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Racial disparities in patient survival 
and tumor mutation burden, and 
the association between tumor 
mutation burden and cancer 
incidence rate
Wensheng Zhang1, Andrea Edwards1, Erik K. Flemington2 & Kun Zhang1

The causes underlying racial disparities in cancer are multifactorial. In addition to socioeconomic 
issues, biological factors may contribute to these inequities, especially in disease incidence and patient 
survival. To date, there have been few studies that relate the disparities in these aspects to genetic 
aberrations. In this work, we studied the impacts of race on the patient survival and tumor mutation 
burden using the data released by the Cancer Genome Atlas (TCGA). The potential relationship between 
mutation burden and disease incidence is further inferred by an integrative analysis of TCGA data and 
the data from the Surveillance, Epidemiology, and End Results (SEER) Program. The results show that 
disparities are present (p < 0.05) in patient survival of five cancers, such as head and neck squamous cell 
carcinoma. The numbers of tumor driver mutations are differentiated (p < 0.05) over the racial groups 
in five cancers, such as lung adenocarcinoma. By treating a specific cancer type and a racial group as an 
“experimental unit”, driver mutation numbers demonstrate a significant (r = 0.46, p < 0.002) positive 
correlation with cancer incidence rates, especially when the five cancers with mutational disparities are 
exclusively focused (r = 0.88, p < 0.00002). These results enrich our understanding of racial disparities in 
cancer and carcinogenic process.

Eliminating racial disparities in cancer screening, diagnosis, treatment and mortality is an essential step toward 
the improvement of health outcomes for all cancer patients in America1. The promise of this objective depends on 
identifying and addressing the multifactorial reasons underlying the disparities. It is well recognized that socioec-
onomic issues, such as income and treatment delays, play a critical role in the high mortality of several cancers in 
minority populations2. Meanwhile, some studies show that biological factors may contribute to these inequities, 
especially in disease incidence and patient survival3.

Previous studied have associated the race-related survival stratification of cancer patients to the differences of 
genetic alterations present in tumor cells. Carethers et al.4 showed that the frequency of microsatellite instability 
(MSI) among African American colon cancers is half of that of MSI for the Caucasian counterpart. The authors 
proposed that, because MSI is associated with good survival for colon cancer patients, the relative lack of MSI in 
African American patients could be related to the high morality. Keenan et al.5 reported that racial differences 
in TP53 mutation, PAM50 basal subtype and triple-negative tumor prevalence influence the magnitude and sig-
nificance of racial disparity in tumor recurrence of breast cancer. Petrovics et al.6 observed distinct prevalence 
between African American (AA) and Caucasian American prostate cancer (CaP) genomes in three recurrent 
genomic alterations, which occurred in the genes (loci) PTEN, LSAMP region and ERG. They further found 
that a novel deletion of the LSAMP locus, as a prevalent genomic alteration in AA CaP, was associated with rapid 
disease progression.
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In this study, we first used the data released by the Cancer Genome Atlas (TCGA) to estimate the effect of 
race on patient survival time and mutation burden of tumors in 16 cancer types (subtypes). Then, we extended 
the analysis to the determination of potential relationship between mutation burden and disease incidence, a less 
investigated issue, by integrating TCGA data and the data from the Surveillance, Epidemiology, and End Results 
(SEER) Program. The results obtained from this study enrich our knowledge in cancer disparities and the related 
carcinogenic process.

Material and Methods
TCGA data. We downloaded the clinical and somatic data from the TCGA database (http://cancergenome.
nih.gov/) on April 24, 2015. Those data, contributed by different institutes, are generated using various sequenc-
ing platforms, somatic mutation calling algorithms and computational tools. Except for ovarian carcinomas 
(OV), we choose one representative dataset for each cancer type according to the following criteria. First, the 
selected dataset contains the largest number of tumor samples (or patients). Second, if two or more datasets are of 
the same size, we choose the one in which the mutations are measured by the IlluminaGA DNASeq platform and 
are called by the latest automated system. Lastly, if the decision cannot be reached by the previous two steps, we 
select the dataset provided by the UCSC Genome Browser. For OV, we employ the datasets from Massachusetts 
Institute of Technology and Washington University in St. Louis. The basic information of the used somatic and 
clinical datasets is summarized in Supplementary Table 1. Synonymous mutations and those under the categories 
of “intron” and “rna” are excluded from further analysis.

SEER data. Age-adjusted race-specific cancer incidence rates, based on the registries in 18 areas from 2008–
2012 (or from 1992–2007 for glioblastoma multiforme (GBM)), are retrieved from the SEER website (http://
seer.cancer.gov/). In the SEER review reports, cancers are categorized by tissue sites. For a TCGA cancer, if it is 
the absolutely-predominant subtype of a SEER cancer, the incidence rate (the number of new cancer cases per 
100,000 individuals per year) in a racial group is estimated by the incidence rate of the SEER cancer. Otherwise, a 
race-specific incidence rate of the TCGA cancer (Cancer-A) is estimated by multiplying the incidence rate of the 
SEER cancer (Cancer-B) that covers Cancer-A with a weight that represents the proportion of the tumor cases of 
Cancer-A among the total cases of Cancer-B. When the SEER reports do not include the distribution of histolog-
ical subtypes for a cancer, the weight information for estimating the incidence rates of a TCGA cancer is obtained 
from other literature. In particular, the data in Olshan et al.7 are used in estimating the incidence rates of KIRC 
and KIPC, and the data in Wright et al.8 and Dubrow & Darefsky9 are applied to the estimations for UCEC and 
GBM, respectively. The details regarding the adaptation of incidence rates from the SEER cancers to the TCGA 
cancers are described in Supplementary Table 2.

Data of stem cell divisions. The lifetime number of stem cell divisions for eight cancer tissues (out of the 
16 TCGA cancers summarized in Table 1) are estimated by Tomasetti and Vogelstein10. We directly use their 
estimations in this study.

Racial groups. The TCGA patients (or tumors) are partitioned into three racial groups, “White”, “Black” and 
“Asian”. We exclude the patients that do not belong to these groups. These groups are aligned to the SEER popula-
tions “White”, “Black” and “Asian and Pacific Islands”, respectively.

Cancer Total samples White Black Asian

BLCA 382 (233) 300 (183) 22 (13) 42 (26)

GBM 594 (285) 505 (256) 50 (17) 13 (5)

HNSC 522 (504) 447 (439) 45 (36) 11 (11)

KIRC 533 (417) 466 (390) 51 (14) 8 (7)

LUAD 521 (488) 391 (385) 52 (29) 8 (8)

LUSC 496 (178) 341 (111) 31 (9) 9 (5)

BRCA 1080 (967) 747 (698) 172 (116) 61 (57)

OV 588 (371) 498 (324) 34 (17) 20 (12)

UCEC 538 (248) 372 (193) 104 (25) 20 (13)

COAD 455 (216) 214 (177) 54 (19) 11 (7)

THCA 506 (402) 329 (263) 27 (18) 52 (39)

CESC 305 (198) 210 (142) 30 (16) 19 (19)

ESCA 174 (171) 110 (109) 2 (2) 41 (41)

KIRP 272 (168) 189 (108) 60 (43) 5 (2)

LIHC 363 (197) 175 (120) 17 (14) 159 (54)

STAD 453 (288) 288 (167) 12 (4) 89 (76)

Table 1. The summary of sample profiles‡. ‡Outside the brackets are the numbers of samples with clinical 
information only. Inside the brackets are the numbers of samples with both clinical and genomic information. 
Some samples do not belong to any racial group of White, Black or Asian.

http://cancergenome.nih.gov/
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Statistical analysis. We use R to perform all statistical analyses. The race-specific Kaplan-Meier survival 
curves are created by the function “survfit()” in the package “survival”. P-values for the difference between two 
races in patient survival time is calculated by the function coxph() in the package “survival”11 and the function 
rmst2() in the package “survRM2”12. In the implementations, patient-age at the initial clinical date is included as 
a covariate and the default arguments are used. The functions wilcox() and lm() in the package “stats” are used in 
the Mann Whitney test and linear regression analysis, respectively.

Results
Among the 33 cancer types with clinically-annotated multi-omic data available at the TCGA database by April 
24, 2015, sixteen are studied in this work. Each of the selected cancer types has at least 14 patients from a minority 
population (i.e. black or Asian Americans) besides the dominant white Americans (Table 1). The studied cancer 
types include bladder urothelial carcinoma (BLCA), glioblastoma multiforme (GBM), head and neck squamous 
cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous 
cell carcinoma (LUSC), breast invasive carcinoma (BRCA), ovarian serous cystadenocarcinoma (OV), uterine 
corpus endometrial carcinoma (UCEC), colon adenocarcinoma (COAD), thyroid carcinoma (THCA), cervi-
cal squamous cell carcinoma and endocervical adenocarcinoma (CESC), esophageal carcinoma (ESCA), kid-
ney renal papillary cell carcinoma (KIRP) liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma 
(STAD). The sample sizes of those cancer types range from 171 to 967.

Racial disparity in cancer incidence rate. We use a naïve binomial test to estimate the p-value for the 
difference of cancer incidence rates between black (or Asian) and white groups for each cancer type (Results are 
presented in Supplementary Table 3 and the method is outlined in the table notes). We find that, except for Black 
versus White in three cancers (i.e. BRCA, CESC and ESCA) and Asian versus White in one cancer (i.e. THCA), 
all the other differences are significant (p < 0.01).

Racial disparity in patient survival. For each TCGA cancer type, the samples not belonging to the white, 
black or Asian racial groups are excluded from the survival analysis. Two statistical methods are employed. 
One is the conventional Cox proportional hazard (Cox-PH) regression, and the other is the Restricted Mean 
Survival Time (RMST)13. Compared to a Cox-PH model, RMST has an advantage in alleviating the potential low 
efficiency, which may happen when the Kaplan Meier survival curves of two groups substantially deviate from 
parallelism and/or cover different age domains. However, its implementation needs a cut-off for survival time, 
potentially leading to the loss of information and statistical power. In our analysis, the significance of a group 
comparison is determined by an aggregated p-value (p), which integrates pCOX−PH (the p-value obtained from 
the Cox-PH analysis) and pRMST (the p-value obtained from the RMST method) by the conventional Bonferroni 
method14. The formula is p = K×min(pCOX−PH’ pRMST), where K = 2.

Five cancer types demonstrate racial disparities in the overall survival time of patients (Fig. 1). The first is 
HNSC, in which the survival in black patients is significantly worse than that in white patients (p = 0.038). The 
second is LUAD in which Asian patients show a nearly perfect survival profile. Although the Asian group con-
tains only eight samples, the comparison with white patients is extremely significant (p < 0.001). Black patients 
demonstrate a beyond-five-year survival advantage over white patients but the difference is not significant 
(p > 0.05). Nevertheless, the difference of ten-year survival rates between the black and white patients is signifi-
cant (p−value = 0.002) if Fisher’s Exact Test is used. The third is LUSC, in which none of the nine Asian patients 
lived more than three years and their survival is significantly poorer compared to white patients (p = 0.024). For 
the last two cancer types, i.e. LIHC and STAD, the p-values of the comparisons between Asian and white groups 
are 0.035 and 0.017, respectively. The Asian group also demonstrates much desired survival rates (over 80%) until 
40 months. In particular, the survival advantage of Asian patients over white and black STAD patients is still sub-
stantial after 90 months from the initial clinical dates.

Racial disparity in tumor mutation burdens. By a Mann Whitney test, in which the null hypothesis 
is that the mean ranks of the groups are the same, we evaluate the between-race differences of mutation bur-
dens (i.e. the numbers of somatic mutations) in three gene sets (or catalogues). The first, pcDriver, contains 
291 (high-confident) driver genes identified by a pan-cancer project15. The second consists of the 506 cancer 
genes collected by the Cancer Gene Census of COSMIC (Catalogue of Somatic Mutations in Cancer) database16. 
The third includes all the HUGO genes for which official symbols have been approved by the Human Genome 
Organization Nomenclature Committee. It is worth noting that, if a gene has two or multiple mutations in an 
individual sample, each of those mutations will be counted towards the calculation of mutation burden.

As shown in Table 2, racial disparities (p < 0.05) are observed in five cancer types regarding the mutations 
present in the pcDriver genes. Specifically, in BLCA, a median white patient has 11 driver mutations, 4 more than 
that of an average Asian patient. A similar but less significant pattern is found in KIRC. Among LUAD patients, 
black patients have heavier driver mutation burden compared to white patients. Their medians are 13 and 9, 
respectively. On the other hand, white patients suffer more mutations than black patients for UCEC and KIRP. In 
addition, the difference between black and Asian patients is significant in UCEC.

We also observe the racial disparities in BLCA, KIRC and LUAD, but not UCEC and KIRP, regarding the 
mutations present in the COSMIC genes and HOGO genes (Supplementary Tables 4 and 5). The analysis of these 
two gene catalogues also shows some racial disparities that are not detected in the analysis of the pcDriver genes. 
Several cancers, including BRCA, CESC, OV and ESEA, are involved.

Relationship between tumor mutation burden and cancer incidence rate. We further investigate 
whether the observed mutational disparities can explain the variability of cancer incidence by a set of statistical 
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analyses. In these analyses, we treat the combination of a racial group and a cancer type as an “experimental” unit, 
whose incidence and mutation quantities constitute an observation (or record) in the working dataset.

The first analysis (AS-1) focuses on the five cancers that demonstrate mutational disparities in driver 
genes (highlighted in Table 2). The association between cancer incidence rate and the number of mutations in 
the pan-cancer driver (pcDriver) genes or the log2 transformed number of mutations in the HOGO genes is 
estimated by the Pearson correlation (r). As showed in Fig. 2, the association is quite strong (r = 0.88 or 0.79, 
p < 0.00002 or 0.005) and the pattern approximately demonstrates a linear relationship.

The second analysis (AS-2) repeats the correlation tests using the information of 15 cancers (of the 16 cancers 
listed in Table 1). BRCA is excluded from the analysis because its extremely-high incidence rates could dominate 
the parameter estimation. The results (Fig. 3) largely confirm the positive association between cancer incidence 
and mutation burden observed in AS-1.

The third analysis (AS-3) is based on the information of 8 cancers, i.e. COAD, ESCA, GBM, HNSC, LIHC, 
LUAD, LUSC and THCA, which are a subset of the 31 cancers studied by Tomasetti and Vogelstein10. The effects 

Figure 1. Racial disparity in survival time of cancer patients. Red: White patients; Green: Black patients; Blue: 
Asian patients. Censored patients (samples), for whom the follow-up after treatment ends before events (death) 
occur, are marked with vertical ticks. For each comparison, the printed p-value is the aggregated p-value (p), 
which integrates pCOX−PH (the p-value obtained from the Cox-PH analysis) and pRMST (the p-value obtained 
from the RMST method) by the conventional Bonferroni method.
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Cancer

White Black Asian P-value

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 White::Black White::Asian Black::Asian

BLCA 7 11 16 5 8 13 3.5 7 11 1.9E-01 5.0E-03 4.7E-01

GBM 2 4 5 3 4 6 2 4 7 2.0E-01 7.2E-01 9.7E-01

HNSC 4 7 11 4.75 8.5 11 3.5 6 13 5.6E-01 7.7E-01 7.2E-01

KIRC 2 3 5 1.25 3.5 4 1 2 2 3.0E-01 1.5E-02 2.9E-01

LUAD 5 9 15 10 13 18 5.75 9.5 18.25 6.8E-03 6.2E-01 4.6E-01

LUSC 6 10 14 6 10 14 4 5 10 1.0E+00 1.4E-01 1.6E-01

BRCA 1 3 4 1 3 4 2 3 5 7.9E-01 1.4E-01 1.4E-01

OV 1 2 3 2 3 3 1 2.5 4.25 2.4E-01 5.8E-01 8.9E-01

UCEC 5 8 15 4 5 12 5 7 60 2.4E-02 3.4E-01 1.7E-02

COAD 5 7 12 5.5 7 15.5 5 10 73 9.3E-01 3.5E-01 4.7E-01

THCA 1 1 2 1 1 2 1 1 1 6.7E-01 6.3E-01 5.6E-01

CESC 2 3 7 2 3.5 6.25 1 2 4.5 9.3E-01 8.1E-02 2.0E-01

ESCA 3 5 7 6.25 6.5 6.75 3 5 6 2.7E-01 8.4E-01 2.0E-01

KIRP 1 2 4 1 1 2.5 0.75 1.5 2.25 2.7E-02 5.0E-01 8.2E-01

LIHC 2 3.5 5 3 4 6.5 2 3 6 2.0E-01 7.9E-01 3.2E-01

STAD 3 6 10.5 4 19.5 36.25 2 4 11 3.0E-01 4.0E-01 2.2E-01

Table 2. The statistics of non-synonymous somatic mutations in the pan-cancer driver (pcDriver) genes‡. ‡Q1, 
Q2 and Q3 are the first quantile, the second quantile (median) and the third quantile of mutation numbers, 
respectively. The number of tumor samples in each cancer-race group is the same as that in Table 1. P-values are 
calculated by the Mann Whitney test.

Figure 2. The association between mutation burden and cancer incidence rate for the five cancer types that 
demonstrate mutational disparities between patient races. Each data point represents the combination of a 
racial group and a TCGA cancer. Y (Incidence rate) in the both plots indicates the number of new cancer cases 
per 100000 individuals per year. (A) X1 indicates the median of mutation numbers in the pan-cancer driver 
genes. (B) X2 indicates the log2 transformed median of mutation numbers in all HUGO genes. The p-value 
of Pearson correlation (r) between X1 (X2) and Y is estimated by the t-test. The regression of Y on X1 (X2) is 
denoted by the dotted red line.
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of mutation burden and the lifetime number of stem cell divisions (SCD, Supplementary Table 6) on cancer inci-
dence are evaluated by five regression models (Table 3). The results show that driver mutation burden (DM) can 
explain ~25% of the variability of cancer incidence across cancer types and racial groups, similar to the percentage 
explained by cell divisions. The model containing both DM and SCD as the explanatory variables is more predic-
tive (R2 = 0.374) than the models with either DM or SCD as the only explanatory variable.

Figure 3. The association between mutation burden and cancer incidence rate for all the addressed cancer 
types except for BRCA. Y (Incidence rate) in the both plots indicates the number of new cancer cases per 
100000 individuals per year. Each data point represents the combination of a racial group and a TCGA cancer. 
(A) 1 indicates the median of mutation numbers in the pan-cancer driver genes. (B) X2 indicates the log2 
transformed median of mutation numbers in all HUGO genes. The p-value of Pearson correlation (r) between 
X1(X2) and Y is estimated by the t-test. The regression of Y on X1 (or X2) is denoted by the dotted red line. The 
information of BRCA is not used in the analysis. The graphics is generated by the gap.plot() function in the R 
package “plotrix”.

Model Explanatory variablea Adjusted-R2 p-value (SCD) p-value (DM) p-value (TSM)

Model-1 SCD, DM 0.374 0.030 0.042 NA

Model-2 SCD, TSM 0.340 0.011 NA 0.079

Model-3 SCD 0.268 0.006 NA NA

Model-4 DM 0.247 NA 0.008 NA

Model-5 TSM 0.139 NA NA 0.041

Table 3. The regression of cancer incidence on stem cell division and somatic mutation burden. aSCD: 
the lifetime number of stem cell divisions. DM: the number of somatic mutations in the pan-cancer driver 
(pcDriver) genes. TSM: the number of somatic mutations present in all HOGO genes. Before the regression 
analysis, the logarithm transformation is applied to SCD and TSM.

http://6
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Further analysis on the relationship between mutation burden and cancer incidence rate.  
AS-S1. Not all non-synonymous mutations occurring in pcDriver genes are driver mutations. DNA bases in 
which driver mutations occur tend to be, but not necessarily are, conservative in mammalian evolution17,18. In 
this regard, the number of mutations in pcDriver genes in a tumor should be considered as an estimate (or a rep-
resentative metric) of its driver mutation burden.

Of the total 33400 non-synonymous pcDriver gene mutations in all 4839 tumor samples analyzed in this study, 
29623 (amounting to 88.7%) are single nucleotide variations (SNVs). The others include 11 double nucleotide 
polymorphisms (DNPs) and 3766 indels. We retrieve the PHRED-like deleteriousness scores (Scaled C-Scores) 
of these SNVs from Combined Annotation Dependent Depletion (CADD) (http://cadd.gs.washington.edu/)19. 
We find that 86.6% of the obtained scores are larger than 15 (a mutation with its C-Score over 15 is expected to 
be among the 3.2% of the most deleterious SNVs), the cutoff recommended by CADD for the identification of 
pathogenic variations. Among the 48 cancer-race groups, only KIRP-Asian group has the average Scaled C-Score 
(16.7) less than 20 (Supplementary Table 7).

By filtering the less deleterious (Scaled C-Score <15) SNVs from the mutation list of pcDriver genes, we 
generate an alternative estimate (or metric) of the driver mutation burden of a tumor sample. We find that the 
association pattern and strength (Supplementary Figure 1A) between this parsimoniously-measured mutation 
burden and cancer incidence rate are very similar to those shown Fig. 3A. This implies that the noise potentially 
introduced in measuring driver mutation burden do not seriously impact the validity of the findings presented 
in the previous subsection.

AS-S2. The mutations not occurring in cancer driver genes are typically known as passenger mutations. 
Passenger mutation burden is a proven, both empirically and theoretically, positive predictor for driver mutation 
burden20. In the TCGA data, passenger mutations amount to ~93% of the total mutations. We calculate and test 
the correlation between the passenger mutation burden and cancer incidence rate (Supplementary Figure 1B). 
The result is similar to that between the total mutation burden and cancer incidence rate (Fig. 3B).

Discussion
In the literature, the mortality of a cancer and the variability across different racial groups are usually determined 
by epidemiological data7–9,21–28. In this paper, we perform an integrative analysis of the clinical and genomic data 
of the TCGA tumor samples, finding racial disparities present in five cancer types with regard to the survival 
profile of patients. We also notice that, although some racial disparities observed from the analysis of epidemio-
logical data are not identified due to the relatively small sample sizes of the minor racial groups, the Kaplan Meier 
curves still provide insight into the nature of these disparities. For example, it is well known that black lung cancer 
patients have a higher death rate compared to white patients21 and our result implies that the disparity is mainly 
due to the lower short-time survival chances of black LUSC patients. This is consistent with the opinion that the 
treatment of black patients has been more frequently delayed due to socioeconomic factors21,26,27,29.

Personalized medicine is a new and exciting research field, being considered as the future of cancer patient 
management30. The potential strength depends on the understanding of the biological and genetic characteristics 
of individual tumors31, for which the differences between racial populations may be an information source. In this 
study, we found that the numbers of tumor driver mutations are differentiated (p < 0.05) over the racial groups in 
five cancers. Theoretically, both genetic and environmental factors can contribute to these disparities. However, 
the detailed stories should vary, depending on cancer types. For example, the mutational disparity in LUAD is 
indicated by the small p-value for the White::Black comparison and is characterized by the high mutation burden 
in black patients. Since, among people of low socioeconomic status, black Americans have a higher smoking rate 
than the white32, it could not be too bold to attribute the mutational disparity to an environment factor. On the 
other hand, the racial disparity in BLCA is indicated by the small p-value for the White::Asian comparison and 
is characterized by the high mutation burden in white patients. Because there is no evidence showing that the 
lifestyles and diets of the black, whose mutational profile is similar to the Asian, are closer to the Asian than the 
white, the observed disparity in somatic mutations may be due to a genetic factor. These speculations warrant 
further validation with more relevant data.

The most remarkable finding of our work is that there is a significant positive correlation between the inci-
dence rate and the race-specific median (driver) mutation burden of a cancer. This association seems to deviate 
from the well-known perception that relates cancer incidence rate to the total number of (driver) mutations that 
can be accumulated in a tissue during the lifespan of a person. The reason is that the measurement of mutation 
burden in a tumor is irrelevant to the size of stem cell populations (or the divisions) that varies substantially in 
an exponential scale across tissues. A potential explanation for the paradox is that: the requirement for driver 
mutations to develop cancer in a tissue with a large population of stem cells (and/or being readily subject to muta-
gens) could be relatively high but the precancerous cells meeting the threshold in such a tissue still outnumber 
the precancerous cells in a “smaller” (and/or “safe”) tissue. Similar hypotheses have been proposed to explain 
the famous Peto’s paradox, i.e. biological species of larger body mass and/or longer lifespan exhibit smaller than 
expected incidences of cancer33. Different from the “bad luck” theory that attributes cancer to random muta-
tions10, our results indicate the causal complexity of cancer. That is, besides tissue types, the race-related genetic 
and environmental factors are among the mediators for the association between the variabilities of mutation 
burden and disease incidence across tissues. Theoretically, mutation burden in a tumor is directly related to the 
number of somatic cells derived from a single stem cell. In this regard, there is a similarity between our result and 
that reported by Noble et al.34. The publication shows that both components of the lifetime number of stem cell 
divisions, i.e. standing stem cell number and per stem cell lifetime replication rate, have a statistically significant 
and independent effect on explaining variation in cancer incidence over the 31 cancer types studied by Tomasetti 
and Vogelstein10.

http://cadd.gs.washington.edu/
http://7
http://1A
http://1B
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