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Stochastic resonance at criticality 
in a network model of the human 
cortex
Bertha Vázquez-Rodríguez1, Andrea Avena-Koenigsberger2, Olaf Sporns2, Alessandra 
Griffa3,4, Patric Hagmann3,4 & Hernán Larralde1

Stochastic resonance is a phenomenon in which noise enhances the response of a system to an 
input signal. The brain is an example of a system that has to detect and transmit signals in a noisy 
environment, suggesting that it is a good candidate to take advantage of stochastic resonance. In this 
work, we aim to identify the optimal levels of noise that promote signal transmission through a simple 
network model of the human brain. Specifically, using a dynamic model implemented on an anatomical 
brain network (connectome), we investigate the similarity between an input signal and a signal that has 
traveled across the network while the system is subject to different noise levels. We find that non-zero 
levels of noise enhance the similarity between the input signal and the signal that has traveled through 
the system. The optimal noise level is not unique; rather, there is a set of parameter values at which the 
information is transmitted with greater precision, this set corresponds to the parameter values that 
place the system in a critical regime. The multiplicity of critical points in our model allows it to adapt to 
different noise situations and remain at criticality.

Random noise has been traditionally considered as an obstacle in the transmission of information, contaminat-
ing accurate communication and limiting the achievable information rate1,2. Nonetheless there are examples in 
which the presence of noise makes substantial improvements in signal detection3–5, through the phenomenon of 
stochastic resonance (SR).

SR was proposed as a possible explanation for the periodicity of the ice ages on Earth6, and has been studied 
in Schmitt triggers7, tunnel diodes8 and bidirectional ring lasers9. Moreover, it was shown that stochastic noise 
plays a role in neuroautonomic regulation of the heart rate to generate complex dynamics like variability and 
scale invariance across a range of scales that are a hallmark of criticality10. Nowadays, the effects of noise on bio-
logical sensory systems is being extensively explored. One of the first demonstrations of SR in the nervous system 
was carried out on crayfish mechanoreceptors3,11. Since then, other experimental demonstrations have included 
neurons in crickets12, rats13,14, and cats5, along with several studies in humans on the enhancement of detection 
and transmission in the sensorimotor system during a motor task4,15. In16 the propagation of a periodic input 
signal through an Erdös-Rényi network for different noise levels was studied, and it was found that noise indeed 
enhanced signal propagation in the model. However, to our knowledge, no studies have explored the SR phenom-
enon as a mechanism that could potentially enhance the transmission of information along axonal pathways in 
the human brain.

Growing evidence supports the hypothesis that the dynamics of the brain resembles the dynamics of a system 
near a critical point. This suggests that many functionally important features of brain dynamics may be optimized 
at criticality17–26? Recent work has shown that a discrete state dynamical model implemented on a network of 
neuroanatomical connections (connectome27) exhibits a phase transition similar to that observed in a percola-
tion model, where the average size of the second biggest cluster of active nodes reaches its maximum value for a 
specific activation threshold28. Furthermore, the model presented in28 is capable of replicating spontaneous brain 
activity patterns that resemble so-called resting state networks29, which are widely regarded as key components 
of functional brain architecture30. Other experiments have demonstrated that the dynamic range (the range of 
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stimulus intensities that allows network responses to be distinguished)31, mutual information and information 
capacity appear to be maximized at critical points32,33.

It is not clear, however, whether the levels of noise that increase the transmission of information through the 
brain are related to criticality. This issue is important because the brain, even when noise sources are present, must 
be capable of integrating information across multiple sensory modalities and brain systems, in order to generate 
adaptive neural and behavioral responses2,17. In the present work we propose a simple integrate and fire discrete 
dynamic model16,28 in which nodes can activate spontaneously34–36. This spontaneous activation acts as a noise. In 
this work we determine quantitatively the amount of noise required for the best transmission of signals through 
the structural network of the brain’s connectome, and its relationship with the hypothesis of the brain operating 
near criticality17,18,20,24–26,32.

Results
The model. The model is implemented on a network representing a human connectome. Each node in this 
network represents a gray matter region of the human cortex whereas edges represent white matter fiber tracts 
that connect cortical regions. The weighted elements (wij) of the adjacency matrix of the connectome are pro-
portional to the number of streamlines connecting two brain regions, indicating the strength of a connection 
between nodes i and j. The method used to obtain the weighted network matrix of the human connectome is 
reported in37 and is briefly described in the Supplementary Material section.

The network contains N = 114 nodes with binary states that are updated synchronously according to a 
dynamic rule adapted from28. Each node, characterized by a boolean variable si, is updated every time step and 
can be in one of two states: quiescent Q (with si = 0) or excited E (with si = 1). The state of each node obeys the 
following transition rules:

•	 Q → E with a probability PQE (corresponding to spontaneous activation of the node) or if the input signal 
α = ∑ = w s t( )i j

k
ij j0

i  is higher than a threshold T.
•	 E → E with a probability PEE if the node was still stimulated to be activated as above, i.e. with a probability PQE 

or if αi > T.
•	 E → Q with a probability (1 − PEE) or with a probability PEE provided that the stimulus received is not large 

enough to maintain the node active.

The probability PQE, i.e. the probability that a node activates spontaneously34,35, plays the role of the noise in the 
system, thus PQE is the quantity that we expect to be connected with SR2,24. PEE represents the probability that the 
node has enough material/energy to fire for more than one time step (as may be the case if some of the neurons 
in that brain region have not fired yet). It is important to highlight that there is no refractory state in the model 
because the nodes represent whole brain regions comprising large populations of neurons, not individual nerve 
cells.

Thus the state of the i-th node changes in time according to the following dynamical rule:

α
+ = + − −

× − + − − −
s t s t H P r

H P r H P r H T
( 1) {1 ( )[ ( ) 1]}

{ ( ) [1 ( )] ( )} (1)
i i EE

QE QE i

2

1 1

where r1 and r2 are independent random numbers drawn from a uniform distribution between zero and one; and 
H(x) is a step function (with H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise).

Measuring the transmission of signals through the network. The SR we envision in this paper is 
along the lines of that described in refs38,39, where a signal is detected if it is stronger than a certain threshold. 
Thus, a weak signal, by itself, will not be observed. When noise is added, the signal plus noise may cross the 
threshold allowing the signal to be detected. However, if there is too much noise, we lose all the information about 
the signal. Hence, there must be a level of noise to be added to a weak signal that optimizes the detection of the 
signal.

To evaluate the transmission of information through the network, we introduced a signal in the system, one 
node at a time. This signal consisted in switching the node’s activity to be in the excited (E) state for a certain 
number of time steps and then in the quiescent (Q) state for the same number of steps (these results were obtained 
for an input signal of a frequency of 1/50, but we have obtained the same results for frequencies of up to 1/200); 
this pattern was continued periodically throughout the evolution of the system. While the input signal was being 
delivered through a specific input node i, we let the rest of the system evolve according to the dynamic rule and 
evaluate the similarity between the input signal and the output signal -the activity- at each node.

We use the Fourier spectrum of the signals to measure their similarity. If the difference between two signals 
is that they are merely rescaled or shifted, their power spectrum will have the same principal frequencies, but not 
the same amplitudes, yet, we would want to say that the signals are similar. Accordingly, we search for a factor (λij) 
that will minimize the weighted squared difference between the input and output spectrum. To determine this 
factor, each term of the squared difference is multiplied by the amplitude of the input spectrum, so the frequen-
cies with the larger amplitudes will have a greater contribution in the sum, and hence, in the determination of λij. 
Finally, we define the similarity between the signals as:
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and φn
i is the amplitude of the n-th main frequency of the signal input in node i (input node, or “seeder”), and φn

j 
the amplitude for the same frequency in the power spectrum of the activity at node j (output node, or “receiver”). 
To compute this quantity we use only the M principal frequencies of the node i, that are the ones that have an 
amplitude larger than 0.0001. The normalization factor allows us to compare this measure for different input 
signals and the −log will make sim(i, j) maximum when the difference between the two spectra is the lowest.

We evaluated the similarity measure between a seeder node and all other nodes in the network, varying the 
three parameters of the model (PEE, PQE, T) as follows: we first fixed the value of PEE and T and then vary PQE. 
Figure 1A shows pairwise similarity matrices as a function of PQE for fixed values of PEE and T (comparison of our 
results with a null model can be found in Fig. 2 at the Supplementary Material section). The ith row of these matri-
ces corresponds to an instance in which the input signal was introduced through node i and all other nodes act as 
output nodes for which we measure the similarity between their activity time-series and the signal introduced at 
node i. We note that for these experiments we use the same input signal for all nodes.

Our findings show that, for a fixed configuration of PEE and an appropriate value for T, there is a non-zero 
value of PQE for which the mean and median similarity between input signals and output signals is maximized. 
In other words, our results confirm that there is a level of noise that enhances the transmission of the signal 
through the system; the level of noise that enhances signal transmission varies depending on the configuration 
of the model: the higher the probability of nodes remaining active (PEE), the larger the amount of noise needed in 
order to enhance the transmission of an input signal through the system. Figure 1B shows the mean and median 
similarity values as a function of PQE for a case in which the model parameters are PEE = 0.1 and T = 5.2 and the 
similarity peaks at a value of PQE between 0.2 and 0.3. Table 1 shows the maximum mean and median similarity 
values found for different values of the parameter PEE.

We performed the same analysis illustrated in Fig. 1 for a random network (Fig. 2 in the Supplementary 
Material section) with the same number of nodes as the empirical connectome; we generated the random network 
by sampling node degrees from a Gaussian distribution with mean 20.92 and standard deviation 7.01 - these values 
are obtained from evaluating mean and standard deviation on the empirical network -, and by sampling connec-
tion weights from another Gaussian distribution with mean 0.5 and standard deviation 0.12 - these parameters are 
also obtained from the empirical network. The results show that SR is also present in the randomly wired system, 
where the noise that maximizes the similarity is around 0.25 (when PEE = 0.1 and T = 4.3) and, as we discuss below, 
coincides with the critical point. Thus this effect is robust and is not exclusive of the connectome architecture.

Figure 1. (A) Similarity matrices as a function of PQE for PEE = 0.1 and T = 5.2. For each similarity matrix, 
row indexes correspond to seeder nodes and column indexes correspond to output nodes. Then, the element 
i,j of a similarity matrix denotes the similarity between the input signal fed into node i and outputted at node 
j. The color-map represents the value of the similarity, with hot colors indicating high similarity and dark 
colors indicating low similarity. (B) Mean and median similarity values (blue and green curve respectively) as 
a function of PQE corresponding to the similarity matrices showed in (A). Mean and median similarity values 
peak when PQE is close to 0.25 (corresponding to the brightest matrix in (A)); for low and high values of PQE the 
average similarity decreases.
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Parameter space and criticality. To gain a deeper understanding of the dynamics of our system and 
understand why the similarity increases for an intermediate value of PQE, we studied the behavior of the system 
throughout the space of parameters in the absence of an input signal. We measured the instantaneous density of 
active nodes = ∑ =S t s t( ) ( )

N i
N

i
1

0 , and set the time average of S(t) as the order parameter –specifically 

Figure 2. (A) Time series of the density of active nodes and as inset the PDF of the number of active nodes 
for a system with PEE = 0.1,T = 4.8 and PQE = 0.1,0.19 and 0.3. The left panel shows that the system is in the low 
activity level, this is confirmed when looking at the unimodal PDF of the number of active nodes that shows a 
maximum around 10. The middle panel shows that the system is jumping around two different levels of activity; 
the PDF of the number of active nodes is bimodal with two peaks around 20 and 45. The right panel shows that 
the system is around the high activity level around 50 number of active nodes, as it is shown in the inset with 
the unimodal PDF. (B) Average activity for PEE = 0.1 and different values of T (each color represent a different 
value of T) as a function of PQE. <S> will exhibit a transition from a low activity level to a high activity level 
as a function of PQE. The black curve represents the coexistence curve, inside this region the two phases of the 
activity will coexist. The curves outside the coexistence curve increased the average activity with PQE and never 
experienced the coexistence of two levels of activity. Inset: standard deviation of the activity for systems with 
PQE = 0.263 and T from 4.5 to 5.4. It can be seen that the maximum fluctuations occur when the system is in the 
critical point. (C) Coexistence curves for values of PEE from 0.1 to 0.9 (each color represent a different value of 
PEE). The system will reach higher activity levels as we increase the value of PEE. If the system is placed over this 
region, the two levels of activity will coexist. As there is one critical point for each curve, there will be a set of 
parameters that tune the system into a critical state (black curve).

PEE P_{QE} T P_{QE} T

0.1 0.25 5.2 0.263 5.2

0.2 0.25 5.31 0.261 5.31

0.3 0.3 5.6 0.281 5.6

0.4 0.3 5.9 0.303 5.9

0.5 0.3 6.2 0.312 6.2

0.6 0.35 6.6 0.331 6.6

0.7 0.35 7.2 0.369 7.2

0.8 0.4 7.8 0.394 7.8

0.9 0.45 8.5 0.419 8.5

Table 1. For each value of PEE columns 2 and 3 show the corresponding values of PQE and T where the 
maximum mean and median of the similarity matrices occur (exploring the matrices with a resolution of 0.05 in 
the values of PQE). Columns 4 and 5 show the values of PQE and T at the critical point (exploring the parameter 
space with a resolution of 0.001 in the values of PQE).
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0  (where t0 is a transient time in which the system equilibrates); varying the parameters PQE, PEE 

and T. When looking at the instantaneous density of active nodes, for a fixed value of PEE, we found that the sys-
tem changes discontinuously from a low to a high activity level for some values of T as we increase the value of PQE 
(Fig. 2A). Hence, there is a value of PQE for which the activity of the system “jumps” between the low and high 
activity phases (middle panel of Fig. 2A). In order to determine the average activity 〈S〉 taking place at a fixed 
value of PQE, we fit a Gaussian distribution to the probability distribution function (PDF) of S(t) and take the 
mean of the distribution as the value of 〈S〉. For the bimodal case, when the system is unstable and jumping 
between a high and low activity phase we fit one Gaussian distribution to each mode of the PDF of S(t); each of 
the means of the two Gaussian distributions represent the average activity 〈S〉 of the low and high activity phases, 
respectively; and the standard deviation of the activity is then computed as the mean of the standard deviations of 
each of the two Gaussian distributions.

Figure 2B shows the behavior of the system for a fixed value of PEE and varying values of T and PQE. For a large 
value of T the average activity is a monotonically increasing function of PQE. For small values of both T and PQE, 
the system’s average activity is initially low. There is a range of PQE and T values for which the activity of the system 
will jump between the high and low activity phases, these values will define the coexistence curve.

For a fixed PEE, the corresponding coexistence curve is defined by all the points in the parameter space such 
that the PDF of S(t) is bimodal. The black line in Fig. 2B shows the coexistence curve for PEE = 0.1. Notice that, 
within the coexistence curve, as T increases, the difference between the average high and low activity phases 
decreases, which is the result of the two modes of the PDF of S(t) approaching each other. Eventually, the two 
modes converge onto a single mode PDF and the average activity of the system fluctuates around a single value 
(black marker in Fig. 2B). Interestingly, at this point, the standard deviation of the system’s activity S(t) reaches 
its maximum, as shown in the inset in Fig. 2B. At this point, the system is critical (See Methods and Supplemental 
Materials sections).

For each value of PEE we find the corresponding coexistence curve and the critical point within the parame-
ter space. Because there is one coexistence curve and one critical point for each PEE value, the set of coexistence 
curves corresponding to all values of PEE delimits an unstable region where the system exhibits the high and low 
activity phases; and finally, the set of critical points corresponding to all values of PEE defines the line where the 
system is critical (black line in Fig. 2C).

For the remainder of the manuscript we show results corresponding to PEE = 0.1, but results are qualitatively 
similar for other values of PEE (figure SM3 shows results for systems with PEE = 0.5 and 0.9).

The coexistence of SR and Criticality. Having characterized the parameter space of the system, we study 
the transmission of an input signal for different configurations. For these analyses, we exclude configurations 
corresponding to the coexistence of distinct phases because at these configurations the system can jump from one 
activity level to the other at different times over one realization; this generates spurious interdependencies and 
leads to erroneous results. Figure 3A shows examples of pairwise similarity matrices evaluated at two non-critical 
points (left and right panels) and a critical point (center panel).

Our results show that similarity values are significantly higher for most pairs of input-output nodes when 
the system is critical (Fig. 3A, middle panel). In other words, the parameter configurations that set the system to 
a critical state coincide with the parameter values at which the transmission of a signal through the network is 
enhanced. More specifically, the noise level, implemented by the parameter PQE, at which the similarity peaks in 
Fig. 1B, coincides with the noise level that sets the system to criticality (given appropriate values of PEE and T; see 
supplementary material section Fig. 4 for different critical parameters and qualitatively similar results obtained 
from other measures used to assess the similarity between input and output signals).

However, the input signal is not transmitted to the entire system: we find that there is a set of “deaf ” nodes 
whose output signal shows extremely low similarity to the input signal, regardless of what node we select to intro-
duce the input signal. This behavior is expressed by the dark column-like patterns in the similarity matrix of the 
critical point. Interestingly, these nodes tend to have higher values of similarity when the system is not critical. 
Thus, the input signal’s principal frequencies are suppressed at these nodes when the system is critical. We also 
note that the column-like patterns expressed in the similarity matrices at the critical point suggest that, with a few 
exceptions (e.g. output-nodes within the right hemisphere frontal pole, right hemisphere medial orbitofrontal 
cortex, right hemisphere parahippocampal region, right hemisphere entorhinal region, right hemisphere tempo-
ral pole, left hemisphere postcentral region, left hemisphere supramarginal gyrus, and left hemisphere transversal 
temporal gyrus), the system’s dynamics at criticality do not vary greatly as a result of varying the input node. This 
is not the case when the system is not critical in which case the patterns of similarity vary depending on who the 
input node is, as shown by the variability across rows in the similarity matrices shown in Fig. 3A, right and left 
panels.

In order to gain more insight about the identity of these deaf nodes and what causes these nodes to be deaf 
to the input signal when the system is critical, we examined the average similarity of each output node across all 
input nodes (i.e. we compute an average across the columns of the similarity matrix) and the average similarity of 
each input node across all outputs (i.e. we compute an average over the rows of the similarity matrix).

Figure 3B shows similarity averages across inputs (blue markers) and outputs (red markers) as a function of 
the strength of the nodes, where strength is defined as the total sum of all connection weights of a node. We note 
that at the critical point (middle panel) and at the non-critical point with high average activity 〈S〉 (right panel) 
we find a clear relationship between average similarity values and node strength. Yet, the relationship between 
average similarities and node strength varies. At the critical point, the average similarity across output nodes 
resembles a step function with input-output similarity drastically increasing when the node strength exceeds 
a threshold value. Outside of criticality for a point with high activity (right panel) the output average similarity 
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increases with node strength at first, but then decreases as node strength continues to increase. Average similarity 
across input nodes increases slowly as a function of node strength. For a non-critical point with low average activ-
ity (left panel), we find no relationship between average similarity and node strength.

Finally, Fig. 4 shows the average similarities across outputs projected on a template cortical surface, allow-
ing us to identify the location of “deaf nodes” (indicated by dark colors). Interestingly, the dark colored corti-
cal regions correspond to primary sensory cortical areas and the primary motor cortex of the brain, which are 
thought to be specialized areas that are responsible for sensory information processing and processing of motor 
commands, respectively. On the contrary, the lighter colored areas are also identified as the highest strength 
nodes or hubs which are associated with multiple, higher-order cognitive domains40,41 and moreover, have been 
shown to be crucial for the efficient integration of information42–45.

Figure 3. (A) Similarity matrices evaluated for three different conditions: non critical in the low activity level 
(PEE = 0.1, T = 5.2 and PQE = 0.15); critical point (PQE = 0.263); and non critical in the high activity level 
(PQE = 0.4). The maximum values of similarity are obtained when the system is at the critical point. (B) Average 
similarity over inputs (rows) or outputs (columns) as a function of the strength of the nodes = ∑w wi j

k
iji .

Figure 4. Average similarity across output nodes projected on the human cortical surface. Anatomical brain 
regions that suppress the input signal’s principal frequencies are: bank of the superior temporal suculus, cuneus, 
entorhinal cortex, frontal pole, fusiform gyrus, lateral occipital cortex, lateral orbitofrontal cortex, lingual gyrus, 
medial orbitofrontal cortex, paracentral lobule, parahippocampal cortex, pars orbitalis, postcentral gyrus, 
rostral anterior cingulate cortex, superior temporal cortex, supramarginal gyrus, temporal pole, transverse 
temporal cortex. The majority of these regions participate in the visual system.
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Discussion
The main goal of this work was to determine whether noise can enhance the transfer of information within a 
simple dynamic model of the brain, and if so, to determine whether this noise corresponds to the value that tunes 
the system to a critical state. Our findings indicate that a noise level different from zero indeed promotes signal 
transmission and communication through the network, in line with what experimental evidence has shown3,4.

Further, we confirm that when the system is in a critical state, transmission of signals is maximized as eval-
uated by our similarity measure (we have also shown that qualitatively similar results hold when using Mutual 
Information and correlations). Additionally, having explored the system’s parameter space (Fig. 2C) we have found 
a set of parameter values at which the system is at criticality. This contrasts with previous models, which are critical 
at a unique point in their parameter space28. The multiplicity of critical points observed in our crude model may, 
nevertheless, be related to the brain’s capacity to adapt to different environments and/or cognitive demands. Thus, 
as extrinsic conditions change, the system can adjust its parameters to remain at criticality. The hypothesis that the 
brain operates continuously at or near a critical point has been explored previously. Tagliazzucchi et al.46, used a 
spatiotemporal point process over the BOLD signals recorded with fMRI, and calculated the residence time distri-
bution of the brain at resting state. They find that the resting brain spends most of the time near the critical point46. 
Hence, if the parameters that tune the system into critical state (in our case PQE,PEE and T) were time dependent, 
they should vary in such a way that the brain would spend more time near criticality than at other possible con-
figurations. However, it is also conceivable that being at a critical state is energetically demanding and may not be 
possible for the brain to sustain such a state for prolonged periods of time47,48. In this situation, it is feasible that the 
brain “steps out” of the critical state affecting its response to external stimuli49,50.

We stress that even when SR could be observed at different noise levels, the critical regime appears as the 
best condition for the transfer of signals through the system. Measurements of similarity revealed that the values 
obtained in the critical regime are larger than those measured when the system is at a non-critical state (Fig. 3). 
Interestingly, even when the system is at a critical state, there is a set of nodes that exhibit an incapacity to com-
municate with the rest of the network (dark columns in the center panel of Fig. 3). These findings can be related 
to well known functional aspects of the different brain areas, as it turns out that the “deaf ” nodes are not discon-
nected from the network, but rather, belong to unimodal or primary sensory processing areas such as the motor 
cortex51,52, auditory and speech areas53,54. These specialized or unimodal areas are known to process information 
in a segregated manner55,56 while also take part in integrated processing50,57–60. In agreement with this framework, 
our findings support the idea that integration and segregation coexist61–63 as the dynamics in the brain change 
configurations. Our results suggest that the system is wired in such a way that when it is at criticality, it facilitates 
integration of information within higher-order processing areas belonging to various functional sub-systems64, 
while it also promotes segregated processing within primary sensory and primary motor areas by inhibiting the 
spreading of information within these specialized regions. However, if the system is not at a critical state, we 
observe some spreading of the input signals through the unimodal areas, particularly when the system is at a 
high activity phase (see Fig. 3, right panel). This supports the hypothesis that these areas can indeed engage in 
integrative functions as suggested in50.

The system studied in this paper is limited by the small size of the connectome network we used (114 nodes), 
making it difficult to determine the exact critical point. These networks were extracted from the combination of 
diffusion spectrum imaging and tractography, a widely used approach for non-invasive reconstruction of human 
anatomical connectivity. In future work, new non-invasive technologies are likely to contribute more detailed 
maps of anatomical brain networks in humans. An intriguing avenue for further investigation would be to exam-
ine individual differences in signal transmission, and changes across development and lifespan.

Figure 5. Representation of the adjacency matrix of the connectome for a network of 114 nodes. The colors in 
the matrix corresponded to the value of the connection between pairs of nodes. Nodes from 0 to 57 were located 
at the right hemisphere, whereas nodes from 58 to 114 were at the left hemisphere27,37.
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There are many examples of previous studies that use simple discrete state excitable dynamics to model neu-
ral activity16,28,31,46,65, demonstrating the capacity of such simple models to display a broad range of dynamical 
regimes (including criticality). Interestingly, a discrete 3-state excitable dynamics model used by Haimovici et al.28 
was able to reproduce resting state brain activity34,35 and well known coupling relationships between functional 
brain sub-systems known as resting state networks29. These results demonstrate that simple discrete excitable 
dynamics models are able to capture the patterns of functional connectivity that emerge as a result of neural inter-
actions taking place through the anatomical structure but that are not trivially explained by the anatomy itself 66.

Given the simplicity of the model presented here, future research could aim at finding the differences in 
dynamical properties using the same analysis over networks extracted from diseased brains. If the transmission 
of information in damaged networks is different, the noise effect described in our work could be explored as a 
way to improve neural communication. Another goal could be to study the cooperative and competitive effects in 
the spreading of a signal through neural networks44. It would also be interesting to study how these effects change 
according to the seeder nodes. These and other extensions of the present study could assist to our understanding 
of how communication processes contribute to various aspects of brain function.

Methods
Data. Informed written consent in accordance with the Institutional guidelines (protocol approved by 
the Ethics Committee of Clinical Research of the Faculty of Biology and Medicine, University of Lausanne, 
Switzerland) was obtained for all subjects. Forty healthy subjects (16 females; 25.3 ± 4.9 years old) underwent 
an MRI session on a 3 T Siemens Trio scanner with a 32-channel head coil. Magnetization prepared rapid acqui-
sition with gradient echo (MPRAGE) sequence was 1-mm in-plane resolution and 1.2-mm slice thickness. DSI 
sequence included 128 diffusion weighted volumes +1 reference b_0 volume, maximum b-value 8,000 s/mm2, 
and 2.2 × 2.2 × 3.0 mm voxel size. EPI sequence was 3.3-mm in-plane resolution and 3.3-mm slice thickness 
with TR 1,920 ms. DSI and MPRAGE data were processed using the Connectome Mapping Toolkit67. Each par-
ticipant’s gray and white matter compartments were segmented from the MPRAGE volume. The gray matter 
volume was subdivided into 68 cortical and 15 subcortical anatomical regions, according to the Desikan-Killiany 
atlas68, defining 83 anatomical regions. These regions were hierarchically subdivided to obtain five parcellations, 
corresponding to five different scales69. The present study uses a parcellation comprising 129 regions of interest 
(ROI); however, here we focus on cortical structures only, discarding all subcortical regions including the bilateral 
thalamus, caudate, putamen, pallidum, nucleus accumbens, hippocampus, and amygdala, as well as the brain-
stem, resulting in 114 remaining ROI. Whole brain streamline tractography was performed on reconstructed 
DSI data70, and connectivity matrices were estimated from the streamlines connecting each pair of cortical ROI. 
We quantify the connection strength between each pair of regions as a fiber density71 instead of fiber count. 
Thus, the connection weight between the pair of brain regions {u,v} captures the average number of connec-
tions per unit surface between u and v, corrected by the length of the fibers connecting such brain regions. The 
aim of these corrections is to control for the variability in cortical region size and the linear bias toward longer 
fibers introduced by the tractography algorithm. Fiber densities were used to construct subject-wise structural 
connectivity matrices. Finally, we construct a group connectome from all 40 individual subject connectomes 

Figure 6. Probability distribution function for the number of active nodes for a system with PEE = 0.1 and 
T = 5.0. As we increase PQE the system goes from a low to a high activity level. When the probability is bimodal 
(PQE = 0.227) the system is at the coexistence curve.
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following the consensus approach described in44, where edges that are most frequently found across all individual 
are selected to conform the group connectome. Following the edge-weight transformation procedure described 
in37, our average connection matrix (Fig. 5) was obtained after fiber-density edge weights were re-sampled to a 
Gaussian distribution.

Parameter space. Overall, the phase diagram of our system (Fig. 2B) resembles to the liquid-gas transition 
described by the Van der Waals equation. In the Van der Waals theory of the liquid-gas transition, the isotherms 
can take different shapes on the pressure-density plane depending on the value of the temperature T. For a large 
value of T, the density is a continuous monotonically increasing function of the pressure. In contrast, when T is 
low enough, there are some values of the pressure in which the system can have two different densities. At these 
points the system undergoes a discontinuous phase transition from gas to liquid or vice versa. The densities at 
which this transition occurs delimit the coexistence curve, where liquid and gas phases can coexist at the same 
temperature and pressure. The end point of the coexistence curve, at which the transition becomes continuous, is 
the critical point of the system, and lies on the isotherm corresponding to the critical temperature72.

Figure 7. Probability distribution function for the number of active nodes for a system with PEE = 0.1. As we 
increase T the difference between the low and high levels of activity decreases until they overlap at the critical 
value of T.

Figure 8. For a system with PEE = 0.1 and T = 5.2 the skewness, kurtosis (left panel) and autocorrelation 
length (right panel) for different values of PQE. We can see that when PQE is around 0.26 the kurtosis and 
autocorrelation length do not change too much and the skewness crosses zero, as we expect for the system when 
it is near criticality.
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Making an analogy to the Van der Waals fluid, we constructed the phase space of our system in the following 
way. In order to determine the coexistence curve, we measured the distributions of values S(t) attained in each 
run for fixed values of PEE and T, increasing PQE until the probabilities of being in the low or high activity state 
were the same (when the two maximums in the distribution of the activity have the same heights, as in Fig. 6). We 
fit a sum of two Gaussian distributions to the PDF and the two “means” set the values of the average activity over 
the coexistence curve. Outside the coexistence curve, the values of the activity are simply given by the average 
activity value <S>.

When we increase the value of T, the difference between the two levels of activity at coexistence will decrease 
(the two maximums in the distribution will get closer). Thus, for a fix value of PEE we look for the T at which the 
two levels of activity overlap (Fig. 7). Once we have the critical T, we compute the skewness and the kurtosis for 
the distributions, as well as the autocorrelation time obtained from runs at different values of PQE. The distribu-
tion with a skewness closest to zero, a negative kurtosis and the largest autocorrelation time was chosen as critical 
(Fig. 8). The activity of the system at this point will be fluctuating around a single value and will have the highest 
standard deviation.
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