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Emergent spectral properties of 
river network topology: an optimal 
channel network approach
Armaghan Abed-Elmdoust  1,2, Arvind Singh2 & Zong-Liang Yang1

Characterization of river drainage networks has been a subject of research for many years. However, 
most previous studies have been limited to quantities which are loosely connected to the topological 
properties of these networks. In this work, through a graph-theoretic formulation of drainage river 
networks, we investigate the eigenvalue spectra of their adjacency matrix. First, we introduce a graph 
theory model for river networks and explore the properties of the network through its adjacency 
matrix. Next, we show that the eigenvalue spectra of such complex networks follow distinct patterns 
and exhibit striking features including a spectral gap in which no eigenvalue exists as well as a finite 
number of zero eigenvalues. We show that such spectral features are closely related to the branching 
topology of the associated river networks. In this regard, we find an empirical relation for the spectral 
gap and nullity in terms of the energy dissipation exponent of the drainage networks. In addition, 
the eigenvalue distribution is found to follow a finite-width probability density function with certain 
skewness which is related to the drainage pattern. Our results are based on optimal channel network 
simulations and validated through examples obtained from physical experiments on landscape 
evolution. These results suggest the potential of the spectral graph techniques in characterizing and 
modeling river networks.

River networks have been a subject of research for many years. They are central to several processes occurring on 
river ecosystem and provide primary pathways to transport environmental fluxes such as water, nutrient, and sed-
iment1–5. Understanding and quantifying their structure and dynamics is essential for both advancing fundamen-
tal knowledge about their emergence and evolution as well as for management and prediction of environmental 
processes and fluxes operating upon them1–9.

Consisting of branching channels, river networks’ display highly nonlinear dynamics and complex topology. 
They have been shown to exhibit various properties such as self-similarity and scaling laws across a range of 
scales commonly observed in complex (both natural and engineered) networks10–13. Ranging from seminal works 
of Horton14, 15 and Shreve16–18 which set the foundation of stream ordering schemes, several aspects related to 
river network geomorphology and topology have been explored using physical, theoretical, numerical and field 
approaches. However, studies that specifically relate geometric and topologic properties of river network are still 
lacking.

Along different lines, spectral graph theory has a long history19, 20 and is a rapidly growing field in connection 
with complex networks13. Predominantly, spectral graph theory deals with the study of graphs through the eigen-
values and eigenvectors of their associated matrices. Because of the generality of problems involving graphs, spec-
tral graph techniques are deeply connected with different fields of science and engineering ranging from quantum 
chemistry21 and communication networks22 to computer science23 and combinatorics24 to mention a few.

Considering the importance of the spectral graph techniques in all such areas and given recent advances 
in complex network characterization, of interest would be to explore the ramifications of these theories and 
techniques in one of the most interesting examples of naturally occurring complex networks; river drainage net-
works. Note that graph theory has been previously used to study drainage network topology25. More recently, the 
topologic and dynamic complexity of delta channel networks have been investigated through a graph-theoretic 
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approach26, 27. However, to the best of our knowledge, the spectral properties of river network topology, such as 
eigenvalue distribution and spectral gap, have never been studied.

Using a graph theoretic formulation, here we investigate the eigenvalue spectrum of the adjacency matrix of 
river networks. First, we consider drainage networks generated on two-dimensional lattices through an optimal 
channel network (OCN) model. We then discuss general properties of the adjacency matrix and the eigenvalue 
spectrum associated with such networks. The main characteristics of the eigenvalue spectrum are extracted and 
their relation with the topology of the river network is discussed. The statistical behavior of the eigenvalues is 
also investigated and is compared with that of well-known networks. Finally, we explore examples from physical 
experiments on landscape evolution and show that our results are applicable to a variety of complex river net-
works formed under different external forcings.

Results
Adjacency matrix and properties of river networks. In general, the flow paths in a river network can 
be described through a directed graph which can itself be represented by an N × N adjacency matrix A, where N 
is the number of nodes. Adjacency matrix, A can be expressed as,

=





a i j1: flows to ;
0: otherwise (1)ij

and characterizes the connection between two adjacent nodes, along the flow direction. Thus, the structure of 
a river network can be fully determined through the coordinates of its nodes and its adjacency matrix which 
respectively describe the geometry and the topology of the network. In other words, a river network can be con-
sidered as a spanning tree on a two-dimensional regularly spaced square lattice grid of nodes N which can, in 
principle, be surrounded by an arbitrary shaped boundary describing the shape of a river basin28. Each node on 
this grid can only be connected to its eight nearest neighbors through a link. The connecting links, are directed 
links representing the flow direction. Although each node can have an inflow from multiple upstream nodes, it 
can only have one outflow to the downstream node; thus each link is uniquely associated with its upstream node. 
By considering an exception from this rule, here we introduce an outlet node (associated with the outlet of a river) 
which does not have any downstream node.

Following equation (1), one can directly list the following properties for the asymmetric adjacency matrix A: 
(i) given that there is only one node downstream of each node, each row of the adjacency matrix A includes only 1 
and the only exception is the row associated to the outlet node which does not have any downstream node there-
fore this row is completely zero. (ii) Number of 1’s in each column corresponds to the number of nodes directly 
upstream of the corresponding node. (iii) All the diagonal elements of A are zero.

Figure 1 shows an exemplary river basin (Fig. 1a) along with its adjacency matrix (Fig. 1b) revealing an inter-
esting property of the adjacency matrix A. For instance, one can always relabel the nodes of a tree such that its 
asymmetric adjacency matrix becomes upper triangular. This immediately follows that the eigenvalues of A are all 
zero. This, however, does not restrict us from investigating the spectrum (distribution of eigenvalues) of river net-
works as one can always utilize different matrix descriptors of a graph. In particular, here we define a symmetric 
adjacency matrix B which only considers the connectivity of the nodes while ignoring the flow directions, thus:

=





b i j1: and linked;
0: otherwise (2)ij

Using (2), B can be written in terms of A as B = A + AT, where “T” represents a transpose operation. Although, 
A cannot be obtained in terms of B, in a river network this is possible given that the outlet is known and there is 
always a unique path from each node to the outlet. Therefore, the flow directions can be ignored and the network 
can be described with an undirected graph as displayed in the example of Fig. 1c which further can be character-
ized with a symmetric adjacency matrix shown in Fig. 1d.

The definition of equation (2) directly implies that B is a sparse matrix (most elements are zero) with the 
following properties: (i) B is a symmetric matrix, i.e., bij = bji. (ii) The number of 1’s in ith row or column is equal 
to the number of direct neighbors of the ith node, i.e., number of links which are directly connected to that node 
(which is commonly called as degree). Here, we define the number of links connected to each node as the degree 
of that node. (iii) All the diagonal elements of B are zero and therefore the trace (sum of diagonal elements) of B is 
zero. In this work, we focus on the eigenvalue spectrum of the symmetric adjacency matrix B.

Eigenvalue spectrum of modeled channel networks. In this study, we generate river network graphs 
by using an optimal channel network (OCN) approach which can produce river networks with different branch-
ing patterns (representing angle of bifurcation, drainage density etc.11). OCNs are in general obtained by finding 
an optimal topology with a local minimum of the total energy. For each link, the dissipated energy is related to 
the discharge through an exponent γ (γ varies between 0 and 1) which is assumed to be constant for the entire 
network and characterizes the bifurcation pattern (see Methods). The simulated river network using OCN model 
reproduces several topologic and geomorphic properties of real river networks and has been explored extensively 
in the recent past8, 28–33.

Figure 2a depicts an exemplary river network generated via an OCN model while the cumulative probability 
of its adjacency matrix eigenvalue spectrum is shown in Fig. 2b. As expected, the eigenvalues are symmetrically 
distributed around the origin. Since eigenvalue distribution is symmetric, the negative part does not carry any 
new information, thus we can only focus on the positive part of the spectrum. The pdf of eigenvalues is also 
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plotted in Fig. 2c. Figure 2d–f, on the other hand, depict a spanning tree, generated through a random walk on the 
same lattice, along with its eigenvalue distributions28.

Comparing the river network (Fig. 2a) with random network (Fig. 2d), apart from the basic properties listed 
above which are in common in both networks, one can clearly see three important signatures in the eigenvalue 
spectra of the river network. The first is the ratio of zero eigenvalues (Nz) to the total number (N) of eigenvalues 
Z = Nz/N, which we refer to as nullity. The second is the value of the smallest nonzero eigenvalue that also identi-
fies a forbidden range below which no eigenvalue exists which in the case of the river network of Fig. 2a is found 
to be ~±0.42 while for the random walk network of Fig. 2d is ~±0.1. We refer to this range as the spectral gap G. 
Note that in the context of spectral graph theory, spectral gap is commonly referred to as the difference between 
the two largest eigenvalues of the adjacency matrix. Finally, the third property is a significant difference in the 
shape of pdfs of eigenvalues (see Fig. 2c,f).

In the rest of this manuscript we aim to address how these spectral signatures are related to the geomorphic 
properties of the stream networks. In particular, we are interested in geometric properties such as the size and 
shape of the basin, as well as the topology of the river network that leads to a certain branching pattern. The 
branching pattern of a river network is of significant importance in characterizing a landscape and has been 
shown to depend on climatic, geologic, biologic and ecologic conditions of the river network landscape2, 7, 34–36.

Spectral gap and nullity. In order to investigate the effect of network size, here we generate OCNs of different 
sizes varying from N = 400 to N = 3600. To minimize the effect of random initializations of the generated net-
works, in each case, 10 independent network realization were generated and their ensemble averaged spectral gap 
and nullity were computed. Figure 3a shows that with increasing size of the network, the spectral gap (G) and 
nullity (Z) remain nearly constant despite the fact that the number of eigenvalues is equal to the number of lattice 
nodes. In a similar manner, the effect of the shape of the river basin can be studied by considering many realiza-
tions of drainage networks inside borders with different shapes while all preserving the same drainage area. For 
this purpose, we consider a rectangular boundary with different width and elongation. As in previous case, the 
results are reported after ensemble averaging. The spectral gap and nullity are depicted as a function of the basin 
aspect ratio in Fig. 3b. Similar to the previous scenario, in this case as well the spectral features are barely affected 
by the elongation of the basin. Finally, a scenario where the river basin can have multiple outlets -a scenario 
frequently observed in a natural landscape37, 38 is considered. A spectral analysis of such networks shows that in 
this case again the eigenvalue distribution is barely affected by the number of disconnected river networks on the 

Figure 1. An exemplary stream network and its adjacency matrix. (a) The directed graph representation, (b) 
the asymmetric adjacency matrix A, (c) the undirected graph representation, and (d) the symmetric adjacency 
matrix B.
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entire landscape (see Fig. 3c). In general, the impact of geometrical properties of a river network on the eigenvalue 
spectrum of that network is negligible.

We next consider the branching patterns of river networks. As shown by several studies, different external 
forcing (e.g. climatic, tectonic) can lead to the formation of different drainage branching patterns that may result 
in different values of γ11. In our simulations, different patterns can be produced by varying the energy dissipation 
exponent γ. As illustrated in Fig. 4a–c, by varying γ from 0.1 to 0.9 the drainage pattern changes drastically from 
an intertwisted river network to an entirely straightened pattern. The width functions11, 28, 39, 40, characterizing the 
number of nodes in the network that are located at a distance of d from the outlet, associated with these networks 
are depicted in Fig. 4d–f. According to these figures, the effect of the energy dissipation rate on the bifurcation 
pattern is well reflected in the shape of the width function. For example, by increasing γ, the longest stream length 
dmax decreases and the peak of the width function shifts from the median stream length towards the maximum 
value.

Figure 2. (a) A river network generated with an optimal channel network model on a 50 × 50 square lattice. 
(b,c) The cumulative density function (cdf) and the probability density function (pdf) of the associated 
adjacency matrix eigenvalue spectrum. (d) A randomly generated spanning tree on the same lattice and (e,f) its 
associated cdf and pdf. G and Z in (b) represent spectral gap and nullity, respectively.

Figure 3. Dependence of the spectral gap G and the nullity Z vs. (a) size, (b) shape and (c) connectivity of the 
river networks. In (a), all basins are square and the horizontal axis represents the area of the network. In (b), 
rectangular basin shapes with length Wx and width Wy are considered and the horizontal axis represents the 
aspect ratio. In (c), all basins have the same boundary while the number of outlets changes. In all cases blue and 
red curves show the spectral gap G and the nullity Z, respectively, while the insets represent examples of river 
networks at two data points.
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To quantify the effect of different drainage patterns (see Fig. 4) on the eigenvalue spectrum resulting from 
varying energy exponent γ, we compute the spectral gap and nullity as a function of the γ. As shown in Fig. 5a, 
by increasing γ, both spectral gap and nullity decrease monotonically. For example, the spectral gap reduces 
to almost 50% when γ increases from 0.1 to 0.9. A further look at the plots of the spectral gap G and nullity Z 
(Fig. 5a) versus the energy decay exponent γ suggests the following empirical relations:

γ γ γ γ= − = −τ τG G Z Z( / ) , ( / ) , (3)0 0 0 0

where the two offsets are G0 = 0.48 and Z0 = 0.43, while the scale γ0 and the exponents τ (common in both equa-
tions) are found to be 1.37 and 3.2, respectively.

Distribution of the eigenvalues. The distribution of the eigenvalue spectra of complex networks has been a sub-
ject of intensive investigations for the past decade41. In particular, it has been shown that the eigenvalue distri-
bution of complex networks do not obey the Wigner’s semicircular distribution which describes the spectra of 
random symmetric matrices and governs a wide range of disordered systems in physics41–43. According to these 
studies, the eigenvalue spectrum of scale-free networks follow a power-law distribution which itself is rooted in 
the power-law degree distribution in such networks. In case of river networks generated on a square lattice, on the 
other hand, the degrees are distributed between 1 to 8. Therefore, of interest would be to compare the distribution 
of the eigenvalues of simulated river networks with that of well-known networks. As we show in the following, the 
spectrum of river networks is not governed by the Wigner’s semicircle law12, 13, as in random graphs, and neither 
it follows the power-law distribution of the scale-free networks.

Figure 5b–d depict the distribution of the eigenvalues for the OCNs obtained with different energy decay 
exponent γ, i.e. γ = 0.1, 0.5, and 0.9, respectively. Interestingly, in this case, the pdf of eigenvalues changes sig-
nificantly from an almost uniform toward a skewed distribution where larger eigenvalues are less likely. These 
pdfs can be approximated with a four-parameter Johnson’s SB distribution, a transformed normal distribution, 
represented by refs:44, 45

δ
µ π

α δ=
−

− . + − .f x
z z

z z( )
( 2 ) (1 )

exp( 0 5( ln( /(1 ))) )
(4)

2

Here, the normalized random variable is defined as = ζ
µ
−z x , where μ and ζ represent scale and mean parameters 

and α and δ are two shape parameters (see Fig. 5d–f). Suitable for our purpose, this distribution is defined over 

Figure 4. (a–c) Examples of optimal channel networks generated with γ = 0.1, 0.5 and 0.9 respectively. (d–f) 
The associated width functions. As can be seen from this figure, with increasing γ, the maximum channel length 
dmax decreases.
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the bounded range of ζ < x < ζ + μ and can track the skewness of the observed eigenvalue distributions. For 
example, the skewness index (α) of the eigenvalue distribution for the river networks obtained for γ = 0.1, 0.5, 
and 0.9 are α = 0.2, 0.35, and 0.8, respectively, whereas for the random network shown in Fig. 2d is ~0.

Spectrum of experimental river basins. To further explore the observed signatures of the eigenvalue 
distributions, here, we compare our OCN model with physical experiments. Figure 6a shows the digital elevation 
model (DEM) of the steady state landscape obtained from recently conducted physical experiments on land-
scape evolution46, 47. These experiments were designed to create an evolving landscape under constant uplift rate 
(20 mm/hr) and rainfall rate (45 mm/hr). The substrate of the eroding material consisted of silica with particle 
size of d50 = 25 μm. More details about the experimental facility and data collected can be obtained from Singh  
et al.46. Figure 6b shows the extracted channel network from the DEM which was used to compute the eigenvalue 
spectrum. Figure 6c shows the cumulative distribution, whereas Fig. 6d shows the pdf of the eigenvalues for the 
experimental river network. As can be seen from Fig. 6c, strikingly a similar pattern of eigenvalue spectrum 
(spectral gap) is observed in the physical landscape suggesting that spectral gap is a distinct signature of river 
network topology. Future work will focus on exploring how changing external forcing (e.g. climatic, tectonic) can 
affect the spectrum.

Discussion and Concluding remarks
In this paper, using a graph-theoretical framework, we investigated the eigenvalue spectrum of river network 
topology. We utilize river networks simulated through optimal channel network approach as well as river net-
works extracted from recently conducted physical experiments on landscape evolution. The main results of this 
study can be summarized as follows:

Figure 5. (a) Spectral gap G and the percentage of zeros Z for different energy dissipation exponents γ. Each 
data point in this figure represents an average of 10 realizations of networks under the same conditions. The 
dashed lines show the empirical fits based on equation (3). (b–d) The positive part of the eigenvalue distribution 
associated with river networks shown in Fig. 4(a–c), respectively. The solid red lines in panels show the fitted 
Johnson’s SB distributions (equation (4)). As can be seen from these pdfs, the asymmetry in the eigenvalue 
distribution increases with increasing γ.
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•	 The eigenvalue spectrum exhibits striking features including a forbidden range where no eigenvalue exists. 
We refer to this range as the spectral gap and show that this gap is closely related to the branching pattern of 
the river network.

•	 The nullity (number of zero eigenvalues in the spectrum) of the river network adjacency matrix shows similar 
trend as that of spectral gap.

•	 Both spectral gap and nullity are independent of the size and shape of the basin as well as the number of 
outlets. In addition, the eigenvalue pdf is mostly dictated by γ (an exponent capturing mechanics of erosional 
processes). The spectral properties of river networks, therefore, can be seen as representing important char-
acteristics of the bifurcation pattern in river networks.

Our results reveal the potential of spectral graph techniques for investigating river networks’ topology. The 
proposed spectral features can be utilized as novel geomorphological descriptors of drainage patterns. Such spec-
tral features can characterize a wide range of drainage patterns and go beyond the simple patterns with end and 
side bifurcation typically described through Horton-Strahler and Tokunaga indices48, 49. In addition, the eigen-
value descriptors can be directly extracted from the connectivity matrix of river networks in a single step.

Although we have explored several aspects of the eigenvalues spectrum through a numerical inspection of 
OCNs, it remains an open problem to derive analytical expressions for some of these findings. In particular, a 
rigorous derivation of the probability density function of the eigenvalues from the degree distribution would be 
highly desirable. Finally, of interest would be to explore the properties of real-world river networks in connection 
with their eigenvalue spectrum.

Methods
Optimal channel networks. Optimal channel networks are obtained by locally minimizing the total energy 
functional which is defined as the sum of energy dissipation in all links of the network, i.e., = ∑ γ

=
−E L qi

N
i i1

1 . Here, 

Figure 6. Example of steady state landscape obtained from a physical experiment (see for details46). (a) The 
digital elevation map, (b) extracted stream network, (c) the cumulative density function p(λ′ ≤ λ), and (d) the 
probability density function p(λ) of the eigenvalues.
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γL qi i  represents the energy dissipated in the ith link of the network where Li and qi represent its length and dis-
charge respectively11. The exponent γ is ranged between zero and unity and is an important parameter which 
characterizes the mechanisms of erosional processes in the stream network11. The discharge at the ith link can be 
written in terms of the discharge of upstream links through the adjacency matrix as = ∑ +q a q ri j ij j i, where, the 
summation is taken over all direct upstream nodes and ri represents the rainfall rate at the ith node. The total 
energy functional can be simplified by assuming equal distance between each two neighboring points on a lattice 
which leads to = ∑ γ

=
−E qi

N
i1

1 . On the other hand, assuming a uniform precipitation over the entire lattice, i.e., 
ri = 1 for i = 1, …, N, the discharge at the ith link is obtained to be = ∑ ∑=

−
=q ai k

N
j
N

ij
k

0
1

1
( ), where aij

k( ) represents the 
matrix elements of Ak. This latter relation is obtained by using a property of the adjacency matrix A which states 
that the number of walks of length k from node i to node j is equal to the entry in the ith row and jth column of the 
kth power of A. By using the discharge relation, the total dissipated energy of the river network can now be written 
as:

∑ ∑ ∑=












γ

=

−

=

−

=
E a

(5)i

N

k

N

j

N

ij
k

1

1

0

1

1

( )

As this relation clearly indicates, for a given energy dissipation rate γ, the total energy of the network is solely a 
function of the adjacency matrix which basically describes the graph topology. In simulations, by generating valid 
adjacency matrices, we utilize a hill climbing algorithm to find a local minima of the energy functional (equation 
(5)) and use such optimal topologies as optimal channel networks.
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