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The exact phase diagram for a class 
of open multispecies asymmetric 
exclusion processes
Arvind Ayyer & Dipankar Roy

The asymmetric exclusion process is an idealised stochastic model of transport, whose exact solution 
has given important insight into a general theory of nonequilibrium statistical physics. In this work, 
we consider a totally asymmetric exclusion process with multiple species of particles on a one-
dimensional lattice in contact with reservoirs. We derive the exact nonequilibrium phase diagram for 
the system in the long time limit. We find two new phenomena in certain regions of the phase diagram: 
dynamical expulsion when the density of a species becomes zero throughout the system, and dynamical 
localisation when the density of a species is nonzero only within an interval far from the boundaries. We 
give a complete explanation of the macroscopic features of the phase diagram using what we call nested 
fat shocks.

The one-dimensional asymmetric simple exclusion process (ASEP) with open boundaries has been of great 
importance as a model system towards understanding nonequilibrium phenomena. The matrix ansatz, which 
has since become an important tool1, was developed to compute the nonequilibrium steady state (NESS) of the 
totally asymmetric version of the single-species ASEP2 (TASEP). Using this ansatz, various measurable quantities 
such as the density and current were calculated in the NESS, from which the exact nonequilibrium phase diagram 
was derived. While many rigorous results are known in one dimension, there are none for higher dimensional 
exclusion processes in contact with reservoirs.

The exact calculation of various out-of-equilibrium quantities was also useful in formulating general princi-
ples. For example, the diffusion constant was first calculated exactly for the open TASEP3. Using the integrability 
of the ASEP, the spectrum of the transition matrix was computed4. The large deviation functional for the density 
profiles5 and the large deviation function for the current6,7 was derived using the matrix ansatz. These calculations 
helped in the formulation of two general principles for driven diffusive systems; the additivity principle8 and the 
macroscopic fluctuation theory9.

It is natural to extend the ASEP to several species of particles. Multispecies exclusion processes have appli-
cations to studies of traffic flow10, cell motility11,12, chemotaxis13, chemical reactions14 and biological transport 
in ion-channels15–17. The ASEP with second-class particles was first considered with periodic boundary condi-
tions18. The first model with two species and open boundaries whose NESS was determined exactly was a model 
where positive and negative charges moved in the lattice under the influence of an electric field19. Much later, a 
two-species model called the semipermeable TASEP20,21 was considered, where second-class particles were con-
fined to the lattice. The computation of the NESS was later generalised to the semipermeable ASEP22. The NESS of 
a version with more general boundary conditions was also determined exactly23. Later on, the phase diagram for 
a large class of ASEPs with two species and open boundaries was obtained24,25. More recently, classes of integrable 
ASEPs with multiple species of particles and open boundaries were determined26.

In this work, we study a multispecies exclusion process on a finite one-dimensional lattice with r species of 
charges called the mASEP introduced recently27. The hopping rates in the bulk are asymmetric and those in 
the boundary are defined in such a way that there are r + 1 conserved particle numbers. The main results are 
the following. We obtain the complete (r + 2)-dimensional phase diagram and present formulas for all densities 
and currents in the thermodynamic limit in all regions of the phase diagram. It will turn out that all the macro-
scopic features can be explained by a new structure which we call a nested fat shock. To make the presentation 
self-contained, we review the features for the semipermeable ASEP in Section I of the Supplementary material. 
We will prove these results in Section II of the Supplementary material by using projections to the semipermeable 
ASEP.
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Results
The mASEP is defined on a one-dimensional lattice of size n, where each site is occupied by exactly one particle 
of type … …r r{ , , 1, 0, 1, , }. The barred particles are negative charges, the unbarred ones are positive charges, and 
0’s are vacancies. There are r species of charges, with the total number of particles of charge j being fixed to be nj 
for ≤ ≤j r1 . As a consequence, the number n0 of vacancies is also fixed, with + + =n n nr0 . More precisely, 
fix an (r + 1)-tuple of positive integers = …n n n( , , )r0 . The state space Ωn consists of all words of length n in the 
alphabet … …r r{ , , 1, 0, 1, , } such that the total number of j′s and j ’s is equal to nj for ≤ ≤j r1  and the total 
number of 0’s is n0.

The dynamics is the effect of a rightward-pointing electric field. In the bulk, we have the asymmetric hopping 
rule

→





>
<

i j j i
j

q j
with rate

1 if i ,
if i , (1)

where we think of the barred particles as negative numbers, and set q < 1. On the left and right boundaries, posi-
tive charges can only replace and be replaced by their negatively charged partners with rates given by

→ α → β
→ γ → δ.

j j j j
j j j j

Left Right
with rate , with rate ,
with rate , with rate (2)

The mASEP possesses charge-conjugation symmetry in the following sense: interchanging positively and neg-
atively charged particles as well as the rates 1 and q, α and β, and γ and δ, and changing the direction of motion 
leaves the mASEP invariant. The model with (r = 1) and =n 00  is the single-species open ASEP;2 for arbitrary n0, 
this is the semipermeable ASEP22. Furthermore, if γ δ= = =q 0, this is the semipermeable TASEP20,21 (see 
Section I of the Supplementary material). We thus denote the mASEP with γ δ= = =q 0 as the mTASEP. 
Results of simulations for the mTASEP with r = 2 are given in Fig. 1.

Phase Diagram. For each integer j between 0 and r, let θ = n n/j j  be the total density of (both positively and 
negatively charged) particles of species j. We consider the behaviour of the mASEP in the limit → ∞n  and 

→ ∞nj  for each j such that the total density of species j particles converges to θj > 0. Define the quantities
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and the function = +f x x( ) 1/(1 ). Set θ θΘ = + +( )/2k k r  and φ = Θ − Θ/(1 )k k k  for ≤ ≤k r1 . Then the 
exact phase diagram is given in Fig. 2.

Figure 1. Plots of the densities of particles 2 (black crosses), 1 (green squares), 0 (red diamonds), 1 (blue 
circles), and 2 (pink triangles), versus the scaled position =x m n/  for the mTASEP with r = 2 where =n 1000, 
θ θ= . = .0 17, 0 450 1  and θ = .0 382  in the regions (a) � (α β= . = .0 35, 0 83), (b) � (α β= . = .0 73, 0 29), (c) � 
(α β= . = .0 15, 0 81), (d) � (α β= . = .0 73, 0 14), (e) � (α β= . = .0 71, 0 87), (f) the � �−  shock line 
(α β= = .0 32), and (g) the � �−  shock line (α β= = .0 15).
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The nonequilibrium phase diagram of the r-species mASEP in Fig. 2 comprises 2r + 1 phases, � � � � �… …, , , , , , , 
each one of which is characterised by the bulk densities ρj for ∈ … …j r r{ , , 0, , }, as well as the currents Jj for 

∈ …j r{1, , } of all types of particles; we tabulate these in Tables 1 and 2 respectively. Note that there is no current of 0’s 
and the current of j ′s to the left is the same as that of j’s to the right. The mean densities of the j and j  jump discontinu-
ously across the � �−  boundary. By contrast, the mean densities vary continuously along the � � �− +( ) (and 
� � �− +( )) boundary. All currents Jj change continuously across all phase boundaries in Fig. 2. In all phases except , 
the system shows phase coexistence with a sharp interface separating intervals of different density for some particle 
type, as we show by the illustrative density profiles in Fig. 1 for the mTASEP with r = 2 and Supplementary Fig. S2 for 
the mASEP with r = 1. The proofs of the density profiles in Table 1 and currents in Table 2, which explain the phase 
diagram in Fig. 2, are given in Section II of the Supplementary material.

Figure 2. The nonequilibrium phase diagram of the mASEP with r species of charges. There are 2r + 1 different 
regions, which are labelled � � � � �… …, , , , , , . Each region is characterised by different bulk densities of all 
particles. The explanation for the nomenclature of the phases in given below. See Tables 1 and 2 for the densities 
and currents respectively in the NESS in these 2r + 1 regions.

Phase ↓

Densities in the bulk

Species k Values of ρ ρ,k k

�
k = 0 ρ0 = θ0

1 ≤ k ≤ r ρk = ρ θ= /2k k

�

k = 0 ρ0 piecewise constant

1 ≤ k ≤ j − 1 ρ = 0k  
ρk piecewise constant

k = j ρ = − Θ +f b( )j j 1 
ρj piecewise constant

j + 1 ≤ k ≤ r ρk = ρ θ= /2k k

�

k = 0 piecewise constant

≤ ≤ −k j1 1
ρk = 0 
ρk piecewise constant

k = j ρ = − Θ +f a( )j j 1 
ρ j  piecewise constant

+ ≤ ≤j k r1 ρ ρ θ= = /2k k k

� �−  boundary

k = 0 ρ0 piecewise linear

≤ ≤ −k j1 1 ρ ρ,k k piecewise linear

+ ≤ ≤j k r1 ρ ρ θ= = /2k k k

Table 1. The densities of all species of particles in phase �, as well as phases � and �, and the � �−  boundary for 
≤ ≤j r1 . Piecewise constant densities correspond to phase separation and piecewise linear profiles correspond 

to averaging over shocks. The exact formulas can be calculated from the schematic plots in the top row of Fig. 5.

http://S2


www.nature.com/scientificreports/

4Scientific RepoRts | 7: 13555  | DOI:10.1038/s41598-017-12768-8

We illustrate the density profiles for various regions in the phase diagram for the example of the 2-species 
mTASEP (i.e. γ δ= = =q 0) in Fig. 1. Therefore, α α= −a (1 )/  and β β= −b (1 )/  from (3), and α=f a( ) , 

β=f b( ) . There are five phases for this system, corresponding to r = 2, and two relevant phase-boundaries. The 
currents can be calculated by mean-field type calculations from the densities in each of the regions. More pre-
c ise ly,  ρ ρ ρ ρ= − = −J (1 ) (1 )2 2 2 2 2  and ρ ρ ρ ρ ρ ρ= − − = − −J (1 2 ) (1 2 )1 1 1 2 1 1 2 .  When there  i s 
phase-separation, the densities of all species conspire to ensure that the currents are constant across the system 
(because of particle conservation in the bulk). The value of the currents in each phase can be compared with 
Table 2.

In phase , all densities are constant, and the densities of oppositely charged particles are equal. Therefore, 
ρ θ=0 0, and ρ ρ θ= = /2k k k  for k = 1, 2. This is seen in Fig. 1(e) and matches with the first row of Table 1.

In phase �, the densities of 2’s, 2 and 1’s are constant, whereas those of 1’s and 0’s undergo phase separation. As 
in phase , ρ ρ θ= = /22 2 2 . Moreover, ρ β θ= − /21 2  is also constant throughout the system. In the phase- 
separated regions, either ρ ρ θ+ = −11 1 2 (forcing ρ = 00 ), or ρ ρ=1 1 from which ρ0 can be calculated. The den-
sity plots can be seen in Fig. 1(b) and match the calculation of the densities in the second row of Table 1 with 
� �= . The density profiles in � can be calculated analogously using charge-conjugation symmetry.

In phase �, the only constant densities are given by ρ β=2  and ρ = 01 . It is not immediately obvious why 1’s 
are excluded from the system, and we give an explanation for this phenomenon of dynamical expulsion in the next 
section. Particles of species 0, 1 and 2 are phase segregated in three distinct parts. The density of 2’s, ρ2, is given by 
the 1 − β in the rightmost part and ρ2 in the other two parts. Particles of species 0 exist only in the leftmost part 
with density β−1 2 , and those of species 1 exist only in the middle part with the same density. In the thermody-
namic limit, the middle part is infinitely far away from both boundaries and it is not immediately clear how 1’s can 
be localised in the bulk. We call this phenomenon dynamical localisation and explain how this occurs in the next 
section. The densities can be seen in Fig. 1(d) and match the calculation of the densities in the second row of 
Table 1 with � �= . Again, the profiles in � can be calculated using charge-conjugation symmetry.

The nomenclature for the phases can now be explained. Each phase is denoted by the phase-segregated species 
with largest absolute value. For example, 0’s and 1’s are segregated in phase �, 0’s and �’s are segregated in phase �, 
0’s, 1’s and 2’s are segregated in phase �, and 0’s, 1’s and 2’s are segregated in phase �. The sole exception is phase , 
where all species have constant density.

To understand the density profiles in the � �−  and � �−  boundaries, we appeal to the nested fat shock con-
struction, which we explain below. Recall that the phase diagram is calculated in the limit where the system size, 

→ ∞n . We rescale the system by a factor of n1/  so that the locations lie in the interval  [0, 1]. In the � �−  bound-
ary, as shown in Fig. 3, the densities of particles 2 and 2 are constant and equal to θ /22 . All the particles of type 0 
form a ‘bound state’ of fixed width. We call this the nested fat shock (the nesting is of order 1 here). Both ends of 
the bound state execute a synchronised symmetric random walk with reflecting boundary conditions. As a con-
sequence, ρ1, ρ0 and ρ1 are piecewise linear after averaging. In particular, ρ1 is constant towards the left, since the 
right end of the bound state cannot move all the way to the left, and similarly for ρ1. This is shown in Fig. 1(f).

In the � �−  boundary as shown in Fig. 4, none of the densities are constant, and the picture is more compli-
cated. The nested fat shock here consists of the regions containing 1’s, 0’s and 1's, in that order from left to right. 
The nesting is of order 2 here. There are four boundaries between the regions −2 1, −1 0, −0 1 and −1 2, and 
all of them perform synchronised symmetric random walks in the bulk so that the widths of the regions contain-
ing 1, 0 and 1 is fixed. When one of them touches the boundary the widths of either 1 or 1 can decrease, causing the 
opposites charged region to increase in size so that the sum of the widths of these two remains constant. The 
width of the region containing 0 never changes. This behaviour results in the piecewise linear profile shown in 
Fig. 1(g).

Phase ↓

Currents

Species k Value of Jk

�
≤ <k r1 − Θ − Θ − Θ − Θ+ +q(1 )( )(1 )k k k k1 1

k = r − Θ − Θq(1 ) (1 )r r

�

≤ ≤ −k j1 1 0

k = j − − − Θ − Θ+ +q f b f b(1 )( ( )(1 ( )) (1 ))j j1 1

+ ≤ <j k r1 − Θ − Θ − Θ − Θ+ +q(1 )( )(1 )k k k k1 1

k = r − Θ − Θq(1 ) (1 )r r

�

≤ ≤ −k j1 1 0

k = j − − − Θ − Θ+ +q f a f a(1 )( ( )(1 ( )) (1 ))j j1 1

+ ≤ <j k r1 − Θ − Θ − Θ − Θ+ +q(1 )( )(1 )k k k k1 1

k = r − Θ − Θq(1 ) (1 )r r

Table 2. The currents of all species of particles in phase , as well as phases � and � for ≤ ≤j r1 . All currents 
are seen to be continuous across the � �−  boundary. For the special cases of � and �, take Θ =+ 0r 1 . Note that 
J0 = 0 and ≡ −J Jk k.
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One can now derive the density profiles in regions �, �, � and � from these nested fat shocks. For example, in �, 
one has the same nested fat shock structure as in Fig. 3, but the ends of the bound state containing 0 execute a 
random walk with negative drift, which ensures that the nested fat shock is pinned to the left. Similarly, the nested 
fat shock is pinned to the right in �. Similarly, the density profiles in � and � can be calculated by forcing the nested 
fat shock in Fig. 4 to be pinned to the left and right respectively.

The general structure of the nested fat shock is explained in the next section.

Nested fat shock. All coarse features of the phase diagram in Fig. 2 are explained by the nested fat shock 
construction. This is a generalisation of the fat shock construction, which explains the phase diagram for the sem-
ipermeable TASEP21 (i.e. the mTASEP with r = 1). Roughly speaking, the fat shock consists of a macroscopic 
interval of the system, where all the 0’s are localised. The 0’s form two simultaneous shocks with the 1’s and 1’s, with 
a constant macroscopic width. For more details on the fat shock, see Section I of the Supplementary material.

The nested fat shock is a macroscopic interval of the system where, for some j ≥ 0, particles of species 
… …j j, , 0, ,  are localised in a very specific way.
Particles of species 0 have a nonzero constant density in a subinterval of fixed width inside this interval. 

Particles of species 1 (resp. 1) have a nonzero constant density in a subinterval to the right (resp. left) of the 0’s. 
Although the widths of the 1 and 1 subintervals may vary, the sum of their widths is fixed. This pattern continues 
until species j on the right and species j  on the left. The boundary between any two adjacent subintervals is a 
shock-front. Depending on which part of the phase diagram the system finds itself in, the nested fat shock can 
have either negative, positive or zero drift. If the drift is negative, the negatively charged subintervals containing 

… j1, ,  will not exist, and similarly if there is positive drift, the positively charged subintervals … j1, ,  will vanish. 
If there is zero drift, all subintervals will exist and move in a synchronised fashion.

The top row of Fig. 5 shows the structure of the nested fat shock in these three cases in the most general sce-
nario. We give a concrete example of a simulation run of the mTASEP with r = 2 in the bottom row of the figure, 

Figure 3. Instantaneous picture of the nested fat shock in the � �−  boundary in the rescaled mTASEP with 
r = 2. Each connected region is labelled with the species of a particle and the height of a region at a given 
location represents the density of that species at that point.

Figure 4. Instantaneous picture of the nested fat shock in the � �−  boundary in the rescaled mTASEP with 
r = 2. Each connected region is labelled with the species of a particle and the height of a region at a given 
location represents the density of that species at that point.
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which shows the results for phases (a) � (negative drift), (b) � (positive drift), and (c) the � �−  boundary (zero 
drift). The simulations show the densities of particles of species 1, 0 and 1 only. If the nested fat shock has nonzero 
drift, it gets pinned to one of the boundaries; it is pinned on the left in (a) and on the right in (b). When the nested 
fat shock is pinned to the left, it consists of species 0 and 1, and particles of species 1 exit the system from the left. 
Similarly, when pinned to the right, it consists of species 1 and 0, and particles of species 1 vacate the system from 
the right. When the nested fat shock has zero drift as in (c), blocks of 1, 0 and 1 are present, with all shock fronts 
performing lockstep symmetric random walks.

The precise details for each phase are given below.

Region �. Here, only the particles of species 0 participate in the nested fat shock and the width of the shock is 
larger than the system size. As a result, all densities are constant throughout the system. This explains the densities 
and currents in region . See the density plot in Fig. 1(e) for the result of simulations.

Regions�and�. We give details only for region �, since those of � can be obtained by analogous arguments.
In region �, particles of species − … … −j j1 , , 0, , 1 participate in the nested fat shock. The velocity of this 

shock is negative and it gets pinned to the left boundary. However, this is not a stable situation. Initially, particles 
of species −j 1 will be replaced by those of species j − 1, which will then move rightwards in the bulk, until they 
join the subinterval of the nested fat shock occupied by the particles of species j − 1. Once that process is com-
pleted, a similar phenomenon will happen with particles of species −j 2. This process will continue until all 
negatively charged particles in the nested fat shock have been replaced by their positive counterparts. In the 
steady state, we will only see particles of species … −j0, , 1 participating in the shock, which will be pinned to the 
left.

We point out two new nonequilibrium features of this phase which can be seen in the top row of Fig. 5(a). 
First, note that species 0 through j − 1 are localised in the interior of the system. Each of these species has under-
gone phase separation, with one region of non-zero density and the remaining of zero density. The precise loca-
tions of the region with non-zero density can be calculated from the values of θ θ… −, , j0 1. What is more 
interesting is that species 1 through j − 1 are localised away from the boundary. This is somewhat counterintuitive 
since we have taken the thermodynamic limit and these particles are infinitely far away from the boundary. We 
call this phenomenon dynamical localisation. Such a phenomenon cannot occur in an equilibrium system. The 

Figure 5. The top row shows schematic plots of the densities ρj and ρ j , for all j, versus the normalised position x 
illustrating the nested fat shock (a) pinned to the left in region �, (b) pinned to the right in region � and (c) 
unpinned in the � �−  boundary in (c). The densities ρ x( )a  are plotted against the rescaled location x. The value 
of ρ x( )a  is the height of the region containing particle a at x. The bottom row shows simulation results in 
multiples of 2000 steps as spatiotemporal plots for the mTASEP with r = 2 and = = =n n n70, 100, 3300 1 2  in 
(a) region � (α β= . = .0 79, 0 23), (b) region � (α β= . = .0 25, 0 73), and (c) the � �−  boundary 
(α β= = .0 28). The blue, red and green colours represent 1,0 and 1 particles respectively. The particles of type 2 
and 2 are shown in white. See Supplementary Videos 1, 2 and 3 showing the spatiotemporal evolution of the 
nested fat shocks in simulation runs for (a), (b) and (c) respectively.

http://1
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second new feature is the complete absence of particles of species … −j1, , 1 in the system, i.e. 
ρ ρ= = =− 0j1 1 . This is related to the previous phenomenon since these particles can only enter at the 
expense of the dynamically localised particles. We call this phenomenon dynamical expulsion. In the extreme case 
of the � phase, all the barred particles except r  are expelled.

The picture in the � phase can be derived analogously. See the density plots in Regions � � �, ,  and � of Fig. 1(a,b,c 
and d) respectively for the results of simulations. See Fig. 5(a) (resp. (b)) for an illustration of the nested fat shock 
pinned on the left (resp. right) in the top row and the result of a simulation for r = 2 and � (resp. �) in the bottom 
row. Supplementary Video 1 shows the spatiotemporal evolution of the same fat shock.

Boundary of the � �−  region. In the � �−  boundary, particles of species − … … −j j1 , , 0, , 1 participate in 
the nested fat shock. The velocity of the shock fronts are now zero. Therefore, all these fronts perform a lockstep 
symmetric random walk in the bulk of the system. All subinterval widths will remain constant until the nested fat 
shock hits the boundary. When one of the extreme fronts gets pinned to the boundary, the widths of the subinter-
val containing −j 1’s and −j 1’s can change, but the sum of their widths will remain constant. The other subin-
terval widths will remain the same. While this front is pinned, the other fronts continue to move synchronously 
until either another one gets pinned or the one stuck to the boundary gets unpinned. If one more (either j − 2 or 

−j 2) gets pinned, the same phenomenon will repeat for that species. Note that, for instance, if the nested fat 
shock gets (temporarily) pinned to the right and then the next shock front also gets pinned, the density of j − 2’s 
becomes zero. More and more shock fronts can get pinned until the fat shock containing 0’s touches the bound-
ary, at which point the latest front to get pinned can only get unpinned. We thus end up with an instantaneous 
profile whose schematic is given in the top row of Fig. 5(c). A simulation of the movement of the shock fronts can 
be seen in the spatiotemporal plot in the bottom row of Fig. 5(c). Supplementary Video 3 shows the spatiotempo-
ral evolution of the same fat shock. The steady state density profile can be obtained by averaging over the uniform 
shock locations and gives rise to piecewise linear profiles for species … …j j, , 0, , . The calculation of these pro-
files is not difficult, but is tedious and is skipped. The currents have the same values as those in regions � and � 
with a = b.

Discussion
In this work, we have found the complete phase diagram for a very general multispecies exclusion process, called 
the mASEP, in contact with reservoirs. We have found two nonequilibrium phenomena, namely dynamical local-
isation and dynamical exclusion. Just like the fat shock construction explained the gross features of the semiper-
meable TASEP in all phases, we find a new object called a nested fat shock which explains the features here. Since 
the widths of the subintervals in the nested shock are fixed because of the conservation of the total number of j 
and j  species, the system is extremely constrained. These constraints play a crucial role in establishing the struc-
ture in the various phases. It is an interesting open question as to how the phase diagram will look like with more 
general boundary rates.

The proofs of our results have appealed in a fundamental way to the colouring argument. It is natural to ask 
how general this argument is. We are working on a large class of multispecies exclusion processes by systemati-
cally exploiting this argument, and we expect new kinds of dynamical structures to appear.

In recent times, multispecies exclusion processes have found applications in physical, chemical and biological 
systems, as mentioned in the introduction. It would be interesting to see whether experimental realisations can 
be found for the various phases that we have shown in this work.

Methods
Two different methods were used to obtain the results in this paper. The first method is a mathematically rigorous 
analysis, leading to the picture of the phase diagram. The second method uses simulations to justify the physical 
picture of the nested fat shock explained here.

The phase diagram was rigorously obtained by applying a suitable projection on the stochastic process. The 
details are explained in Section II of the Supplementary material.

The simulations were performed using random sequential updates (RSUs) according to the rules of the 
dynamics. After reaching steady state, we calculate densities by recording fractional occupation numbers at every 
site, and currents by noting incoming and outgoing species on the left boundary during subsequent sequences 
of RSUs. All density profiles show densities for each species averaged over such large sequences. Supplementary 
Videos showing the evolution of the nested fat shock were obtained by keeping track of individual particles dur-
ing the RSUs.
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