expression level in berry but is highly expressed in leaves, especially in senes-
cent leaves. VvUBC45 featured higher expression level in winter buds than other organs.

To characterize expression pattern of VvUBCs in different genotypes, a transcriptome analysis in five varieties 
(Sangiovese, Barbera, Negroamaro, Refosco, and Primitivo) was performed using published data (GSE62744). 
This analysis was performed in four berry developmental stages (pea size, berry tough, soft, and harvest) (Fig. 5). 
Similar expression patterns of VvUBCs were observed in different varieties. Thirty-seven out of 43 VvUBC genes 
were expressed in berries. Most genes showed increasing or decreasing expression levels during ripening. Six 

Gene locus ID
Gene 
symbol

Protein 
length(aa) Group Chr Start End

NCBI 
Accession Additional features

GSVIVT01026953001 VvUBC1a 184 V 15 19076770 19083025 CBI40397.3 C-terminal extension

GSVIVT01019387001 VvUBC1b 183 V 2 236398 241211 CBI34362.3 C-terminal extension

GSVIVT01024005001 VvUBC3 1098 IV 3 1786700 1794856 CBI37856.3 N&C-terminal extension

GSVIVT01011359001 VvUBC4 119 III 14 28935655 28941655 CBI22169.3 —

GSVIVT01005206001 VvUBC5a 944 IV Un 19190912 19196143 CBI23966.3 N&C-terminal extension

GSVIVT01005576001 VvUBC5b 271 IV Un 40650232 40651612 CBI25934.3 C-terminal extension

GSVIVT01009784001 VvUBC7 161 I 18 11241271 11245493 CBI19762.3 —

GSVIVT01009655001 VvUBC8 197 IV 18 10233988 10235820 CBI19650.3 —

GSVIVT01008045001 VvUBC9 152 III 17 6349780 6356685 CBI15257.3 —

GSVIVT01022074001 VvUBC10 162 III 7 16377832 16385165 CBI21382.3 —

GSVIVT01024027001 VvUBC11 148 II 3 1661190 1662457 CBI37874.3 —

GSVIVT01025431001 VvUBC12 528 II 6 847758 858488 CBI16509.3 N-terminal extension

GSVIVT01022467001 VvUBC15 119 III 8 3378128 3385686 CBI39063.3 —

GSVIVT01016663001 VvUBC16 305 I 9 206133 216225 CBI35791.3 N&C-terminal extension

GSVIVT01016569001 VvUBC17 168 IV 13 2698670 2704723 CBI31693.3 —

GSVIVT01018860001 VvUBC19 161 I 4 19153005 19160933 CBI17438.3 —

GSVIVT01027045001 VvUBC20 148 II 15 18385250 18393574 CBI40471.3 —

GSVIVT01034196001 VvUBC21 168 IV 8 14510755 14517473 CBI30575.3 —

GSVIVT01024998001 VvUBC22 176 IV 6 5391170 5399972 CBI16161.3 —

GSVIVT01019018001 VvUBC23 183 IV 4 17682215 17686563 CBI17566.3 —

GSVIVT01024546001 VvUBC24 148 II 6 8975439 8978143 CBI15805.3 —

GSVIVT01011671001 VvUBC25a 159 I 1 5344900 5350070 CBI26841.3 —

GSVIVT01033925001 VvUBC25b 146 I 8 16675006 16681479 CBI30364.3 —

GSVIVT01036063001 VvUBC25c 146 I 6 21209023 21218935 CBI28272.3 —

GSVIVT01016300001 VvUBC25d 190 I 13 5369865 5375890 CBI31480.3 N-terminal extension

GSVIVT01020056001 VvUBC26 191 III 1 11008741 11013679 CBI32005.3 N-terminal extension

GSVIVT01008615001 VvUBC27 150 I 17 394286 397861 CBI15730.3 C-terminal extension

GSVIVT01009448001 VvUBC29 160 III 18 8465118 8469528 CBI19485.3 —

GSVIVT01015392001 VvUBC30 188 I 11 3245946 3247764 CBI28077.3 —

GSVIVT01020551001 VvUBC31 472 IV 12 4458311 4466998 CBI21855.3 N&C-terminal extension

GSVIVT01020701001 VvUBC32 153 I 12 3005962 3011245 CBI21980.3 —

GSVIVT01014758001 VvUBC33 148 II 19 9349179 9350972 CBI39803.3 —

GSVIVT01019484001 VvUBC34 148 II 2 1020201 1030408 CBI34447.3 —

GSVIVT01025872001 VvUBC36 148 II 8 10943294 10948994 CBI32888.3 —

GSVIVT01014343001 VvUBC38 497 IV 19 2820615 2830331 CBI20306.3 N&C-terminal extension

GSVIVT01014215001 VvUBC39 153 I 19 1528687 1547441 CBI20200.3 —

GSVIVT01028729001 VvUBC40 148 II 16 19346927 19354509 CBI22557.3 —

GSVIVT01025833001 VvUBC44 311 I 8 11398555 11422512 CBI32855.3 N&C-terminal extension

GSVIVT01031547001 VvUBC45 177 I 6 17270831 17272824 CBI17191.3 —

GSVIVT01035654001 VvUBC46 157 I 4 3045208 3049485 CBI20878.3 —

GSVIVT01007794001 VvUBC47 184 V 17 8952004 8971372 CBI15064.3 C-terminal extension

GSVIVT01031919001 VvUBC51 183 IV 3 5404938 5409770 CBI32552.3 —

GSVIVT01035008001 VvUBC52 297 I 5 854146 857902 CBI22894.3 C-terminal extension

Table 1. Information of Vitis vinifera ubiquitin-conjugating enzymes E2 gene family identified in this study. 
–represents no additional features.
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VvUBCs (VvUBC4/11/12/20/34/44) were remarkably down-regulated in the last two stages of ripening (soft and 
harvest). VvUBC21 was up-regulated at berry tough stage then down-regulated at soft stage. VvUBC45 was signif-
icantly down-regulated after pea size stage. Interestingly, VvUBC51 showed higher expression levels in Sangiovese 
than other four varieties. The other VvUBCs slightly decreased or increased during grape ripening.

To compare the expression patterns in leaves and during fruit ripening, all 43 VvUBCs were performed 
qRT-PCR using Cabernet Sauvignon. Most VvUBCs (22 of 43) showed down-regulated in three stage34 (EL-33, 
EL-35, EL-37), especially in VvUBC8 and VvUBC11, which were down-regulated more than 5 fold at EL-37 stage 
compared to EL-33 stage (Fig. 6). Nine VvUBCs were up-regulated, and three VvUBCs (VvUBC7/23/24) deceased 
at veraison stage (EL-35) then increased at EL-37 stage. The transcript level of VvUBC3 peaked at veraison stage 
then declined until EL-37 stage. Eighteen of 43 VvUBCs showed higher expression level in young leaves than that 
in berries, especially VvUBC30 and VvUBC45, which approximately were 50 and 400 fold in leaves compared to 
berries, respectively. Eleven VvUBCs showed lower expression level in young leaves than that in berries (Fig. 6).

Figure 1. Phylogenetic tree of ubiquitin-conjugating enzyme E2 members among Vitis vinifera (43) and 
Solanaceae lycopersicon (52).

Figure 2. The domain architechture analysis of VvUBC proteins in Vitis vinifera. The UBC domain is indicated 
as a dark-blue ellipse and extensions as wathet blue blocks. The UBA domain of VvUBC27 is indicated as a 
green block and the X8 domain of VvUBC12 as a red block. Scale bar indicates protein length (aa).
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Expression analysis of response of VvUBCs to different abiotic stresses. Expression pattern of 
grape UBC genes under cold and heat stress were investigate using published data SRP018199 and GSE41423 
respectively (Fig. S7). Seven (VaUBC3/12/15/17/25d/31/33) and six members (VvUBC9/10/11/20/27/52) 
responded to cold and heat treatments, respectively. In leaves of Vitis amurensis Rupr., four VaUBCs 
(VaUBC3/25d/31/33) were significantly down-regulated, and the other three VaUBCs were significantly 
up-regulated after 4 hours under 4 °C cold treatment. Heat treatment was performed under 45 °C using Cabernet 
Sauvignon, and then recovery at control condition. Four VvUBCs (VvUBC9/10/20/52) were detected obviously 
up-regulated compared with control after heat treatment in leaves, whereas VvUBC11/27 was down-regulated 
slightly. When recovery after heat treatment, VvUBC9/20/52 showed higher expression in control than treatment 
groups, whereas VvUBC10/11/27 showed lower. Thirty-three VvUBCs were identified in Cabernet Sauvignon 
from GSE31677, but these genes show no remarkable change during 16 days of salt or water-deficit stress (Fig. S8).

To confirm the transcriptome results, these UBCs of grape were performed qRT-PCR (Fig. 7 and Fig. 8) in 
Vitis amurensis and Vitis davidii, respectively. Four VaUBCs (VaUBC15/17/25d/33) continuously decreased dur-
ing cold treatment (4 °C,0–24 h), VaUBC3 and VaUBC31 decreased at 8 h and then increased at 24 h, VaUBC12 
showed no significant change at 8 h, but decreased at 24 h (Fig. 7). Six VdUBCs (VdUBC9/10/11/20/27/52) were 
up-regulated in detached leaves after heat treatment (38 °C 2 h, 47 °C 40 min, Fig. 8).

Discussion
In this study, 43 VvUBCs were identified in grape, and this number was higher than the 39 discovered in rice15, 41 
in Arabidopsis14, less than 52 in tomato21, 50 in human13, and 75 in maize16. These VvUBCs were divided into five 
groups based on a phylogenetic tree. VvUBC proteins contained almost similar motifs in one group, especially in 

Figure 3. The conserved motifs analysis of 43 VvUBC members. The group was indicated by different 
color. Different motif was represented by box with different color. The legend of each motif were listed in 
Supplemental Figure S2.
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Groups II and V. CDS length accounted for 10.45% of the whole gene length, and their promoter location showed 
a large difference. Chromosome location showed an uneven distribution of VvUBC genes in 19 chromosomes, 
but no VvUBC gene was found in chromosome 10. Whole genome duplication events played a significant role in 
evolution of many organisms35, complex WGD events existed in VvUBCs, indicating that VvUBCs perform vari-
ous functions during grape development. All these analyses showed large differences between VvUBCs in protein 
structure, gene structure, and promoter location. VvUBCs in one group may exhibit relative functions.

According to domain analysis, conserved domain UBC exists in all VvUBCs. Protein structure of E2 genes is 
uncommon in plants, but it is widely used in human research. In humans, E2s can be classified based on existence 
of additional extensions aside from the UBC domain29. These extensions result in functional diversity of E2 genes; 
this functional diversity is related to subcellular localization and interaction between E2 and E336–40. In this study, 
fifteen VvUBCs contained extensions with different roles. N-terminal of VvUBC12 contained an X8 domain and 
a transmembrane domain. This situation indicates that VvUBC12 may contribute to binding of carbohydrates31. 
Similar to UBE2K in humans29, VvUBC27 contained a UBA domain in C-terminal; this UBA domain might be 
related to ubiquitin binding30. However, direct role of UBA remains unclear. Conserved motif analysis showed 
that all VvUBCs contained at least two UBC/RWD domain motifs whereas consist of different motifs, indicating 
the VvUBCs identified in this study had conserved features of the E2 genes family, and they might play different 
function in ubiquitination process.

To gain deeper understanding of putative function of VvUBC, temporal and spatial expression profiles 
were analyzed. In tomato, E2 genes play an important role in regulation of fruit ripening, as determined by 
virus-induced gene silencing assay21. In grape, most VvUBCs in five Italian varieties change during ripening 
(Fig. 5), similar expression patterns of VvUBCs were obtained from qRT-PCR in Cabernet Sauvignon (Fig. 6), 
which indicating that E2 gene family might play extensive roles in grape ripening. VvUBC45 showed different 
expression profiles in Sangiovese (Fig. 5), indicating its distinct roles in this fruit. Additionally, in Corvina, 

Figure 4. WGD related gene duplication analyses of VvUBCs. VvUBCs are indicated by vertical orange lines. 
Red bars denote syntenic regions. Chromosomes were indicated in different colors.
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VvUBC3/7/12/34 were rapidly up-regulated or down-regulated during grape berry development (Fig. S6), indi-
cating involvement of these genes in fruit ripening. Interestingly, VvUBC3 was up-regulated significantly in 
post-harvest withering stage and VvUBC7/29/34 down-regulated (Fig. S6), they may play significant roles in 
post-harvest physiology. Aside from berries, E2 genes also played various roles in other organs. In Arabidopsis, 
AtUBC22 participates in female gametophyte development41. AtUBC1 and AtUBC2 are ubiquitously expressed in 
roots, leaves, flowers, and seedlings and activation of FLOWERING LOCUS C allow these genes to repress flow-
ering42. In Corvina, VvUBC11 and VvUBC45 exhibited high expression levels in senescing leaves and winter buds, 
respectively (Fig. S6), VvUBC30 and VvUBC45 showed high expression in young leaves of Cabernet Sauvignon 
(Fig. 6). These genes may play different roles in grape development compared with other VvUBCs.

E2 genes from both Arabidopsis and rice were not reported to be induced under cold stress43. The present 
study revealed that ZmUBCs changed significantly under cold conditions16. In Vitis amurensis, seven VaUBCs 
(VaUBC3/12/15/17/25d/31/33) responded to cold treatment (Fig. S7), and the results were confirmed by 
qRT-PCR (Fig. 7), but the change tendency of VaUBCs showed a slight difference, which might because of the 
different cold treatment time. At present, no E2 genes were reported to involve in heat stress. However, expression 
levels of six UBC genes were obviously changed under heat condition and recovery condition from heat treatment 
in not only RNA-seq data (Fig. S7) but also qRT-PCR (Fig. 8) in grape in this study. The results indicated that 
these grape UBC genes might be involved in heat response mechanism in grapes. E2 genes presented different 
responses to heat and cold stresses. These results indicated that there might be different regulatory mechanisms 
of ubiquitination in response to heat and cold stresses.

E2 genes in several species were functional under salt or drought. GmUBC2 showed enhanced drought and 
salt tolerance in soybean18, whereas AtUBC32 was strongly induced by salt stress in Arabidopsis20. Three genes 
(OsUBC13/15/45) were also up-regulated under salt and drought stresses in rice15. In peanut plants, the physio-
logical water stress induced by polyethylene glycol, high salinity, abscisic acid, or low temperature, changed the 
expression levels of AhUBC243. Increased transcript levels of CmUBC were observed during drought and salinity 
stresses in Cucumis melo44. Based on previous transcriptome resources, VvUBCs showed no significant changes 
in response to drought and salt stresses in grapes (Fig. S8). This result indicated that E2 genes may play different 
roles in herbaceous and woody plants.

Conclusion
In this study, 43 VvUBC members were identified and divided into five groups based on their phylogenetic tree. 
Protein and gene sequences, and duplication events were analyzed to predict functional characteristics of VvUBC 
genes. Transcriptome data and qRT-PCR results presented significant roles of VvUBCs in grape growth, maturity 
and post-harvest physiology. Additionally, seven and six VvUBCs showed responses to cold and heat stresses, 
respectively. These responses may contributed to grape resistance mechanism. These results provide new insights 
into the E2 genes family in woody plants and a solid foundation for further research on grape breeding.

Figure 5. Expression analysis of VvUBCs in different periods among five species using GSE62744. The heatmap 
was performed by R. Blocks with different colors indicate the expression level relative to the expression average 
level, original data was normalized by calculate log2 value of the ratio of expression level to expression average 
level: higher than average(red), equal to average(black), lower than average(green).
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Materials and Methods
Identification of grape E2 family members. Tomato E2 family members were obtained from a previ-
ous research21, which was used in BLAST search to obtain candidate genes of E2 family in grapes. All protein 
sequences were obtained from the National Center for Biotechnology Information (NCBI) (http://www.ncbi.
nlm.nih.gov). HMM was constructed using sequence data and was used to search UBC proteins in grapes with a 

Figure 6. qRT-PCR results of 43 VvUBCs in young leaves and berries. EL-33, EL-35, EL-37 represent three 
ripening stage indicating by previous study34. L present young leaves. Data was normalized to VvActin gene 
expression level. Each VvUBCs at EL-33 stage was normalized as “1”. The mean expression value was calculated 
from three independent replicates. Vertical bars indicate the standard error of mean. **P < 0.01 and *P < 0.05 
compared with berries in EL-33 stage.
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cut-off E-value of 0.001. Then, results of BLAST and HMM searches were merged. Next, candidate UBC protein 
sequence was scanned again using the domain analysis tool NCBI-Conserved Domain Database (http://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Finally, 43 UBC proteins were identified in grapes.

Phylogenetic analysis. A phylogenetic tree was generated by MEGA 6.0. Protein sequence was aligned by 
Clustal W. Then, alignment was imported into the MEGA 6.0 software, and phylogenetic tree was constructed 
using neighbor-joining statistical method with 1000 bootstrap replication.

Analysis of conserved domain, conserved motif, gene structure and promoters. According 
to obtained VvUBC protein sequence, domain analysis of proteins was performed by SMART (http://smart.
embl-heidelberg.de/). Then, conserved motifs were analyzed by MEME program (http://meme-suite.org/tools/
meme). Furthermore, the motifs obtained were annotated using InterProScan (http://www.ebi.ac.uk/Tools/pfa/
iprscan/). Promoter 3.0 was used to annotate grape genome to select the most suitable promoter of VvUBCs, 
illustrations of promoter and genes were constructed by Gene Structure Display Server (GSDS) software45 (http://
gsds.cbi.pku.edu.cn/). Introns and exons of VvUBCs were detected in grape genomic annotation, and the diagram 
was constructed by GSDS45. Localization of VvUBCs in chromosome was determined according to grape genomic 
annotation, and diagram was generated by Mapchart 2.3.

Gene duplication. Protein sequence in grape was used for self-BLAST search. Then, BLAST results and doc-
umented annotation were combined to analyze duplication of VvUBCs by MCscanX. Finally, a map was drawn 
by Circos.

Plant growth and Treatments. To analyze expression of VvUBC genes in different tissue and fruit rip-
ening, young leaves and berries were sampled from Cabernet Sauvignon (Vitis vinifera), which planted at the 
Germplasm Repository for Grapevines in the Institute of Botany of the Chinese Academy of Sciences, Beijing, 
China (39° 54′N, 116° 23′E). The vines were planted in 2007 in south-to-north oriented rows, trained to a 
fan-shape trellis with single trunk, and subjected to similar management practices for irrigation, fertilization, soil 
management, pruning, and disease control. Berries were sampled at three developmental stages (EL-33, EL-35, 
EL-37) according to EL system34, each sample was collected from nine clusters, and approximately 20 berries from 
three clusters formed one biological replicate. Sixth leaves were sampled with three biological replicates.

Vitis amurensis were used for cold treatment. Tissue cultured Vitis amurensis were grown on half-strength 
Murashige and Skoog (1/2 MS, pH 5.8) solid medium 1% sucrose and 0.7% agar in conical flasks (120 mL) 
in a growth chamber at 26 °C under a 16-h light/8-h dark photoperiod and 100μmol m−2 s−1 light intensity. 

Figure 7. qRT-PCR results of seven VaUBCs under cold treatment. Data was normalized to VvActin gene 
expression level. Each VaUBCs at 0 h was normalized as “1”. The mean expression value was calculated from 
three independent replicates. Vertical bars indicate the standard error of mean. **P < 0.01 and *P < 0.05 
compared with 0 h.
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Six-week-old plantlets were subjected to cold stress, plantlets were transferred to a low-temperature chamber at 
4 °C with a 16-h light/8-h darkness cycle. The shoot apex with the first fully expanded leaf was harvested at spe-
cific time (0 h, 8 h, and 24 h) after initiating the treatments with three biological replicates.

Spine grape (Vitis davidii) was used to analyze expression of VvUBC genes under heat stress. The vines were 
planted in the same condition as Cabernet Sauvignon introduced above. Detached leaves of approximately 30 
days in age were used for heat treatment according to previous study46. In June of 2017, samples were taken 
in the morning, placed in the dark with the petiole in water, and then treated by heat stress. The heat stress 
process was as follows: leaf discs (5.5 cm in diameter) were cut from the detached sample leaves, wrapped in 
a wet paper towel and placed in a small vessel made of aluminum foil. The vessels were then floated on water 
in a temperature-controlled water bath, 38 °C 2 h and then 47 °C 40 minutes. Leaves samples were collected 
with three biological replicates at this time. The control was the same condition as heat treatment except 
temperature-controlled water bath in 25 °C, and the leaves samples were collected at the same time with three 
biological replicates.

RNA extraction and quantitative real-time PCR (qRT-PCR) analysis. All samples were immedi-
ately obtained frozen in liquid nitrogen and stored at −80 °C for RNA extraction. Total RNA was extracted from 
collected samples using RNAprep Pure Plant Kit (TIANGEN, Beijing, China) following the manufacturer’s pro-
cedure. A maximum of 1 μg total RNA was used for synthesizing cDNA by HiScript Q RT SuperMix (Vazyme, 
Nanjing, China), and the product was subjected to qRT-PCR with an Opticon thermocycler (CFX Connect 
Real-Time System; Bio-Rad, Hercules, CA) using SYBR Green PCR master mix (Vazyme, Nanjing, China) 
according to the manufacturer’s instructions. The PCR cycling conditions were as follows: 95 °C for 10 min, 40 
cycles of 95 °C for 10 s, 60 °C for 30 s; a 65–95 °C melt curve was analyzed to detect possible primer dimers or 
nonspecific amplification. VvActin (Accession number: EC969944) was used as stable reference genes. Gene spe-
cific primer pairs for qRT-PCR (listed in Table S1) were designed by NCBI Primer BLAST. The specificity of the 
primers was further verified through gel electrophoresis and reaction product sequencing. Three biological repli-
cates were performed to ensure the accuracy of results. The relative expression of the target genes was determined 

Figure 8. qRT-PCR results of six VdUBCs under heat treatment. Data was normalized to VvActin gene 
expression level. CK and HT represent the control and heat treatment, respectively. Each VdUBCs in CK was 
normalized as “1”. The mean expression value was calculated from three independent replicates. Vertical bars 
indicate the standard error of mean. **P < 0.01 and *P < 0.05 compared with CK.
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using the 2−ΔΔCt method47. All experiments were performed with three biological replicates and three technical 
replicates. Statistical difference were performed by t-test (**P < 0.01, *P < 0.05, n = 3) using R software.

Transcriptomic resources. Transcriptomic data used in this study were obtained from previous 
research48–52. Expression levels in different organs were analyzed using GSE3612848. A total of 54 organs were 
collected from grapevines Corvina (Vitis vinifera) for RNA extraction. The entire list of 54 organs can be found as 
Supplementary Table S2. Three biological replicates were obtained for each sample. Data of four stage of berries in 
five varieties analysis were obtained from GSE6274449. Grape berries were collected from five red-skin grapevine 
(Vitis vinifera) cultivars (Sangiovese, Barbera, Negro amaro, Refosco, and Primitivo) at four phenological stages 
(pea size, berry tough, soft, and harvest), with three biological replicates acquired for each sample.

Cold treatment in SRP018199 was performed as follows50: Vitis amurensis seedlings were grown in 16 h 
light/8 h dark photoperiod at 26 °C. These seedlings were then transferred into a chamber at 24 °C under 16 h light 
at 6:00 am. Cold treatment was started at 9:00 am with constant light. During the first four hours, temperature 
dropped to 5 °C per hour and was held at 4 °C for an additional four hours. Seedlings used for control were also 
transferred to growth chambers but without cold treatment. Shoot apices with one well-developed leaf were har-
vested from three independent replicates. RNAs were isolated for digital expression library construction.

Heat treatment in GSE41423 was conducted as follows51: Cabernet Sauvignon (Vitis vinifera) was grown in 
25/18 °C day/night condition before treatment. Then, the experimental group was treated at 45 °C from 9:00 to 
14:30. Next, leaf samples were obtained and recovered rapidly at 25 °C for 15 min. Leaf samples were collected the 
following morning at 9:00. Control group was grown in 25/18 °C day/night condition. Leaf samples were collected 
from the experimental group.

Cabernet Sauvignon (Vitis vinifera) were treated under water-deficit and salinity stress conditions 
(GSE31677)52. This process is listed in Supplemental Table S3.

Data Availability. The datasets analysed during the current study are available from the corresponding 
author on reasonable request.
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