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Analytical Property of Scattering 
Matrix:Spectroscopy Phenomena 
and Sharp Overlapping 
Autoionization Resonances
Rui Jin1,2, Xiao-Ying Han3, Xiang Gao2, De-ling Zeng2,4 & Jia-Ming Li1,4,5

An extended atomic data base with sufficiently high precision is required in astrophysics studies and 
the energy researches. For example, there are “infinite” energy levels in discrete energy region as well 
as overlapping resonances in autoionization region. We show in this paper the merits of our relativistic 
eigenchannel R-matrix method R-R-Eigen based on the analytical continuation properties of scattering 
matrices for the calculations of the energy levels, overlapping resonances and the related transitions. 
Using Ne+ as an illustration example, the scattering matrices of Ne+ in both discrete and continuum 
energy regions are calculated by our R-R-Eigen method directly. Based on our proposed projected 
high dimensional quantum-defect graph (symmetrized), one can readily determine the accuracies 
of the calculated scattering matrices using the experimental energy levels in a systematical way. 
The calculated resonant photoionization cross sections in the autoionization region are in excellent 
agreement with the benchmark high resolution experiments. With the scattering matrices checked/
calibrated against spectroscopy data in both discrete and continuum energy regions, the relevant 
dynamical processes should be calculated with adequate accuracies. It should then satisfy the needs of 
the astrophysical and energy researches.

In astrophysical and fusion energy researches, the atomic data such as energy levels, collision cross sections, pho-
toionization cross sections, dielectronic recombination rates and transition rates of atoms with sufficient preci-
sion are needed1–8. For instance, the optical recombination lines (ORLs) and collisional excitation lines (CELs) are 
both used to determine the abundances of metal elements (such as Oxygen) in Planetary nebular (PNe)1–3. While 
the metal abundances determined from the ORLs are much higher than that determined by CELs sometimes1, 
showing the strong dependence on the precision of related atomic data, especially the dielectronic recombination 
rates with appropriate cascading correction. It is generally accepted that the R-matrix type methods are good can-
didates to obtain the required atomic data9–15. But for the conventional R-matrix method: 1) it’s hard to assure the 
accuracies for each level/resonance16, 17; 2) a very fine energy grid is needed to guarantee all the levels/resonances 
without missing any lines; 3) it’s not trivial to determine and assign all the levels and resonances precisely.

Based on the analytical continuation properties of the short range scattering matrices, there exist intimate rela-
tions between atomic energy levels and the related electron-ion collision processes18–33. According to this prop-
erty, we have proposed a scenario to provide such large scale atomic data with enough physical precisions which 
can be comparable with spectroscopic accuracies18–23. In our scenario, the short range scattering matrices (i.e., 
physical parameters in multi-channel quantum defect theory (MQDT)24–33 as well as corresponding wave func-
tions in both bound and continuum energy regions can be calculated directly with high accuracy by our recent 
developed codes, i.e., R-Eigen code (Eigen-channel based on non-relativistic R-matrix method) and R-R-Eigen 
code (Eigen-channel based on relativistic R-matrix method)18–23. By applying the MQDT, one can calculate and 
predict all energy level positions up to fine-structures in discrete energy regions (i.e., bound state energy regions) 
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without missing any lines “semi-analytically”. On the other hand, the short range scattering matrices in the dis-
crete energy regions can be examined stringently by precise spectroscopic data experimentally. Therefore, accu-
racies of the MQDT parameters (i.e., scattering matrices) in bound energy regions can be readily ascertained. 
Through analytical properties of short range scattering matrices, the scattering matrices in continuum energy 
regions can be obtained with desired accuracies. One can then obtain relevant cross sections for electron-ion 
collision with similar accuracy. Note that the short range scattering matrices vary smoothly with energy because 
of their analytical continuation property. Therefore, one only need to calculate the short range scattering matrices 
in a few sample energy grids over the energy regions of interest, which is one merit of the R-R-Eigen method. The 
details will be given in the next section.

In present paper, we exhibit the merits of our R-R-Eigen method in the complex overlapping resonances for 
Ne+ photoionization processes (i.e., the inverse process of the dielectronic recombinations). Using all available 
precision spectroscopic data to calibrate our calculated scattering matrices and the corresponding dipole tran-
sition matrix elements in the discrete energy region, the resonant photoionization cross sections are calculated 
in the autoionization region. They are in excellent agreement with the benchmark high resolution experiments 
conducted at the synchrotron radiation light source, i.e., the Advanced Light Source (ALS) at Lawrence Berkeley 
National Laboratory. It should be noted that the conventional R-matrix method results reported therein34 are only 
in a fair agreement with the experiments. The origins of all the overlapping resonances in the experimental energy 
regions are assigned at the same time. Furthermore, in the calibration processes of the scattering matrices, we pro-
posed a graphical method, i.e., projected high dimensional quantum-defect graph (symmetrized), to compare the 
theoretical energy levels with all the spectroscopic data in a systematical way readily for general multi-thresholds 
(more than two) cases. This is an extension of the Lu-Fano plot35, 36 valid only for two-thresholds cases and can 
be applied for any general atoms. With this method, one should be able to provide various accurate atomic data 
such as photoionization rates, dielectronic recombination rates for any atoms (ions). Hopefully, with all necessary 
atomic data calculated with the method, the R-R-Eigen method should be indispensable in the study of basic 
dynamic processes in astrophysics and laboratory plasmas.

Results and Discussions
Relativistic eigenchannel R-matrix method (R-R-Eigen method). The N + 1 electron system con-
sisting of an N-electron target atom and an excited electron can be calculated using the R-matrix type method9–15, 
which has been successfully developed as an ab initio method for treating a variety of dynamic processes in 
atomic physics. Let’s briefly review the relativistic eigenchannel R-matrix method (i.e., the R-R-Eigen code)18, 
which mainly differs from the traditional R-matrix method9–15 by the definitions of physical (ionization) chan-
nels, including the opened channels and some relevant closed channels(i.e. np). Other closed channels for much 
higher thresholds with deep negative orbital energies and the N + 1 bound type configurations are defined as 
closed computational channels(i.e. ncom), which are included in our calculations to assure electron correlations 
taken into account adequately. More specifically, with np physical (ionization) channels and ncom computational 
channels for symmetry block with total angular momentum J and parity π, the np × np short-range reaction matri-
ces K E( )J π

 (equivalent to scattering matrices by S iK iK(1 )(1 )J J J 1= + − −
π π π

)37 are calculated at r0 = rN+1 as,
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For the ith physical (ionization) channel associated with the target state in Φi, the relativistic regular and irreg-
ular Coulomb wave functions fi(r, E), and gi(r, E), cover the entire energy ranges of one-electron orbitals, i.e., 
εl = E − Ii > −q2/l2 (except for l = 0, l l

scf
0 0ε ε>= = , in Ryd.). Here Ii is the threshold of the ion core in Φi, l is the 

angular momentum of the excited channel electron and q is the charge of a long-range potential30, 33. Because of 
these energy criteria, the number of physical channels will increase as energy increases, with total number of 
channels ntot = ncom + np unchanged in a specific calculation with considered targets. For both the discrete and 
continuous energy regions of interest, the physical parameters for MQDT, i.e., np eigen-quantum-defects μα(α as 
eigenchannel index) and a np × np orthogonal transformation matrix Uiα, can then be calculated by diagonalizing 
the short range scattering matrices,
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where the i, j denote the physical (ionization) channel indexes and the Uiα can be represented by −n n( 1)/2p p  
Euler-type angles θk

27.

The calculation of scattering matrices for Ne+ Jπ = 1/2+ and the analytical properties. In the 
Ne+( s p P2 2 o2 5

3/2,1/2
2 ) photoionization processes, the possible f inal channel symmetries can be 

J 1/2 , 3/2 , 5/2=π + + + .  As an example,  for the J 1/2=π + ,  there are f ive thresholds i .e.  Ne 2+ 
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0 ) for f ive target states and some much higher thresholds [(i.e.  Ne2+ 
( s p P P2 2 ando o1 5 3

2,1,0
1

1 )] associated with seven computational channels in present R-R-Eigen calculations (total 
channel ntot = 15). The number of physical (ionization) channels np will change with energy as shown in Fig. 1, i.e., 
in the two-channel region, there are the two eigen-quantum-defects μα and the 2(2–1)/2 = 1 Euler-type angle for 
the two eigenchannels Ps P Ps P[( ) , ( ) ]3 2 3 4 ; in the eight-channel region, there are the eight eigen-quantum defects μα 
and  t he  n n( 1)/2 28p p − =  Eu ler- t yp e  ang les  for  t he  e ig ht  e igenchannels  [ Ps P Ps P( ) , ( )3 2 3 4 , 

Pd P Pd P Pd D( ) , ( ) , ( ) ,3 4 3 2 3 4  Ss S( )1 2 , Dd P( )1 2 , Dd S( )1 2 ] shown in Fig. 1(a) and (b) respectively. Furthermore, the cal-
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culated eigenchannel parameters in 2-channel energy region smoothly connect with those in 8-channel energy 
region23. Therefore one only needs to calculate the short range reaction matrices (i.e., short range scattering 
matrices) at a few energy grids for entire energy regions. The corresponding eigenchannel wavefunctions Ψα 
normalized per unit energy can then be calculated directly. Hence, the corresponding dipole transition matrix 
elements Dα for photoionization processes from the initial states (such as Po

3/2
2 ) can also be obtained as shown in 

Fig. 1(c). Note that a sharp resonance due to the isolated state s p S2 2 ( )1 6
1/2

2  is denoted as a vertical light-magenta 
curve at E = −1.03Ryd., whose position is determined by judiciously adjusting the relevant μα against the exper-
iment value (the details will be reported elsewhere). Note that one can improve the calculation accuracies either 
by increasing the computational channels to include more electron correlations or calibrating the scattering 
matrices with the precise spectroscopy experimental data. The calibrated μα are shown in Fig. 1(a), which will be 
discussed later.

Calibration of the scattering matrices with precise spectroscopic data. In order to demonstrate 
how to calibrate our results of R-R-Eigen calculations with the available precise spectroscopic data, we start with 
the eigenchannel wave-functions Ψα outside the reaction zone (i.e., r ≥ r0)18, 25–33,

U f g r r( cos sin )
(3a)
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In the discrete energy region for the spectroscopic energy levels, the energy eigen wave-function (also for 
auto-ionization states) can be expressed as a superposition of eigenchannel wave-functions:

∑Ψ = Ψ
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Figure 1. Eigenchannel calculations for J 1/2=π + final channel of Ne+ in the two-channel energy region 
(−1.29 ≤ E ≤ −0.56Ryd.) with the two physical (ionization) channels P s P s[ , ]1

3
1/2 0

3
1/2  and in the eight-channel 

energy region (−0.56 ≤ E ≤ 1.2Ryd.) with the eight physical (ionization) channels [ P s1
3

1/2, P s0
3

1/2, P d2
3

3/2, P d1
3

3/2, 
P d2

3
5/2, D d2

1
3/2, D d2

1
5/2, S s0

1
1/2], respectively. (a) The eigenchannel quantum defects μα of the two eigen-channels 

and of the eight eigen-channels denoted in the legend respectively. The values were calculated by the R-R-Eigen 
code and calibrated with precise spectroscopy data. Note an isolated sharp resonance state s p S2 2 ( )1 6

1/2
2  at 

E = −1.03Ryd. is denoted as a vertical light-magenta curve. Smooth variations and connections between the two 
eigenchannels and the eight eigenchannels demonstrate the analytical continuation properties of the scattering 
matrices. (b) The Euler-type angles representing the transformation matrices Uiα. (c) The eigenchannel dipole-
matrix element Dα from the initial state Po

3/2
2 .
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where Aα are determined by the asymptotic boundary conditions18, 25–33. The bound state asymptotic boundary 
conditions (i.e., Nc = np, where all channels are closed) lead to,

∑ π ν µ+ = ∈
α

α α α
ρU A i Nsin ( ) 0 closed channels,

(4a)

N

i i c

p

with the Nth effective principal quantum numbers νi corresponding to Nth number of different thresholds Ii and 
spanning a Nth-dimensional space, defined as,

E I q Ryd/ in , (4b)i i
2 2ν= − .

with q = 2 for the Ne+ system. The existence of nontrivial Aα requires the vanishing of determinant of coefficient 
matrix:

F U U F({ }, { , }) det( sin ( )) det( ) 0 (5)i i i i iν µ π ν µ= + = = .α α α α α

To illustrate various features in the calibration process clearly, we’ll discuss two methods of the solution of 
Eqs (4b) and (5) in the following part of the section, i.e., 1) recursive projection method and 2) projected high 
dimensional quantum-defect graph (symmetrized).

Recursive projection method. From the geometric view, Eqs (4b) and (5) can be represented as a one-dimension 
curve and a (Nth − 1)-dimension surface ν = .. .i N{ ( 1, , )}i th  in a Nth dimensional space respectively. For cases 
with N 2th > , which are somewhat different from the case associated with only two thresholds19–21, 25–28, 35, 36, 
where the solutions of the Eqs (4b) and (5) can be represented graphically in a plot with the only two effective 
principal quantum numbers. More specifically, with only two thresholds, there are two sets of effective principal 
quantum numbers, n1 number of ν1 corresponding to the first threshold Ione and n2 number of ν2 corresponding 
to the second threshold Itwo with Ione < Itwo. In the (ν1, ν2) plot, it is so called the Lu-Fano plot35, 36, where the ν2 can 
be regarded as known variables to scan the energy according to Eq. (4b) and the ν1 can be determined by solving 
the Eq. (5). In such a plot, there will be avoid-crossing curves basically consisting of n1 number of “horizontal” 
curves with n2 number of “vertical” resonances. The final solutions are then the crossing points of the curves and 
the one-dimensional energy curve according to Eq. (4b). With more than two thresholds, in order to 
semi-analytically and graphically calculate the discrete levels and compare with the experimental spectroscopy 
levels, the (Nth − 1)-dimensional surface should be projected onto a two-dimensional plots. According to physical 
requirements, we can select a pair of any two adjacent thresholds Ione and Itwo with Ione < Itwo. Therefore there are 
two sets of effective principal quantum numbers: n1 number of νi forming a vector 1ν→ ≡ (νi; Ii ≤ Ione) and n2 num-
ber of νj forming a vector I I( ; )j j two2ν ν→ ≡ ≥ . To solve these equations at a specific energy E, the 2ν→ are regarded 
as known variables based on Eq. (4b). Therefore any element of ν→2 can be used to represent the energy. The 
remaining ν→1 are unknown variables which should be solved from Eq. (5). In this procedure, we set all elements 
of ν→1 equal to a same unknown variable −τ and n1 number of solutions can be readily obtained numerically. The 
corresponding α

ρA  for each solution ρ(ρ = 1, …, n1) are also solved. In this way, we can obtain a two-dimensional 
plot ν τ( vs )a

2 , where ν a
2  can be any element of 2ν→ to represent the energy. It’s interesting to note that the solved n1 

number of τρ can be regarded as effective eigen-quantum-defects for effective physical channels connecting with 
collisional eigen phase shifts as the energy analytically extends into the autoionization continuum. The corre-
sponding n1 ×  n1 effective transformation matrices18, 27, 28, 33 Ti′ρ  are constructed from α

ρA  by 
T U A Ncos ( ) /i

n
ip π τ µ= ∑ − +ρ α α ρ α α

ρ
ρ′ ′ , with the normalization factor N U A[ cos ( ) ]i

n
i

21 π τ µ= ∑ ∑ − +ρ α α ρ α α
ρ

′ ′ . 
Note that the physical MQDT parameters {τρ and Ti′ρ} for effective physical channel (i.e, scattering matrices of 
effective physical channel) can also be calculated with the R-R-eigen code if one would choose the set of n1 
(n1 < np) number of physical channels (with the thresholds Ii ≤ Ione). In contrast with the eigenchannel parameters 
of full physical channels, these effective eigenchannel parameters are not smooth functions with energy, which 
have various resonance structures related with ν→2. Therefore one should choose an appropriate set of physical 
channels to guarantee the analytical continuation property of scattering matrices, as shown in Fig. 1.

Let’s return to the Ne+ ( =π +J 1/2 ) case as an illustration example. There are five effective principal quantum 
numbers (ν P3

2
, ν P3 1

, ν P3 0
, ν D1 2

, ν S1 0
) associated with five thresholds of Ne2+ (2p4 3P2,1,0, 1D2 and 1S0). Because of the 

first two appearing strongly perturbed Rydberg series, P ns P( )0
3

1/2
4  and P ns P( )1

3
1/2

2 , we first select =I Ione P1
3 , 

=I Itwo P0
3  and ν ν=a

P2 0
3 . With the eigenchannel MQDT parameters {μα, Uiα} in Fig. 1, the Eq. (5) is solved as the 

2 × 2 and 8 × 8 determinant equations in the two-channel and the eight-channel energy regions respectively. For 
the eight-channel region (n1 = n2 = 4), the two dimensional plot ( vsP P1

3
0

3ν ν ) is obtained by scanning energies 
with three known variables ν P3 0

, ν D1 2
 and ν S1 0

 according to Eq. (4b) and solving unknown variables 
τ ν ν= − = −P P3 31 2

 from Eq. (5). Therefore, the solutions are basically four horizontal curves (black, blue, violet 
and green) with four types of vertical curves as resonances as shown in Fig. 2(a), which correspond to the four 
effective eigen-quantum-defects (τρ; ρ = 1, 2, 3, 4). The various colors of these curves shown in the figure repre-
sent the eigenchannel characters derived from the calculated α

ρA  coefficients. Because we set a
P2 0

3ν ν=  to repre-
sent energy, the P ns P( )0

3
1/2

4  series form resonances at ν ≈ integerP0
3 , while the series associated with higher 

thresholds, i.e., 1D2 and S0
1  form locally isolated resonances, i.e., two pairs of orange and magenta curves 

D d P S[( )3, 4 , ]2
1

3/2, 5/2 1/2
2

1/2
2  at ν ν≈ . . . ≈i2 9 ( e , 4)D P2

1
0

3  and ν ν≈ . . . ≈3 9 (i e , 11)D P2
1

0
3 , and one dark-green 

vertical curve S s S( )30
1 2

1/2 at 2 (i e , 3)S P0
1

0
3ν ν≈ . . ≈ . As the energy decreases to the two-channel region 
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(n1 = n2 = 1), the two dimensional plot (ν νvsP P1
3

0
3 ) is obtained by scanning energies with one known P0

3ν  accord-
ing to Eq. (4b) and one unknown P1

3ν  is solved from Eq. (5). In this case, only one resonant horizontal black curve 
corresponding to one effective-eigenchannel (τρ; ρ = 1) is solved, i.e., ~ 1P 1

3ν τ− = . Because of modulo 1, an 
equivalent auxiliary effective eigen-quantum-defect ( 0P 1

3 ~ν τ− = ) is also plotted in the two-channel energy 
region (i.e., ν. ≤ ≤1 5 3P0

3 ) to show its continuation into the four effective-eigenchannel region. Note that an 
isolated sharp resonance marked as light-magenta vertical curve exists at ν ≈ .1 96P0

3 , which originates from the 
s p S(2 2 )1 6

1/2
2  resonance in the eigen-quantum-defect as shown in Fig. 1. The observed Rydberg levels P ns P( )0

3
1/2

4 , 
P ns P( )1

3
1/2

2  and P nd P( )1
3

1/2
2  associated with the P1

3  and P0
3  thresholds are denoted as red open circles, black open 

squares and violet open diamonds. They are at the intersecting points between the effective eigen-quantum-defect 
curves and the cyan line sections representing the energy relation of ν ν− = −I q I q/ /P P P P

2 2 2 2
1

3
1

3 0
3

0
3 . However, the 

other Rydberg levels, especially P nd D( )2
3

1/2
4  and P nd P( )2

3
1/2

4  associated with the P2
3  threshold denoted as the blue 

and green open triangles respectively in Fig. 2(a), are not at the intersection points in this specific two-dimensional 
plots projected from the (Nth − 1)-dimensional surface.

From the point of view of effective eigenchannels, the wavefuncitons of discrete energy levels below the first 
threshold can also be expressed as the superposition of the effective eigenchannel wavefunctions. From the 
asymptotic boundary conditions of these discrete energy level wavefunctions, an equation similar to Eq. (5) is 
derived, which can be solved to obtain all energy levels below the first threshold. More specifically, in the present 

Figure 2. Graphical representation to solve Eq. (4b) and Eq. (5). (a) A projected two-dimensional graph 
( vs )P P1

3
0

3ν ν . Effective eigen-quantum-defects are shown as one (black) and four (black, blue, violet, green) 
branches of colored curves with sharp resonances for two-channel and eight-channel regions respectively. The 
auxiliary abscissas ν D2

1  and ν S0
1  are plotted so that one can easily see the isolated states in Fig. 2. Because of 

modulo 1, an equivalent auxiliary effective eigen-quantum-defect (i.e., ν τ− = ~ 0P 1
3 ) is also plotted in the 

two-channel energy region from ν = .1 5P0
3  to ν = 3P0

3  to show its continuation into the four effective-
eigenchannel region. Note that there is a sharp resonance at 2P0

3ν =  marked as light-magenta curve. (b) A 
recursive projected two-dimensional graph ( vs )P P2

3
1

3ν ν  based on the effective eigen- quantum-defects as 
shown in (a) and the corresponding transformation matrices Ti

′
ρ

18, 27, 28, 33, by scanning the energies with the 
known ν P3 1

, and to solve the unknown variable ν P2
3  in the Eq. (6) (i.e. the 1 × 1 determinant equations and the 

4 × 4 determinant equations in the effective one-channel and the effective four-channel energy regions 
respectively). The abscissas ν P3 1

, ν P3 0
, ν D1 2

 and ν S1 0
 are all given in the figure for the convenience of charactering 

the relevant locally isolated resonances. The solution are three discrete levels marked as colored crosses for one-
channel region and two (green and blue) branches of colored curves with sharp resonances for one-channel and 
four-channel regions respectively. The green line sections are energy relation according to Eq. (4b). The 
intersection points are the solutions of the Eqs (4b) and (6), corresponding to the observed experimental data38 
denoted as colored symbols. Although all the observed Rydberg levels should be at the intersection points, it is 
not convenient to compare the precise spectroscopic data with the theoretical predications.
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four effective physical channel region, there are four effective eigen-quantum-defects τρ shown in Fig. 2(a) and the 
corresponding 4 × 4 effective transformation matrices 

′ρTi
18, 27, 28, 33. The boundary conditions now lead to,

ν τ π ν τ= + = = .ρ ρ ρ ρ ρ′ ′ ′ ′ ′( ) ( )F T T F{ }, { , } det sin ( ) det( ) 0 (6)i i i i i, ,

Because the effective four physical channels are just associated with P1
3  and P2

3 , we select I Ione P2
3= , I Itwo P1

3=  
and a

P2 1
3ν ν=  here. Then 1ν

→
 and 2ν

→
 vectors will simply become two scalars of ν P2

3  and ν P1
3  respectively. The Eq. (6) 

can be solved by scanning the energies with the known ν P3 1
, and set the only unknown variable τ ν= − P3 2

. In this 
case, n1 = n2 = 2, the solutions are basically two horizontal curves (black and green) with sharp resonances, as shown 
in Fig. 2(b) [i.e., the (ν νvsP P2

3
1

3 ) plot]. Note that, since the abscissa of the plot is energy, we can choose other νi 
according to Eq. (4b) to represent energy. In order to elucidate the features of the plot clearly, both the ν P3 1

 and the 
ν P 0

3  in consistent with the one in Fig. 2(a) based on the energy relation ν ν− = −I q I q/ /P P P P
2 2 2 2

1
3

1
3 0

3
0

3 , are plotted 
as the abscissas of Fig. 2(b). Compared with Fig. 2(a), there are six types of resonances. Two newly appeared series of 
P ns P( )1

3
1/2

2  and P nd P( )1
3

1/2
2  are associated with P1

3  threshold, while the other four [i.e., P ns P( )0
3

1/2
4 , 

D nd P D nd S( ) ( ), ( ) ( )2
1 2

1/2 2
1 2

1/2  and S ns S( ) ( )0
1 2

1/2 ] are inherited from the effective eigen-quantum-defects shown 
in Fig. 2(a). Note that the positions of the resonances associated with P1

3  are just near the integers of the abscissa ν P3
1
 

shown in Fig. 2(b). For the one effective-eigenchannel region, it’s an effective single channel problem. The Eq. (6) 
becomes sin ( ) 0P2

3π ν τ+ =ρ , and the solutions of Eq. (6) are three discrete solutions marked as crosses in Fig. 2(b), 
which are in excellent agreement with the first three experimental levels38.

In summary, these resonances belong to one isolated resonance and the six series of resonances with the corre-
sponding six eigenchannel characters as shown in Fig. 2(b), i.e., one isolated resonance ν ≈ .s p S[(2 2 ) ; 1 96]P

1 6
1/2

2
0

3  
marked as a light-magenta cross and the six series of resonances such as one periodic red vertical curves 

P ns P[( ) ; 2, , 25]P0
3

1/2
4

0
3ν ≈ … , one locally isolated resonances dark-green vertical curve S s S[( )3 ; 2]S0

1
1/2

2
0

1ν ≈ , 
two pairs of orange and magenta curves ν ≈ . .D d P S[( )3, 4 , ; 2 9, 3 9]D2

1
3/2,5/2 1/2

2
1/2

2
2

1 , and two quasi-periodic 
curves ( ν ≈ …P ns P[( ) ; 3, , 32]P1

3
1/2

2
1

3  as black vertical curves and P nd P[( ) ; 3, , 32]P1
3

1/2
2

1
3ν ≈ …  as violet 

vertical curves). Note that the auxiliary abscissas ν D1 2
 and ν S1 0

 are given in Fig. 2 for the convenience to recognize the 
relevant resonances. As shown in Fig. 2(b), all the crossing points between the branch curves and the green line 
sections of [ ν ν− = −I q I q/ /P P P P

2 2 2 2
2

3
2

3 0
3

0
3 ] match the experimental observed levels38 marked as colored symbols. 

Therefore, we can compare with the observed precise spectroscopic data to check/calibrate the calculated scattering 
matrices in principle. However, it’s tedious and computational consuming to trace the branch curves by solving the 
MQDT equations, i.e., Eq. (6) with the four effective eigen-quantum-defects in Fig. 2(a). Furthermore, it is not con-
venient to compare with the observed spectroscopic data with the calculated crossing points clearly at the many 
sharp vertical resonance lines in Fig. 2(b).

Projected high dimensional quantum-defect graph (symmetrized). Therefore, in order to obtain all the energy 
levels more clearly and conveniently, we propose a new projection method with additional constrain conditions. 
For the present Ne+ ( =π +J 1/2 ) case with I Ione P1

3= , =I Itwo P0
3  and a

P2 0
3ν ν= , the corresponding unknown 

variable vector is ( , )P P1 2
3

1
3ν ν ν→ =  and known variables vector is ( , , )P D S2 0

3
2

1
0

1ν ν ν ν→ = . Note that in this new 
projection method, one can directly solve the related equations based on the eigenchannel parameters of the full 
physical channels (i.e., those smooth functions shown in Fig. 1), compared with the resonant parameters of the 
effective physical channels in the recursive projection method. We can choose additional constrain conditions 
between the two unknown variables P2

3ν  and P1
3ν  as,

I I q I I q[1/ ( )/ ] [1/ ( )/ ] (7)P P P P P P P P
2 2 1/2 2 2 1/2

2
3

1
3

0
3 0

3
2

3
0

3 0
3

1
3ν ν ν ν∆ ≡ − = − − − − − .− −

As shown in Fig. 3, because of the constrain, two blue and green branch curves converging to the threshold P2
3  

go up-tilted as energy increases, the other two black and violet branch curves associated with the threshold P1
3  

appear as “horizontal” and smoothly cross the 3P2 threshold. All the available experimental data38 (
P
exp

3
0

ν ., ν .
P
exp

3
1

) 
marked as colored symbols lie on the crossing points between the four branch curves and the cyan line sections 
(energy relation between 3P1 and 3P0). With the Fig. 3 regarded as a projected high dimensional quantum-defect 
graph (symmetrized), one can easily compare the theoretical calculation with spectroscopic energy levels (

P
exp

3
0

ν ., 
ν .

P
exp

3
1

) to check/calibrate the calculated MQDT parameters with desired accuracies. The calculated energy levels 
are in good agreement with experimental spectroscopic data by adjusting the MQDT parameters only within a 
few percent as shown in Fig. 1. Furthermore, for this case with many overlapping resonances, the Rydberg levels 
associated with different thresholds can be systematically and properly assigned with the plot as shown in the 
legend. It’s interesting to note that our assignments for some states are different from the NIST data38, such as the 
P d P D6 ( , )3

1/2
4

1/2
4  and 1D4d(2S1/2) states in the NIST assignments, which deserve further experimental observa-

tions. In order to see the isolated states clearly, we also plot D2
1ν  and S0

1ν  as auxiliary abscissas, from which one can 
easily see that locally isolated states form Rydberg series converging to the thresholds 1D2 and 1S0. Higher isolated 
states of these Rydberg series should be observed in the autoionization continuum energy region and will be 
discussed later. It’s worth to note that, the choice of the adjacent Ione and Itwo is according to physical requirements. 
If we choose Ione as the lowest threshold of the ion core, the additional constrain conditions are dummy. In this 
case, the projected high dimensional quantum-defect graph (symmetrized) method and the recursive projection 
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method are equivalent. Therefore our proposed projected high dimensional quantum-defect graph (sym-
metrized), i.e., JHANGZ plot, can be regarded as a general method for the multi-thresholds problems.

Application to Ne+ resonant photoionization processes and demonstration of the merits of the 
method. In the autoionization region, there are Nc number of eigenchannels with negtive orbital energy and 
No number of eigenchannels with positive orbital energy, which satisfy closed channel boundary condition and 
open channel boundary condition respectively. The asymptotic boundary conditions require18, 25–33,

U A N i

U A N i

sin ( ) 0 for closed ,

sin ( ) 0 for opened
(8)

i i c

i o

∑

∑

π ν µ

π τ µ










+ =

− + = .
α

α α α
ρ

α
α

ρ
α α

ρ

Here τρ is the effective eigenchannel quantum defects (i.e., collisional eigenchannel phase shifts), which cor-
respond to the effective eigenchannel quantum defects in discrete energy region. The oscillator strength density 
df/dE can be obtained as,

df
dE

f
E

E E D A
N

d
d

2( )
,

(9)

N N( )
0

2

2

o o

∑ ∑= =
− ∑

ρ

ρ

ρ

α α α
ρ

ρ

with the reduced dipole matrix elements Dα =  〈ψα|  |D|  |Ψo〉 ,  and the normalization factor 
π τ µ= ∑ ∑ − +ρ α α ρ α α

ρN U A[ cos ( ) ]i
N

i
2o 18, 25–33.

With the MQDT parameters (i.e., {μα, Uiα} as well as the dipole matrix elements Dα) checked/calibrated with 
the precise experimental data in both discrete and continuum energy ranges, one can study various dynamic 
processes such as the electron-atomic ion collisions. We return to examine photoionization processes of Ne+ from 
both the p P2 o5

1/2
2  and p P2 o5

3/2
2  initial states. With the calculated MQDT parameters for all 1/2+, 3/2+, 5/2+ final 

channels, photoionization cross sections, i.e., the oscillator strength densities21 for all eigenchannels are calcu-
lated. As shown in Fig. 4(a–e) the effective eigenchannel quantum defects are calculated for all final channels 
respectively with the corresponding initial states. Note that because the abscissa is photon energy the resonances 
from 1/2− initial state is 0.096 eV lower than that from 3/2− for the same final channel. Figure 4(f) shows our 
calculated total oscillator strength density df/dE and df (ρ)/dE. As can be seen, the origin of resonances can be 

Figure 3. Projected high dimensional quantum-defect graph (symmetrized). Four color branch curves (black, 
blue, green, violet) are solutions of Eq. (5) under energy constrain Eq. (7). Intersection points between the 
solutions and light-blue line sections for Eq. (4b) should be all energy levels corresponding to the observed data. 
It’s convenient to assign various energy levels with the plot systematically. The locally isolated states which form 
Rydberg series converging to the other higher thresholds 1D2 and 1S0, can be clearly seen with the auxiliary 
abscissa D2

1ν  and ν S0
1  on the top.
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easily identified from the resonant phase shifts in Fig. 4(a–e) with the help of calculated mixing coefficients α
ρA  as 

well as ν D1 2
, ν S1 0

 plotted as auxiliary abscissa on the top and bottom of Fig. 4(f) for resonances from 1/2− and 3/2− 
initial states respectively. The assignments are shown in the right legends of Fig. 5 explicitly.

Figure 5(b) displays our calculated total cross section as the red line with effective energy resolution 
ΔE = 13 meV, by which the major experimental width and the minor radiative width are included along with the 
autoionization width having been taken into account adequately in our calculations. As a comparison, the 
R-Matrix calculation34 are plotted as blue line in Fig. 5(b) with ΔE = 11 meV. Our calculation agrees well with the 
normalized experimental photo-ion yields of Ne+ photoionizations shown in Fig. 5(a), which have been observed 
at the synchrotron radiation light source ALS34 with the line width ΔE = 11 meV. In Fig. 5(c) we decompose our 
R-R-eigen calculated total cross section shown in Fig. 5(b) into partial cross sections from both p P2 o5

1/2
2  and 

p P2 o5
3/2

2  initial states to three different final state symmetries as denoted in legends. In order to identify the sharp 
overlapping resonances systematically and more clearly, the partial cross sections are convoluted with a narrower 
effective energy resolution ΔE = 6 meV as shown in Fig. 5(d). Assignments of such overlapping sharp resonances 
are made from the calculated mixing coefficients of the eigenchannels Aα, which are listed in the legends at the 
right hand side of Fig. 5. The auxiliary abscissas D2

1ν  (red coordinate) and S0
1ν  (blue coordinate) are also plotted 

on the top and bottom of Fig. 5(d) to help identify the resonances from both p P2 o5
3/2

2  and p P2 o5
1/2

2  initial states 
respectively.

Conclusion
We would like to conclude by the following remarks. With the R-R-Eigen code, we calculated the short-range scat-
tering matrices (i.e., the MQDT parameters {μα, Uiα}) and the corresponding eigenchannel dipole matrix elements 
Dα with good analytical properties in the whole energy regions for 1/2+, 3/2+ and 5/2+ symmetry block of Ne+ 
respectively. Note that one should choose an appropriate set of np physical channels to guarantee the analytical con-
tinuation property of scattering matrices as shown in Fig. 1. If one would choose an inappropriate set of n1 < np 
physical channels as the n1 effective physical channels, one then could calculate the n1 effective eigenchannels scat-
tering matrices {τρ, Ti′ρ} with R-R-Eigen code as shown in Fig. 2(a). It would take greater efforts to scan all these 
resonant structures with a much finer energy grid. The calculated τρ are equivalent to effective eigen-quantum-defects 
obtained from MQDT procedure23 based on scattering matrices from full physical channel calculations. For the 
multi-thresholds problem shown in this work, we proposed a projected high dimensional quantum-defect graph 
(symmetrized), i.e JHANGZ plot, as an extension of Lu-Fano plot for multi-thresholds problems (more than two) to 
semi-analytically and graphically calculate all discrete levels without missing any one. As shown in Fig. 3, all discrete 
levels are calculated without missing any one. From the behavior of branch curves, one can assign the energy levels 

Figure 4. Effective eigenchannel quantum defects (collisional eigenchannel phase shifts) and the oscillator 
strength densities from different initial state to final channel symmetries. Because the abscissa is photon energy, 
the resonances from 1/2− initial state is 0.096 eV lower than that from 3/2− as shown in (a–e) respectively. (f) is 
the corresponding oscillator strength densities.
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readily on equal footing. For example, the channels associated with 3P1 behave as horizontal curves, and the channels 
associated with 3P2 just go up-tilted as energy approaches the threshold 3P2, channels associated with 3P0 behave as 
periodic vertical resonances at integer ν P0

3 , channels associated with higher thresholds 1D2 and 1S0 behave as locally 
isolated resonances. It’s also interesting to note that our assignments for some states are different from the NIST 
data38. For example, we suggest the 3P6d(4P1/2, 4D1/2) and 1D4d(2S1/2) states in the NIST assignments should be 
assigned to 3P26d(4D1/2), 3P16d(2P1/2) and 3P1 13s(4P1/2) respectively. Only with these assignments, the blue open tri-
angle and violet diamond at ν ≈ 6p0

3  and black square at 11 5P0
3ν ≈ .  will be in the same blue up-tilted violet and 

black horizontal curves respectively. We suggest further experimental verifications for these states. On the other 
hand, through the analytical property, the MQDT parameters in discrete/autoionization region can be readily com-
pared with the spectroscopy data/autoionization spectra in the graph, by which the scattering matrices are checked/
calibrated. Then autoionization profiles with all the sharp overlapping resonances can be calculated and assigned 
properly as shown in Fig. 5(b), in excellent agreement with the precise ALS experiment34 shown in Fig. 5(a). With 
the energy levels and autoionization profiles calculated, it should also be helpful to resonance ionization spectros-
copy (RIS) experimental designs in choosing the appropriate intermediate state and laser wavelength39. We note that 
there are some theoretical studies on complex overlapping resonances using analytical formulations based on the 
phase-shifted MQDT parameters40, 41 and configuration interactions (CI) method42. Compared with these methods, 
the MQDT physical parameters are directly calculated in the R-R-eigen method and no fitting parameters are 
needed. Furthermore, the more general multi-threshold cases can be dealt with using the JHANGZ plot. Therefore, 
in the R-R-Eigen method, with the scattering matrices checked/calibrated against spectroscopy data in both discrete 
and continuum energy region, all important energy levels and related dynamic processes such as the electron-atomic 
ion collisions, photo-ionizations and autoionizations as well as its inverse processes (i.e., the dielectronic recombina-
tion) should be calculated with desired accuracies on equal footing. Hopefully, one can unravel the above mentioned 
dichotomy in nebular research: the abundances of metal ions “X” (such as Oxygen) determined by optical recombi-
nation lines(ORLs) are much higher than that determined by collisional excitation lines(CELs)1. In the precision 
physics stage, all important levels and related processes should be studied with adequate accuracy for the simulation 
and diagnosis of fusion plasmas (including inertial confinement and magnetic confinement fusions) in energy 
researches43–45. Therefore in the scenario, with some benchmark experiments, the R-R-Eigen method should be 
indispensable in the study of basic dynamic processes and ‘complete set’ of physical parameters, which are vitally 

Figure 5. Photoionization cross section of Ne+. (a) Normalized experimental photo-ion Yields of Ne+ 
photoionization from the p P2 o5

1/2,3/2
2 ; (b) Red: the R-R-Eigen calculation of total cross section (convoluted 

with effective energy resolution ΔE = 13 meV); Blue: the R-Matrix calculation34 (with ΔE = 11 meV). (c) 
Decomposition our calculation in (b). (d) Decomposition of total theoretical cross section with ΔE = 6 meV in 
order to show the resonances clearly. The auxiliary abscissas D2

1ν  (red coordinate) and S0
1ν  (blue coordinate) are 

plotted on the top and bottom of Fig. 5(d) to help identify the resonances from initial states p P2 o5
3/2

2  and 
p P2 o5

1/2
2  respectively. The assignments of all complex overlapping sharp resonances are summarized as the two 

legends shown on the right of the figure.
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important in astrophysics and inertial confinement research (Note that in inertial confinement research, one may 
need to properly consider the high density environmental effects46, 47).

Data availability statement. The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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