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Magnetoelectric oxide based 
stochastic spin device towards 
solving combinatorial optimization 
problems
Saima Sharmin, Yong Shim & Kaushik Roy

Solving combinatorial optimization problems is challenging. Mapping onto the ground-state search 
problem of the Ising Hamiltonian is a promising approach in this field, where the components of 
the optimization set are modeled as artificial spin units. The search for a suitable physical system to 
realize these spin units is an active area of research. In this work, we have demonstrated a scheme 
to model the Ising Hamiltonian with multiferroic oxide/nanomagnet units. Although nanomagnet-
based implementation has been shown before, we have utilized the magnetoelectric effect of the 
multiferroics to make voltagecontrolled spin units with less current flow in the network. Moreover, we 
have proposed a unique approach of configuring the coupling network of the system directly from the 
Ising Hamiltonian of a traveling salesman problem (TSP). We have developed a coupled micromagnetic 
simulation framework and solved TSPs of size 26-city and 15-city with an accuracy of 100% for the 
latter.

The solution of a wide variety of tasks in modern world, ranging from tour planning, image processing to inte-
grated circuit design, are based on the idea of combinatorial optimization1. These tasks, in general, involve find-
ing a combination of objects/states from a large collection of possible outcomes. Depending on the depth of 
computational complexity, many of these problems are categorized as nondeterministic polynomial (NP)-hard 
or NP-complete. Finding a globally optimal solution for these problems is difficult, in some cases, impossible, 
by modern computers, as the time requirement for computation grows exponentially or worse with the size of 
the input. Hence, extensive research is going on in search of efficient schemes to find optimal or near-optimal 
solutions.

Ising model2, due to its combinatorial interpretation, has attracted growing interest as a tool to mathematically 
formulate many combinatorial optimization problems. They can be mapped as the ground-state search problem 
of the Ising Hamiltonian (explained in the next section). As a result, numerous algorithms and systems have 
been proposed and demonstrated to solve the Ising model. Simulated annealing3 is one of the oldest approaches 
pursued in this field. Recently, quantum annealing based systems (D-wave machine4) have been demonstrated 
to solve various optimization problems like protein folding5, graph isomorphism6 etc. Ising spin chip7 based on 
CMOS architecture and coherent Ising machine8 based on laser networks are newer additions to this family. In 
recent times, nanomagnet-based implementation of the Ising model has been proposed in refs 9 and 10, where 
spin Hall material/stochastic nanomagnets are used as a physical model of the artificial spin units. On the other 
hand, in this work, we have introduced a stochastic spin device consisting of multiferroic oxide/nanomagnet stack 
as the fundamental spin unit. The difference in their mechanism of operation can be illustrated based on the three 
main components of each unit.

•	 Write (Manipulation of the spin states): In previous works9, 10, write unit consists of a spin Hall material/
nanomagnet heterostructure, where the magnetization moment of these nanomagnets represent each spin 
state. Manipulation of these states is induced by the current flow through the spin Hall materials. Although 
the current requirement for individual stochastic unit is less than the conventional critical switching current 
of magnetic tunnel junctions9 (MTJ), the complete network consists of N 2 such units for an N city traveling 
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salesman problem (TSP), leading to huge current flow through the whole network. For example, if N = 10, 
the total current requirement roughly amounts to 100 × Ic, where Ic is the current through individual spin 
unit. This poses challenge to the scalability of the system as the problem size increases. On the other hand, in 
our device, the write unit consists of a multiferroic oxide/nanomagnet stack, where the magnetization state 
is controlled by the voltage applied across the oxide. This oxide is thick enough to inhibit current flow in all 
of the N 2 write units.

•	 Read: Reading the magnetization state in both methods are performed by a current flow through an MTJ, 
where the free layer is coupled to the nanomagnet of the write unit through dipolar interaction. However, the 
output parameter in previous works is current (proportional to the resistance of the MTJ), which is passed on 
to the inputs of interacting spin units. But, in our device, the MTJ current is converted to an output voltage by 
using a voltage divider circuit. This voltage later provides inputs to coupled units.

•	 Interconnect: The spin-spin interaction is emulated by sending the output from one spin unit to the other. 
The current-based input-outputs in previous works cause current flow from one interacting unit to the other, 
whereas, in our device, there is no current flow between connected spin units due to voltage-based coupling. 
This is an important aspect of scalability of the scheme. Also previous works suggest additional amplification9 
or CMOS circuits10 in between coupled spin units in order to drive the fan-out, whereas in our device, direct 
cascading is possible by proper device engineering.

It is to be noted that the network of spins in our model does not entirely resemble a Boltzmann machine11. 
The focus of our scheme is to make the lower energy states to be more probable with no restriction on the overall 
energy landscape. Therefore, although the probability of observing a state with energy E gradually increases with 
decreasing E, it may or may not follow the Boltzmann distribution.

In this work, we have presented the structure and switching characteristics of these voltage-controlled spin 
units. Additionally, we have showed a way of direct configuration of the spin-spin and spin-external source cou-
pling network from the Ising Hamiltonian, taking TSP as an example. As a validation of our model, we have 
developed a coupled LLG (Landau-Lifshitz-Gilbert) equation-based simulation framework and solved TSP prob-
lems of size 15-city ((N − 1)2 = 196 spin units) and 26-city (625 spin units). We compared our results with existing 
heuristic (Lin-Kernighan) algorithms12 used in the field of computer science and achieved 100% accuracy for 
15-city.

Ising formulation of Traveling Salesman Problem
Ising model, although originally introduced as a model for ferromagnetic materials, is widely applied in molecu-
lar biology, chemistry and other areas due to its combinatorial interpretation. According to this model, the spin 
dynamics in a ferromagnetic lattice, consisting of N lattice sites, is governed by the following Hamiltonian2:
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Here xi is the spin state of the molecule at the i-th lattice site, which can assume either ‘up’ or ‘down’ state. Ji,j and hi 
correspond to the energies due to the interactions with the nearest neighbors and external fields, respectively. The 
spins interact in such a way that they tend to eventually line up in the configuration producing the lowest value of 
H, thus transitioning from a high energy random state to a low energy ordered state at or below a critical temper-
ature. Finding the spin configuration which minimizes H is itself an NP-hard problem. Hence, the elements of a 
combinatorial optimization problem can be thought of as a collection of spins, xi, where the Ising energy function, 
H represents the parameter to be optimized.

For example, the traveling salesman problem, which asks for the ordering of cities to visit so that the total 
distance travelled is the minimum, can be formulated as an Ising energy function in the following way13:

H A x A x x x

B W x x

1 1

(2)

v

n

j

N

v j
j

N

v

n

v j
uv E j

N

u j v j

H

uv E
uv

j

N

u j v j

H

1 1
,

2

1 1
,

2

( ) 1
, , 1

( ) 1
, , 1

A

B

� ���������������������������� ����������������������������

� ���������� ����������

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

=





−






+






−





+

+

= = = = ∉ =
+

∈ =
+

For an N city TSP, the system consists of N2 bits/spins xu,i (Fig. 1(a)), which can take either ‘0’ (down) or ‘1’ (up) 
depending on the fact whether city u will be travelled at order i or not. Wuv is the distance between cities u and 
v. The first three terms in equation 2 consist the Hamiltonian cycle HA and the last term HB contains the weight/
distance matrix. At the ground state of the system, HA equals 0 and HB denotes the minimum distance travelled. 
Hence, at this state, the collection of xu,i gives us the order of cities to visit for achieving minimized H.

Nanomagnet-based implementation
The fundamental building blocks of the Ising model, also known as artificial spin units, act as a random num-
ber generator (RNG) (randomly switches between ‘up’ and ‘down’ states) unless acted upon by external force 
or neighboring interactions. The stochastic switching characteristic of nanomagnets, arising from the inherent 
thermal noise, enables its use as RNGs. Nanomagnet-based RNGs have been demonstrated previously, like spin 
transfer torque based spin-dice14, spin-orbit torque based spin-dice15, voltage controlled spin-dice16 etc. However, 
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high current requirement in spin-torque-based devices and unipolar switching17 of VCMA-based devices have 
stirred the quest for new mechanisms, like the magnetoelectric (ME) effect.

Device description. Among different ferromagnet/ME oxide heterostructures18, BiFeO3(BFO)/CoFeB is 
found to demonstrate exchange bias coupling, which is suitable to accomplish 180° switching19, 20. Exchange bias 
interaction occurs at the interface between the ME oxide and the ferromagnet, while the spin and charge polari-
zation of the multiferroic material BFO are coupled to each other. Hence, by switching the electric polarization of 
BFO, the magnetization of CoFeB can be switched. In our model, we have used an ultrathin CoFeB film (thickness 
of 0.9 nm) with perpendicular magnetic anisotropy (PMA) as the ferromagnet in contact with a multiferroic layer 
BiFeO3 (BFO) which consists the write unit (Fig. 1(b)). Each spin xu,i is represented by the magnetization moment 
of CoFeB. The application of an electric field, VIN across the ME oxide creates an effective magnetic field, 

→
BME 

experienced by xu,i. Magnetization reversal of xu,i takes place depending on the strength and direction of BME
→

. 
Electrical switching of this type of PMA CoFeB/BFO system has been experimentally demonstrated in ref. 20. 
However, since the crucial aspects of these fields, like coupling mechanisms, switching dynamics etc. are still 
under intense research, instead of following any particular experiment set, we have used a generic parameter 
called magnetoelectric coefficient21 (αME) to model the ME effect in our device. (The details of the simulation 
methodology is explained in the next section.) The thickness of the BFO layer is 5 nm to inhibit tunneling current 
in the write unit. The area of the CoFeB layer used here is small enough (16 nm × 8 nm) to make it work as an 
RNG when unbiased. Figure 1(c) demonstrates the switching probability of xu,i vs input voltage, VIN, generated by 
stochastic LLG simulation. Positive values of VIN creates effective 

→
BME in the +z-direction, favoring switching of 

xu,i from down (‘0’) to up direction (‘1’). BME
→

 reverses for negative VIN. When VIN = 0, xu,i randomly switches 
between ‘up’ and ‘down’ with a lifetime of couple of nano seconds.

The read unit (Fig. 1(b)) contains a voltage divider circuit consisting of an MTJ and a reference resistance, 
RREF. This read circuit is electrically isolated from the CoFeB/BFO stack by an insulating layer. However, dipolar 
interaction couples the free layer of the MTJ to the magnetization xu,i of the CoFeB layer in the write unit. The 
resistance of the MTJ, RMTJ varies between parallel (RP) and antiparallel (RAP) configuration depending on the 
value of xu,i and the output voltage, VOUT changes accordingly. V VOUT REF

R
R R

MTJ

MTJ REF
=

+
. Here, VREF denotes the 

supply voltage. The variation of VOUT with the magnetization moment is demonstrated in Fig. 2(b), generated by 
a behavioral model (explained in the next section). It is to be noted that VREF should not exceed the switching 
threshold of the MTJ free layer to keep its state unperturbed. At the same time, it should be sufficient to let VOUT 
reach the desired values to drive subsequent units. Hence, optimization of the MTJ dimensions (i,e, RMTJ), RREF 
and VREF is necessary. It is worth mentioning here that the electrical isolation of the READ and WRITE unit 
demands two free layers for each section. It helps prevent any undesired perturbation of the current magnetiza-
tion state of the WRITE free layer by the READ current.

Neighboring and external interactions. The input voltage VIN consists of two components, Vneighbor 
and Vexternal which model the interaction with neighboring units and external sources, respectively. In other 

Figure 1. (a) An N by N network of spins to represent an N city traveling salesman problem (here N = 4). Each 
spin, xu,i denotes whether city u should be visited at order i, where the rows represent the cities and the columns 
stand for the order of visit. In this work, we have assigned the binary values ‘1’ and ‘0’ to ‘up’ (magnetization 
moment, xu,i = +1) and ‘down’ (xu,i = −1) spin states, respectively. This conversion from bipolar to binary 
variables is shown in the table. (b) The geometry of the device representing each spin unit. Input voltage, VIN 
is applied across a multiferroic oxide/CoFeB heterostructure, labeled as the ‘Write’ unit. The magnetization 
moment of this CoFeB layer depicts xu,i which can point along +z (‘up’) or −z (‘down’) direction (easy axes) 
under the magnetoelectric effect. A voltage divider circuit, which is the ‘Read’ unit, consists of a resistance, RREF 
and an MTJ. This ‘Read’ unit is electrically separated from the oxide/nanomagnet stack, but are magnetically 
coupled by dipolar interaction. The voltage across the MTJ, VOUT changes depending on the state of xu,i. (c) The 
switching probability curve of the CoFeB layer vs VIN. The magnetization moment vs time plots are shown in the 
insets at positive (C), negative (A) and zero (B) input voltages.
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words, Vneighbor and Vexternal are associated with the two parts of the Ising Hamiltonian (Equation 2): HA and HB, 
respectively.

HA imposes the restriction that each city should be visited only once. It can be reformulated into the following 
form:

∑∝ − = =H x x where u v or i j, (3)A v j u i, ,

Each term in HA contains pairs of spins lying on the same row or same column of the N by N system. Note that, 
the rows indicate individual cities and the columns represent their order of travel. If a spin at row v and column 
j is selected (xv,j = ‘1’), all other spins in the same row (xv,i) and column (xu,j) must be ‘0’, which implies that city v 
can appear only once in the cycle and it is impossible to visit two cities v and u simultaneously. On the other hand, 
when xv,j = ‘0’, xu,i remains unchanged and no restriction is violated. In that case, xu,i is decided by the other part 
of the Hamiltonian associated with the weight matrix. The truth table in Fig. 2(a) is constructed based on this 
principle. VOUT from xv,j is employed to the input of xu,i in order to implement the truth table shown, with the tar-
get of making HA = 0 for each term (i.e., xu,ixv,j = 0). The top panel in Fig. 2(b) represents how VOUT changes as the 
magnetization moment xv,j goes from down (xv,j = −1 or ‘0’) to up (xv,j = +1 or ‘1’). The corresponding switching 
probability is demonstrated in the bottom panel of this figure. When xv,j points down (‘0’), the dipolar coupling 
causes RMTJ = RP. Hence, the voltage divider circuit outputs a lower voltage V1 corresponding to a switching prob-
ability much less than 50% which tends to keep xu,i unchanged (Row 1 of the truth table). On the other hand, 
xv,j = ‘1’ (up) makes RMTJ = RAP, and therefore, VOUT, being the voltage across RMTJ, equals a higher value V2 giving 
rise to a higher switching probability for xu,i from ‘1’ to ‘0’ (Row 2 of the truth table). We have performed a sample 
simulation of two bits to validate this model. Keeping xv,j predetermined to ‘0’ or ‘1’, we have solved stochastic 
LLG equation for xu,i with VIN originating from xv,j. Each simulation is performed for 100 ns, while the state of xu,i 
is read after each 0.02 ns. The result is shown in the top panel of Fig. 2(c). Equal percentage in the occurrence of 
xu,i = ‘0’ and xu,i = ‘1’ is observed when xv,j is kept fixed at ‘0’. On the other hand, xu,i = ‘0’ dominates for input state 
of xv,j = ‘1’. As expected, HA is concentrated at 0 during the course of time (Fig. 2(c): bottom panel).

The other component of the input voltage Vexternal depends on HB which can be re-written in the following 
form:

∑∝ = ±H W x x where j i, 1 (4)B u v v j u i, , ,

Each term in HB dictates whether city u and v should be visited consecutively depending on the distance between 
them, Wu,v. At the ground state of the system, HB refers to the minimum distance travelled. With this restriction 
in mind, the truth table in Fig. 3(a) works towards selecting the spins in consecutive columns based on their 
distances. Note that, in our model, a spin xv,j in state ‘1’ implies that city v is chosen to visit at order j. Each spin 
xv,j from Equation 4 is situated at (i + 1)-th or (i − 1)-th columns, whereas xu,i lies at the i-th column (Fig. 3(a)), 
given the columns dictate the order of travel. Each term in Equation 4 is modeled as an external input voltage Vu,v 
being applied to the spin unit xu,i, while this voltage source is switched ‘ON’/‘OFF’ by the states of the spin units 
xv,j in the adjacent columns (Fig. 3(b)). In case of the last column (column N), the adjacent columns are (N − 1)th 

Figure 2. (a) The truth table and the physical connection governing the interactions between spin units. Here 
xv,j acts as the input to xu,i and they lie either on the same row or same column. The MTJ in each device has been 
replaced by a variable resistance RMTJ. (b) Top panel: the variation of VOUT with xv,j, obtained from a behavioral 
model (VOUT = A tanh (Bxu,i)). Bottom panel: the switching probability of xu,i vs applied voltage, VIN (stochastic 
LLG simulation). The polarity of this voltage tends to switch xu,i from ‘1’ to ‘0’. (c) Top panel: a sample 
simulation of xu,i for two cases: xv,j = ‘0’ and ‘1’. Bottom panel: A plot of the Hamiltonian cycle, HA with time. HA 
is concentrated around 0, since the interactions are designed to make each product term xv,jxu,i = 0.
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and 1st columns, respectively considering a closed loop. The value of Vu,v is set by the Wu,v vs Vu,v curve shown 
in the bottom panel of Fig. 3(c). At smaller Wu,v, Vu,v is set to a large value, Vhigh which favors the switching from 
‘0’ to ‘1’ and vice versa. Figure 3(d–f) show the results from the simulation of a sample Hamiltonian, HB = WA,

BxA,1xB,2 + WA,CxA,1xC,2 + WA,DxA,1xD,2 for a 4-city (A,B,C,D) TSP. Note that the first letters in the subscript of the 
variable names (xA,1 etc.) refer to the city names, whereas the second letters denote the order of visit for that city. 
Three coupled stochastic LLG equations are solved for xB,2, xC,2 and xD,2 with external inputs VA,B, VA,C and VA,D, 
respectively (Fig. 3(d)). Hence, we are trying to determine which city among B,C and D should be visited at order 
2, given city A is visited first (xA,1 = 1). The switches are always ‘ON’ (because xA,1 = ‘1’). In addition, all units are 
being injected with Vneighbor, as described in the previous paragraph, to prevent simultaneous selection of spins in 
the same column. In this simulation, we have chosen WA,B < WA,C < WA,D. Therefore, Fig. 3(e) demonstrates that 
‘100’ is the favorable state for xB,2xC,2xD,2, implying that city A to B is the favorable path, not A to C or A to D. Also, 
HB is centered at WAB (Fig. 3(e)), which is the shortest route.

Simulation Methodology
In order to solve an N by N problem, we have used an N − 1 by N − 1 network of spins keeping node 1 fixed to 
appear first in the cycle. To calculate the magnetization dynamics of these (N − 1)2 nanomagnets, we have devel-
oped a simulation framework consisting of a set of (N − 1)2 stochastic LLG equations coupled with each other 
through their input voltages, VIN. In our numerical simulation, we have used a time step of 0.02 ns. After each 
time step, the magnetization moment of each bit is updated, and these updated values are used to generate the 
input voltages for the next time cycle (Fig. 4). A behavioral model is used to generate the input voltages, taking 
corresponding spin values as inputs. The details of the micromagnetic simulation and the behavioral model are 
described in this section.

0.0
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0.8
1.0

Figure 3. (a) The truth table and the position of the spin units involved in each term of HB, which governs the 
minimization of the traveling distance. (b) The physical realization of each term in HB to mimic the truth table. 
(c) Bottom panel: linear dependence of the values of the voltage sources, Vu,v with the distance matrix, Wu,v 
V V W W( ( ))u v high

V V
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. Top panel: The switching probability curve with applied voltage. The 

polarity of this external voltage, Vu,v tends to switch xu,i from ‘0’ to ‘1’ (opposite of Vneighbor). (d) The physical 
connection for a 4-city (A,B,C,D) problem with sample Hamiltonian, 
HB = WA,BxA,1xB,2 + WA,CxA,1xC,2 + WA,DxA,1xD,2. City A is predetermined to be visited first. (e) The results from a 
coupled LLG simulation of xB,2, xC,2 and xD,2, keeping xA,1 fixed to ‘1’. ‘100’ is observed to have the highest 
probability of occurrence, implying that AB is the favorable path. (f) The Hamiltonian, HB vs time, with WAB, 
WAC and WAD plotted in the same graph. HB is concentrated near the minimum distance (WAB), as expected.
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Micromagnetic simulation. The LLG equation with monodomain approximations is described as follows22,

dm
dt

m H m m H( ) ( ) (5)eff eff
ˆ ˆ ˆ ˆγ α= − ×

→
+ × ×

→

Here m̂ is the normalized magnetization moment of the ferromagnet layer, α is the Gilbert damping constant, q is 
the charge of an electron and γ denotes the gyromagnetic ratio. →Heff  is the effective magnetic field acting on the 
magnetization, which consists of the anisotropic field, →Hanisotropy, demagnetization field, →Hdemag , thermal field, 
→
Hthermal and effective magnetoelectric field, 

→
HME. Note that there is no spin transfer torque due to negligible cur-

rent flow through the oxide.
Hanisotropy
→  and Hdemag

→  are calculated according to refs 23 and 24. Thermal field, 
→
Hthermal is given by ref. 25
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kB is the Boltzmann constant, T is the temperature of the system, Ms is the saturation magnetization, Vol is the 
volume of the free layer and dt is the discrete time step used in the numerical simulation. ξ

→
 is a 3-component 

vector whose components are zero mean Gaussian random variables with standard deviation of 1.
We have modeled the ME field through the magneto-electric coefficient αME

26,
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Note that the easy axis of the PMA magnet is along z-direction. Here VIN is the voltage across the ME oxide, tME is 
the thickness of the oxide layer and ME o

dB
dE

magnetic field
electric field

α µ= = . The experiment in ref. 27 shows a nonlinear vari-
ation in αME versus the applied voltage, with the values ranging from ~0.001×10−7 sm−1 to 1 × 10−7 sm−1. 
However, for the voltage range in our model, we have used an average value of 0.03 × 10−7 sm−1 (1/c, c = speed of 
light). The parameters used in the LLG simulations are listed in Table 1.

Behavioral model. In order to calculate VIN (in Equation 7) applied to each ME oxide/nanomagnet unit, we 
have used behavioral models to calculate the constituents Vneighbor (Fig. 2(b)) and Vexternal (Fig. 3(b)) which require 
relevant spins, xu,i/xv,j (generated by LLG equations) as inputs. Since RMTJ follows a sigmoid function with its mag-
netization moment (SPICE model of the MTJ: ref. 29), Vneighbor (i.e., VOUT, which is linearly dependent on RMTJ) is 
modeled as A tanh (Bxu,i), where the parameters A and B are adjusted to fit the desired values of V1 and V2 

Figure 4. A schematic showing the flow-diagram of our coupled simulation framework for two sample spin 
units x1 and x2. This cycle is performed for all of the (N − 1)2 spin units.

Parameters Values

CoFeB layer dimension 16 nm × 8 nm × 0.9 nm

Damping constant, α 0.15

Saturation magnetization, Ms 250 emu

Interface anisotropy, Ki 0.068 mJ/m2

Magneto-electric coefficient, αME 0.03 × 10−7 s/m

ME oxide thickness 5 nm

Table 1. Summary of the parameters used in the simulation.
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(Fig.  2(b)). On the other hand, Vexternal is linearly related to the distance matrix by the equation: 
= − −δ

δ
V V W W( )external high

V
W min , when corresponding control spins xv,j = ‘1’. Slope =δ

δ

−

−
V
W

V V

W W
high low

max min
. Here W is 

the value of the corresponding weight/distance, Wmin and Wmax are the minimum and the maximum value in the 
distance matrix, respectively. This behavioral model and the set of coupled LLG equations are solved 
self-consistently with a time step of 0.02 ns.

In addition, we have used simulated annealing in order to gradually move towards the global minima. The total 
time required for the nanomagnet array to reach a steady state starting from a random distribution is around 10 μs 
with an annealing period of 50 ns. At i-th period, |V2,i| = |V2,initial| + i × δVneighbor, |Vlow,i| = |Vlow,initial| + i × δVexternal 
and |Vhigh,i| = |Vhigh,initial| + i × δVexternal. (V2 is shown in Fig. 2(b), Vlow and Vhigh are shown in Fig. 3(c)). In this way, 
we move towards a steady state as time goes by. The efficiency of the annealing schedule largely depends on the 
initial points and the cooling rate. In our simulation, we have used |δVneighbor| = 50 mV and |δVexternal| = 100 mV.

Results
We developed a coupled LLG equation-behavioral model simulation framework to solve TSPs of two sizes: 15 
by 15 ((N − 1)2 = 196 nodes) and 26 by 26 (625 nodes). Figure 5(a,b) show a side-by-side comparison of the 
routes obtained by brute force search (red) and our approach based on ME oxide/nanomagnet stochastic device 
(blue), where the case for 15-by-15 matches 100%. However, as the problem size increases, the solution becomes 
more susceptible to the efficiency of the annealing schedule. Hence, the accuracy goes down for the 26 by 26 
problem. However, the aim of our work is not to analyze optimized annealing schedule, rather demonstrate that 
near-optimal solution is achievable with this ME oxide/nanomagnet based stochastic device. The problem dataset 
and brute-force solutions are taken from refs 28 and 30. The plots of the Hamiltonian function in Fig. 5(c,e) indi-
cate that the system moves towards low energy ordered state over time as we approach solution. The initial and 
final magnetization states are shown in the insets. Figure 5(d) shows a comparison of our results with LK12 heu-
ristic algorithm. It is possible to boost up the accuracy of the 26-city problem by adjusting the annealing schedule. 
The code for solving the LK algorithm with our test data has been taken from ref. 31.

We have also calculated the amount of energy dissipation in the spin units. As stated earlier, current flow in the 
write unit and the interconnect is negligible. Hence, power dissipation takes place only in the read unit. With the 
aim of making VOUT sufficient (~2 V) to provide VIN to coupled spin units without any intermediate amplification, 
we have used VREF = 2.5 V, RREF = 25 kΩ. RMTJ varies between 15 kΩ (Rp) and 40 kΩ (Rap) (SPICE simulation). 
Note that the area of the MTJ is large (96 nm × 72 nm) enough to make the critical switching current much larger 
(high energy barrier) than the current flow in the voltage divider circuit. With these parameters, the maximum 
power dissipated in the individual spin units amount to 0.15 mW. It can be reduced by using better multiferroic 
oxides with strong magneto-electric effect, i.e. large magnetoelectric coefficient α. To this date, the value of α (at 
low voltages) obtained experimentally for exchange bias effect is limited to 1/c to 0.01/c, c is the speed of light19. 

Figure 5. The travel route obtained from brute force search28 (Red) and our simulation (Blue) for (a) 15-by-15 
and (b) 26-by-26 traveling salesman problem. The start city is identified with a bigger pink circle in each route. 
The plot of the Ising Hamiltonian with time for (c) 15-by-15 and (e) 26-by-26 problems. The initial and final 
magnetization states of the N by N networks are shown in the insets. (e) A bar chart comparing our simulation 
result with LK heuristic algorithm12.
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However, if ME oxides with α ≥ 5/c is found, VOUT can be reduced to 0.5 V (obtained from stochastic LLG simu-
lation). Hence, VREF ≤ 1 V and power dissipation in individual units ≤0.025 mW can be achieved.

Discussion
In conclusion, we have presented a theoretical demonstration of a magnetoelectric oxide based stochastic spin 
unit to model the Ising Hamiltonian of traveling salesman problem. It operates based on voltage-controlled 
switching of ferromagnets instead of current. The core of the unit is a thick multiferroic oxide/nanomagnet 
stack which permits negligible current flow, making the scheme energy-efficient and easy to scale, unlike other 
current-based units. Aside from reduced current flow, the voltage based coupling mechanisms make the routing 
network less prone to leakage. Using our coupled micromagnetic simulation framework, we have demonstrated 
simulation results for problems as large as 625 nodes, with 100% accuracy for 15-city (196 nodes) problems. 
Moreover, we have provided guidelines towards reducing power dissipation without the need of any intermediate 
amplification between cascaded spin units. However, some challenges, like dielectric breakdown of the ME oxide 
along with ways to overcome them are left for future investigation.
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