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Modelling viscoacoustic wave 
propagation with the lattice 
Boltzmann method
Muming Xia1, Shucheng Wang1, Hui Zhou1, Xiaowen Shan1,2,3, Hanming Chen1, Qingqing Li1 & 
Qingchen Zhang1

In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous 
media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states 
of a large number of discrete particles. By choosing different relaxation times in LBM experiments 
and using spectrum ratio method, we can reveal the relationship between the quality factor Q and 
the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are 
tested in the numerical experiments, and the LBM results are compared against the reference solution 
of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method 
(FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which 
demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple 
and efficient to implement compared with the traditional lattice methods. In addition, through a mass 
of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a 
novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to 
describe the underground media.

Since the 1960s, diverse numerical methods, such as finite difference method (FDM)1, 2, finite element method 
(FEM)3, 4 and pseudo-spectral method (PSM)5, 6, have been applied in seismology. These methods provide direct 
solutions of the macroscopic continuum equations, i.e., the Navier-Stokes equations or the wave equations, there-
fore, the solutions are restricted by the preconditions of the macroscopic equations.

Another series of discrete methods named lattice Boltzmann methods (LBM) have been shown to be effective 
in modelling seismic wave propagation through tracking the moving states of the discrete particles at the micro-
scopic level. Originated from the lattice gas automata (LGA)7, 8, LBM has been widely used in computational fluid 
dynamics (CFD)9.

Margolus et al.10 are the pioneers who applied LGA to simulate acoustic wave propagation in the 
two-dimensional (2D) homogeneous fluid medium. After that, LGA was employed to model seismic P-waves in 
2D homogeneous11 and heterogeneous media12. Although LGA is unconditionally stable and has no round-off 
error, such a forward modelling scheme suffers from statistical noise and is hard to simulate wave propagation in 
complex media. McNamara and Zanetti13 presented an alternative technique named LBM to model the lattice gas 
with a Boltzmann equation, which eliminates the statistical noise in LGA.

Mora and his co-workers improved LBM by introducing phonon into the original LBM, and they called this 
new scheme as phononic lattice solid (PLS)14–17. Their work was a bold attempt and they really developed a prom-
ising theory, however, the computation was a little bit time-consuming because of the complex collision term. 
Fortunately, a simplified LBM equation with one relaxation time in the collision term was soon developed18–20, 
and this simplified model was referred as LBM-BGK.

As the LBM-BGK model is relatively simple to implement and has a high computational efficiency, a lot of 
experts from various research areas have been keeping their eyes on such a new scheme. Apart from the appli-
cations in CFD, LBM was used in the simulation of different types of waves, such as shock wave21, 22, acoustic 
wave23–26, aeroacoustic wave27, acoustic streaming28, 29, elastic waves30, 31, and so on.
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In this paper, a novel scheme based on the discrete lattice Boltzmann equation with a single relaxation time is 
adopted to simulate viscoacoustic wave propagation. A preliminary relationship between the relaxation time (τ) 
in lattice Boltzmann equation and quality factor (Q) in viscoacoutic equation is found and verified through vast 
numerical experiments. We should keep in mind that Q for the Kelvin-Voigt model is frequency dependent, but 
the Q value shown in this paper is a constant which corresponds to the point when the reference frequency is cho-
sen as the dominant frequency of the seismic source. The relationship between Q and relaxation time presented 
in this paper would help us capturing the wave propagation phenomenon as well as interpreting the attenuation 
of wave propagation in complex viscous media.

Results
Homogeneous model.  In numerical experiments, we use the lattice Boltzmann equation with only one 
relaxation time (τ), and τ is related to the viscosity of the media30, which means the wavefields obtained by LBM 
contain viscous effects. To investigate the influence of the viscosity on the wavefields, we contrast the acoustic 
wavefield without considering viscosity to those simulated by LBM with different relaxation times. For simplicity, 
we set a 2D homogeneous model with discrete grids of 401 × 401. The spatial intervals are Δx = Δz = 1.0 m, time 
interval is Δt = 0.5 ms. P-wave velocity is 1,155 m/s and density is 1,000 kg/m3. The dynamic evolution of LBM 
is carried out in the dimensionless lattice space and time domain, and some of the above parameters are trans-
formed into lattice units in our numerical experiments30, 32. A Ricker wavelet source33 with a dominant frequency 
of 50 Hz is imposed on the middle point of the discrete model. Three different relaxation times of 0.51, 0.70 and 
0.90 are used in LBM simulations, and the acoustic wavefields calculated by FDM with similar model parameters 
are shown for comparison. The resultant snapshots by FDM and LBM are shown in Fig. 1a. To further depict 
the difference of the wavefields calculated by FDM and LBM, the seismic traces at (121 m, 121 m) are shown in 
Fig. 1b.

It is noticed from Fig. 1a and b that the amplitude and phase vary as the relaxation time varies. More accu-
rately, the amplitude of the wavefield calculated by LBM declines with the rises of the relaxation time. When the 
relaxation time is approaching 0.5, the computed snapshot obtained by LBM is almost the same as the acoustic 
result by FDM; when the relaxation time is approaching 1.0, the wavefields suffer from visible attenuation, great 
amplitude decrease and slight phase dispersion. Such a conclusion is further confirmed by the amplitude spectra 
of seismic traces obtained by LBM and acoustic FDM in Fig. 1c, from which we can see the peak frequencies, 
at which the amplitude of the spectrum is the maximum, corresponding to the results by LBM are lower than 
the result by acoustic FDM. Additionally, the peak frequency and amplitude of the spectrum decrease with the 
increase of the relaxation time of LBM. That is to say the wavefields calculated by LBM contain viscoacoustic 
effects.

Figure 1.  Snapshots (a), seismic traces (b) and the corresponding amplitude spectra (c) obtained by acoustic 
FDM and LBM with τ = 0.51, LBM with τ = 0.70, and LBM with τ = 0.90.
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A parameter which is frequently used to describe the attenuation of media is Q value34, which is defined as the 
ratio of the total energy in a system to the energy lost per cycle. We want to find out the relationship between the 
relaxation time in LBM and Q. By fixing the Q value in Kelvin-Voigt FDM35, 36, then slowly changing the value of 
τ, and comparing the wavefields, seismic traces as well as the amplitude spectra corresponding to the traces calcu-
lated by LBM and FDM, we find that the two parameters of Q and τ do have a relationship. For example, when the 
relaxation time is chosen as 0.70, the wavefront calculated by LBM is very similar with that by FDM with Q = 16. 
Another case is for the relaxation time of τ = 0.51, whose wavefield is similar to the result by acoustic FDM, i.e., 
Q value is very large. The results for the above two cases are shown in Fig. 2a and b, and the corresponding ampli-
tude spectra of the seismic traces are shown in Fig. 2c.

Based on Fig. 2a and b, we can see the snapshot by LBM with the relaxation time of 0.70 is almost the same 
as the wavefield by FDM with Q = 16, their amplitudes as well as phases are hard to distinguish. On the other 
hand, when the relaxation time is close to the limiting value of 0.50, the simulation results by LBM can roughly 
reproduce the wavefield by acoustic FDM. This phenomenon of the two cases is further verified by the amplitude 
spectra shown in Fig. 2c, in which the curve by LBM with τ = 0.70 overlaps that by FDM with Q = 16. Meanwhile, 
the amplitude spectrum by LBM with τ = 0.51 is in close proximity to the case of acoustic wave by FDM. The sim-
ilarity implies that the relaxation time do have a relationship with the quality factor. To investigate the quantitative 
relationship between them, we have conducted numerous experiments with different cases of time intervals and 
dominant frequencies, and found similar sets of Q and τ among which six groups of Q and τ are listed in Table 1.

Layered model.  As described in the previous section, we have built a model between the relaxation time 
and the quality factor. Now, we use a two-layer model with different velocities, Q and relaxation times to validate 
the relationship. The model is shown in Fig. 3, in which the P-wave velocities of the upper and lower layers are 
1,155 m/s and 2,310 m/s, respectively. The discrete grids are 401 × 401, and the spatial intervals along the hori-
zontal and vertical directions are both 1.0 m. The interface is located at 201 m in depth and the source coordinate 
is (201 m, 151 m). In this experiment, the wavefields by LBM with τ1 = 0.70, τ2 = 0.58 and FDM with Q1 = 16, 
Q2 = 38 for the upper and lower layers are obtained for comparison. The numerical simulation results are shown 
in Figs 4 and 5. Fig. 4 depicts the snapshots of P, Vx and Vz obtained by both LBM and FDM. One can see from 
the figure that the direct waves, reflected waves and transmitted waves calculated by LBM are almost the same as 
those by FDM. Furthermore, we extract wave profiles at 150 m offset and 250 m depth from the results by both 
LBM and FDM, and show them in Fig. 5. According to Figs 4 and 5, one can find that the wavefields by LBM 
coincide with those by FDM.

Of course, to produce the same wavefield by the two schemes of LBM and FDM, any set of relaxation time and 
quality factor can be found easily through the relationship given by Eq. 1 in the next subsection of “Relationship 
between Q and τ”.

Figure 2.  Snapshots (a), seismic traces (b) and the corresponding amplitude spectra (c) obtained by acoustic 
FDM, viscoacoustic FDM (Q = 16), and LBM with τ = 0.51 and τ = 0.70.
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Relationship between Q and τ.  Based on the data listed in Table 1, we build a cross-plot of relaxation time 
and the quality factor in Fig. 6 that the two variables should have a unique relationship. We find the following 
function to fit it,

τ
τ

=
+

∆ − .
Q a b

f t( 0 5)
,

(1)m

where fm is the dominant frequency of the source, Δt is the time interval used in the simulation, a = 0.0192 and 
b = 0.0669 are two constants. The confidence bounds for a and b are (−0.0426, 0.0810) and (0.0354, 0.0984), 
respectively. We need emphasize that the Q value in Eq. 1 is the quality factor corresponding to the case when the 
reference frequency is chosen as the dominant frequency of the seismic source, it is not a frequency dependent 
value, but Q is a fixed value once we know the dominant frequency of the source.

Fig. 6a shows the case of fixed time interval of 0.5 ms, in which the sample data for the dominant frequencies 
of 25 Hz, 50 Hz and 75 Hz are shown by red squares, blue circles and green stars, and the corresponding fitting 
curves are shown by the solid lines, respectively. Fig. 6b shows the case of fixed dominant frequency of 50 Hz, the 
sample data and the fitting curves for the time intervals of 0.25 ms, 0.50 ms and 1.00 ms are indicated by stars, 
circles and squares, and the corresponding fitting curves are shown by the solid lines. Obviously, the sample data 
drawn according to the data in Table 1 fit very well with the solid lines given by Eq. 1. The maximum total relative 
error between the predicted Q values calculated by the fitting function and the actual Q values is 0.08%. In order 
to verify the correctness of Eq. 1, numerical experiments of a two-layered model are conducted as shown in the 
previous subsection of “Layered model”.

Δt, fm    τ 0.505 0.51 0.515 0.52 0.53 0.54 0.55 0.58 0.60 0.65 0.70 0.75 0.80 0.90

0.50 ms, 
25 Hz 1200 630 424 318 206 150 122 76 62 42 32 26 22 19

0.50 ms, 
50 Hz 600 300 207 158 103 75 59 38 31 21 16 13 10 8

0.50 ms, 
75 Hz 410 212 142 106 62 50 39 25 20 14 11 9 7.5 6

0.25 ms, 
50 Hz 1273 636 420 318 206 150 122 76 62 42 32 26 22 19

0.50 ms, 
50 Hz 600 300 207 158 103 75 59 38 31 21 16 13 10 8

1.00 ms, 
50 Hz 305 150 106 79 49 37 29 19 15.5 10.5 8 6.5 5.5 4.5

Table 1.  The relaxation time τ, and its equivalent quality factor Q for different cases of time interval Δt and 
dominant frequency fm.

Figure 3.  Diagram of the layered model.
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Discussions
Based on the numerical experiments of the homogeneous and layered models, we can see that the lattice 
Boltzmann equation with one relaxation time can be used to model viscoacoustic wave propagation in viscous 
media. Therefore, a new scheme different from the traditional FDM is offered to simulate the viscoelastic waves. 
Since such a novel scheme is not based on the conventional wave equations, vast numerical experiments are car-
ried out to test its correctness and effectiveness. In this process, we acquire different relaxation time in LBM sim-
ulation and compare the resultant wavefields with those given by viscoacoustic FDM with different values of Q.

By comparing the wavefields and their amplitude spectra, we find a relationship between the relaxation time 
and Q as expressed in Eq. 1. We can learn from this equation as well as the curves in Fig. 6 that once the time 
interval and the dominant frequency are chosen, Q decreases with the relaxation time, and more importantly, 
when the relaxation time approaches to 0.50, Q reaches infinity, which corresponds to the acoustic wave prop-
agation case. On the other hand, when the relaxation time increases, Q decreases fast and approaches to zero, 
but could not be equal to zero. A large relaxation time means the resultant LBM wavefields suffer from serious 
attenuation and dispersion. The results also demonstrate that LBM can be used to capture wave propagating in the 
earth accompanies with amplitude attenuation and phase dispersion. As some realistic media may contain fluid 

Figure 4.  Snapshots of P (a) and (b), Vx (c) and (d), Vz (e) and (f) calculated by LBM (left column) and FDM 
(right column) for the layered model.
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with different components, which are hard to be depicted with the traditional viscoacoustic models, while LBM 
scheme is suitable to simulate wave propagation in multiphase media, so it is meaningful to develop such a novel 
scheme to help us further understanding wave propagation in complex media.

LBM is a discrete method used for describing the wavefield evolution at the micro-level, which is independent 
of the traditional wave equations. The relationship between the characterization parameter of LBM and Q has 
been proved. Numerical experiments have demonstrated the fact that LBM is suitable for simulating seismic 
P-wave in viscous media, and the impact of viscosity on amplitude and phase is discussed. With further devel-
opment, LBM could be an effective tool for modelling seismic waves in heterogeneous viscoelastic media and 
can serve as an alternative forward modelling kernel for seismic inversion and migration. Though the above 
experiments are all conducted in 2D space with the D2Q9 model, the simulation can be easily extended to 3D 
case with the D3Q19 model. Besides, the work in this paper is focused on the single-relaxation time case, and one 
can develop the model by adopting the multiple-relaxation time LBM37 to depict the viscous effects which are 
different from the Kelvin-Voigt model, but such work is beyond the scope of this paper.

Figure 5.  Profiles of wavefields obtained by LBM (dashed line) and FDM (solid line) for the layered model. The 
left, middle and right columns represent P, Vx, and Vz, respectively. The top row stands for the wave profiles at 
x = 150 m, and bottom row stands for the wave profiles at z = 150 m.

Figure 6.  Relationship between quality factor Q and relaxation time τ with (a) the fixed time interval of 0.5 ms, 
and (b) the fixed dominant frequency of 50 Hz.
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Methods
LBM uses real numbers instead of bits to represent particle distributions, and is an extension of LGA18. In LBM, 
space is discretized by a three-dimensional cubic lattice, time and the velocity discretized as well. The fluid media 
can be characterized by a single particle velocity distribution function ≡ = f t f t i qx x c( , ) ( , , ), 1, 2, ,i i i , 
describing the mass density of fluid particles with velocity ci at a lattice node x and at time t. The widely adopted 
notation for LBM is DdQq, where D stands for space dimension and Q for the number of discrete velocities20. The 
most commonly used models are D2Q7, D2Q9, D3Q15 and D3Q19. Here, some details on D2Q9 (Fig. 7a) 
and D3Q19 (Fig. 7b) are listed. For the case that the spatial interval Δx and temporal interval Δt are both equal 
to 1, 9 velocities of D2Q9 are denoted as

= =


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± ± =
± ± =
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where n is the number of grids particles jumping within the time step of Δt, ei are the basic lattice vectors. The 
discrete velocities and weights for D3Q19 are
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The simulation of wave propagation using LBM mainly contains two processes. The first one is the propaga-
tion of fluid particles to adjacent lattice sites (the streaming step), and the second one is collisions among particles 
when they reach a site at the same time (the collision step). The streaming step is

+ + = ′f t f tx c x( , 1) ( , ), (6a)i i i

and the collision step is

τ
′ = − −f t f t f t f tx x x x( , ) ( , ) 1 [ ( , ) ( , )], (6b)i i i i

eq( )

Figure 7.  Sketch maps for the LBM discrete models of (a) D2Q9, and (b) D3Q19.
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Combining these two steps, the lattice Boltzmann equation20, which controls the evolution of the particle 
distribution function, can be denoted as

f t f t f t f tx c x x x( , 1) ( , ) 1 [ ( , ) ( , )], (7)i i i i i
eq( )

τ
+ + = − −

where f tx( , )i
eq( )  is the equilibrium distribution and τ is a relaxation time32, which is related to the viscosity of the 

media as τ= − .v c ( 0 5)s
2 . For the DdQq models in Cartesian coordinate system, the equilibrium distribution20 

can be expressed as

f w
c c c

c u c u u1 1 ( ) 1
2

( ) 1
2

,
(8)i

eq
i

s
i

s
i

s

( )
2 4

2
2

2ρ=




 + ⋅ + ⋅ − | |







where cs is the lattice speed of sound and equals to 1/ 3  for D2Q9 and D3Q19, wi is the weighting factor which 
ensures that the lattices satisfy certain symmetrical properties necessary for isotropic behavior, ρ and u are the 
fluid density and velocity at the macroscopic level, respectively. ρ and u can be calculated by

f ,
(9a)i

i∑ρ =

f
n

u
c

,
(9b)

i i i

ρ
=

∑

Eqs 9a and 9b links the microscopic parameters of LBM with the wavefield variables at the macroscopic level. 
As the viscoacoustic wave equation of the Kelvin-Voigt model can be deduced from the original Navier-Stokes 
equation34, and LBM is an effective discrete scheme of the Navier-Stokes equation20, so it is reasonable to match 
the wavefields by LBM with those by FDM.
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