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Disrupted topological organization 
of structural brain networks in 
childhood absence epilepsy
Wenchao Qiu1, Chuanyong Yu2, Yuan Gao2, Ailiang Miao2, Lu Tang2, Shuyang Huang2, 
Wenwen Jiang2, Jintao Sun2, Jing Xiang3 & Xiaoshan Wang2

Childhood absence epilepsy (CAE) is the most common paediatric epilepsy syndrome and is 
characterized by frequent and transient impairment of consciousness. In this study, we explored 
structural brain network alterations in CAE and their association with clinical characteristics. A 
whole-brain structural network was constructed for each participant based on diffusion-weighted 
MRI and probabilistic tractography. The topological metrics were then evaluated. For the first time, 
we uncovered modular topology in CAE patients that was similar to healthy controls. However, 
the strength, efficiency and small-world properties of the structural network in CAE were seriously 
damaged. At the whole brain level, decreased strength, global efficiency, local efficiency, clustering 
coefficient, normalized clustering coefficient and small-worldness values of the network were detected 
in CAE, while the values of characteristic path length and normalized characteristic path length were 
abnormally increased. At the regional level, especially the prominent regions of the bilateral precuneus 
showed reduced nodal efficiency, and the reduction of efficiency was significantly correlated with 
disease duration. The current results demonstrate significant alterations of structural networks in CAE 
patients, and the impairments tend to grow worse over time. Our findings may provide a new way to 
understand the pathophysiological mechanism of CAE.

Childhood absence epilepsy (CAE) is a childhood epilepsy syndrome occurring in 10–17% of all childhood onset 
epilepsy, making it the most common epilepsy syndrome in school-aged children1. In the ILAE definition, CAE is 
characterized by frequent and transient impairment of consciousness (with abrupt onset and offset) and accom-
panied with bilateral, symmetrical, and synchronous discharges of 3 Hz generalized spike-and-waves on elec-
troencephalography (EEG)2. Although labelled “benign”, a broad spectrum of comorbidities, such as cognitive, 
behavioural and emotional disorders as well as linguistic deficits have been reported in CAE3–5. Moreover, the 
latest report from the Childhood Absence Epilepsy Study Group even showed obesity and overweight as CAE 
comorbidities6. All these comorbidities and the epilepsy itself can seriously affect children’s lives, making it of 
great importance to pay more attention to this disorder.

The human brain has been confirmed to be a large-scale complex network7,8. Recently, an increasing number 
of brain analyses based on modern brain mapping techniques (especially, fMRI) have indicated that CAE might 
be a disorder of brain networks that are crucial for spike-and-wave discharge (SWD) generation and propagation 
rather than some isolated brain areas9–11. Abnormal functional networks have been uncovered in CAE based 
on fMRI, such as the attention network12,13 and the salience network14. Moreover, the combination of fMRI and 
graph theoretical analysis provides an optimal approach to quantifying topological and organizational proper-
ties of complex networks in brain disorders15,16. Indeed, an adaptive reconfiguration of whole-brain functional 
network topology has been observed during absence seizure using graph theoretical analysis10. In graph theory, 
a graph G is defined by a set of nodes and edges, where nodes represent the brain regions and edges represent 
connections between these regions. Despite these advances in research, the structural basis underlying these 
functional networks of CAE was poorly understood.

Diffusion tensor imaging (DTI) is a non-invasive technique that can be used to explore structural characteris-
tics of brain networks17, and Xue et al. tried to investigate the whole brain structural network of CAE by parcelling 
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the brain into 90 regions based on an automated anatomical labelling (AAL) atlas18,19. Indeed, altered whole-brain 
structural network topology (e.g., decreased strength, clustering coefficient and efficiency and increased char-
acteristic path length) and impaired sub-networks in sub-cortical and orbitofrontal structures were found in 
their study. Unfortunately, that remains the only study concerning the topological architecture of structural brain 
networks of CAE at present, and the fibre assignment by continuous tracking (FACT) algorithm, employed in 
their study during the process of network construction, was still under heavy debate regarding the fibre-crossing 
problem within per-voxel. In addition, it still remains unclear as to whether altered topological organization of 
modular and hub distribution of structural brain networks exists in CAE, which has been suggested to be highly 
associated with brain dysfunction in other epilepsies20,21. Another DTI study concerning CAE also observed some 
microstructural changes22. However, they only explored alterations of the genu of the corpus callosum without 
further investigation of the whole brain network.

In the current study, we used diffusion probabilistic tractography23 and graph theoretical analysis to examine 
the topological characteristic of structural networks in CAE compared with age- and gender-matched healthy 
controls. Previous studies have suggested that structural connections are highly mirrored by and place constraints 
on functional interactions across brain networks24,25. Accordingly, we expected to confirm a disrupted structural 
network in CAE as revealed by the previous research18. Moreover, a further exploration of hub and modular 
topology was conducted in the present study. Specifically, we focused on the differences of network efficiency, 
modularity and small-worldness between two groups at the global level. At the regional level, we mainly focused 
on the distribution of hubs identified by nodal efficiency, which is a direct index reflecting the connectivity 
between a certain node and all the other nodes. In addition, correlations between network metrics and clinical 
characteristics were performed.

Results
Network strength, efficiency and small-world properties. As shown in Fig. 1, CAE patients are 
found to have decreased strength, Eglob, Eloc, CP, γ and σ and increased LP and λ when compared to controls. The 
between-group differences of these network properties are statistically significant at both the single threshold 
level and integrated level (Fig. 1). For details, differences of network parameters at all thresholds from 0.01 to 

Figure 1. Differences of network metrics between CAE patients and healthy controls (CON). (A) Shows the 
group differences under different thresholds; significant between-group differences are indicated by an asterisk 
above the corresponding threshold at p < 0.05 with Bonferroni correction. (B) Displays the group differences at 
integrated level (**p < 0.05). The error bar indicates standard deviation.
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0.03 are presented in Fig. 1A (p < 0.05, Bonferroni correction), and differences of integrated values of network 
parameters are displayed in Fig. 1B.

Network modularity. The structural brain networks of both patients and controls have a modular commu-
nity structure (see Supplementary Table S2 for details). The modularity and number of modules of all participants 
are shown in Fig. 2A. Although a lower number of modules and modularity index are seen in the CAE patients 
compared with controls at all thresholds, all these between-group differences are not statistically significant. 
Figure 2B shows a 3D representation of the modular configurations of the average network of each group, and the 
modular distributions of CAE and controls seem relatively similar.

Hubs. Hub distributions in patients and controls can be seen in Fig. 3A. The definition of hub follows the cri-
terion of > +E i mean SD( )nodal  (for details, please see Supplementary materials). We found that hubs for CAE 
and controls are relatively similar. The nodes of bilateral precuneus, bilateral median cingulate and paracingulate 
gyri, bilateral cuneus, bilateral posterior cingulate gyrus, right supplementary motor area, left superior occipital 
gyrus and left inferior parietal gyrus are identified as hubs for both patients and controls. A further analysis of the 
bilateral precuneus was performed since it got the maximum nodal efficiency among all 90 nodes in both groups 
(Supplementary Fig. S1). Figure 3B shows that the AUC of nodal efficiency of the bilateral precuneus is obviously 
decreased in CAE compared with controls. Correlation analysis between integrated Enodal and clinical data (dis-
ease duration and seizure frequency) shows a significant correlation between the integrated Enodal of the bilateral 
precuneus and disease duration (Fig. 3C), while no significant correlation was detected between the integrated 
Enodal of the bilateral precuneus and seizure frequency (Supplementary Fig. S2).

Discussion
To the best of our knowledge, this is the first study to explore topological alterations of structural networks in 
CAE patients using probabilistic tractography and graph theory. We have discovered statistically significant dif-
ferences in network patterns between CAE and controls. Strength, Eglob, Eloc, CP, γ and σ are significantly reduced 
in patients compared with controls, while LP and λ are increased in CAE. Module and hub distributions are rela-
tively similar between the groups.

Figure 2. Modular topology of the structural network of CAE patients and healthy controls (CON). (A) 
Number of modules and brain network modularity in CAE and CON under different thresholds. No 
significant difference is detected between the two groups. The error bar indicates standard deviation. (B) 3D 
representations of modular topology are visualized on the average structural network of each group. The nodes 
are colour-coded by modules.
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The decrease of network strength, global efficiency and local efficiency detected in our study indicates a 
sparser or less efficient network in CAE. This weakness shift of the brain networks in CAE has been consistently 
reported in a previous study18.

The ‘small-world’ organization network is featured by a combination of high CP and short LP, corresponding to 
an intermediate state between that of random and regular networks26. Originally detected in social networks, the 
small-world property has been extensively reported in human brain networks in either health or disease27. In this 
paper, small-world topology is revealed in both groups with their small-worldness index σ following the criterion 

Figure 3. (A) Distribution of hubs in CAE and healthy controls (CON). For abbreviations of the regions, please 
see Supplementary Table S1. (B) Significant group difference in integrated Enodal of bilateral precuneus (left and 
right, respectively) (**p < 0.05). (C) Relationship between disease duration and integrated Enodal of bilateral 
precuneus in the patient group. Significantly negative correlations are revealed for both sides.
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(σ > 1) under all thresholds28. However, in contrast to Xue et al.18, a further discovery observed in our study is 
that small-world metrics (including γ, λ and σ) differed significantly. This discrepancy might be attributed to the 
different tractography algorithm as mentioned in the Introduction section and some other factors (e.g., the data 
themselves). Specifically, σ is an integrated measure that quantifies small-world networks28, and a lower value of σ 
indicates damage to small-world topology in CAE patients. The normalized clustering coefficient (γ), defined as 
the ratio of the clustering coefficient of the real network to that of matched random networks, is a good estimation 
of local network segregation. The lower γ implies decreased segregation and a weaker local information process-
ing capacity, which can also be reflected by reduced local efficiency as discussed above. Compared to healthy 
controls, patients with CAE exhibit reduced γ and σ, suggesting that the network configuration shifts towards a 
random network organization. Nevertheless, the value of λ, defined as the ratio of the characteristic path length 
of the real network to that of matched random networks, is significantly increased, indicating less efficiency 
and higher cost of message transmission along the global network of CAE. This alteration is in the opposite of a 
randomization shift of a network because a random network is characterized by both low CP and short LP. There 
is currently no reasonable explanation for this inconsistency, and thus some further studies on this topic are 
advisable. Considering the possible effects of normalization on the significance of our results, we also compared 
the non-normalized form of the above two properties (namely, LP and CP) between groups, and their results agree 
well with the properties after normalization (namely, γ and λ).

Modularity is a frequently used measure of complex networks29. Although, numerous fMRI studies have con-
firmed the existence of modular organization in the human brain30,31, no studies have specifically focused on the 
modularity of CAE patients. Our research reports the presence of modular structure in patients with absence 
epilepsy for the first time. The modularity index and number of modules of CAE detected in our study exhibit 
a reduction tendency compared with healthy controls. However, this trend is not statistically significant, and it 
might be contributing to slight reorganization of modular structure without causing obvious alterations.

In our research, CAE patients and healthy controls demonstrate relatively similar patterns of hub distribu-
tion, mainly located in the midline structure of the brain for both groups (Fig. 3A). In brain networks, regions 
with high levels of centrality can be identified as network hubs using various graph measures (e.g., nodal degree, 
betweenness and efficiency)32. For this study, nodal efficiency is employed, which scales the average shortest path 
length between the given node and all the other nodes in the network33. The nodal efficiency of 90 brain regions 
according to the AAL atlas is shown in Supplementary Figure S1, and the hub regions are highlighted. Among all 
the hub nodes, the prominent structural role of the PCUN deserves particular note. It is involved in the process 
of visuospatial imagery and episodic memory retrieval34. Moreover, a clinical review has confirmed that deactiva-
tion of the PCUN is associated with loss of consciousness35, which is the typical feature of absence seizure. In our 
study, reduced nodal efficiency of the bilateral PCUN is detected in CAE (Fig. 3B), providing a structural basis for 
PCUN dysfunctions in absence epilepsy revealed by fMRI36,37 and high-frequency magnetoencephalography38. 
In addition, correlation analysis shows a significantly negative correlation between disease duration and PCUN 
nodal efficiency for both sides (Fig. 3C) that predicts the longer the duration, the worse the impairment. Even 
though whether the structural-functional impairments are reasons or consequences of absence seizure remains 
unknown so far, we tentatively support the hypothesis that impairments may be the result of long-term and 
reiterative epileptic discharges or at least aggravated by chronic absence seizure. Moreover, the alterations of the 
PCUN further confirm the vulnerability of hub nodes in brain diseases39. However, no obvious correlation is 
observed between PCUN nodal efficiency and seizure frequency (Supplementary Fig. S2). The first explanation 
for this phenomenon can be attributed to the interictal discharges that certainly affect the brain’s topology without 
arousing clinical seizure. Additionally, missing records should be taken into account as typical absence seizure 
is characterized by transient loss of consciousness unlike tonic-clonic seizures, and many absence seizures often 
occur during sleep. Furthermore, the PCUN is a core area in the default mode network (DMN)40, and damage to 
the PCUN may suggest involvement of the DMN in the neuro-pathophysiological mechanism of CAE, which has 
been widely discussed in other diseases41,42.

Limitations. Although our methodology yields promising results, there are several methodological issues 
in our case. First, the probabilistic tractography used in our study has shown advantages in solving the problem 
of fibre crossing23, but it also leads to a new problem of spurious connections that do not exist in the real brain 
network at the same time. Even with a suggested a thresholding procedure43, we may also miss some biological 
connections or include spurious connections for there is currently no definitive way to select thresholds. Second, 
there has been no consensus on the definition of edge weight in DTI network analysis. In addition to the con-
nectivity probability, both the average FA of all the voxels along the fibres connecting two regions and the fibre 
number connecting two regions have been widely employed as the weight of an edge44–46. The various definitions 
of network weight may dramatically affect the precision of calculating network properties. Hence, a further study 
concerning CAE with comparisons among different definitions of network weight is necessary. The third issue 
relates to the variance of antiepileptic drugs in our study, which may somehow disturb the results. For instance, 
valproic acid, which is one of the most common treatments for CAE, has been concluded to be associated with 
cerebral atrophy in some studies47,48. Finally, although a broad spectrum of cognitive and emotional comorbidi-
ties have been reported in children suffering from absence epilepsy5, we did not include neuropsychological test 
scores of CAE in this study, which will be assessed in subsequent work.

Conclusions
In conclusion, we use probabilistic tractography and graph theory to demonstrate that CAE patients display 
prominent small-world properties close to that of the brain network of healthy controls, uncovering the existence 
of modular topology in CAE patients for the first time. More importantly, our results provide experimental sup-
port for the impaired organization of structural brain networks in CAE, especially in the prominent regions of the 
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bilateral precuneus, the nodal efficiency of which is significantly correlated with disease duration. The topological 
reconfiguration of structural networks may not only offer further support for dysfunctions in fMRI studies but 
also contribute to reveal the pathophysiological mechanism of CAE.

Material and Methods
Subjects. We recruited 21 patients (8 M/13 F, age range from 5 to 11 years old with mean and standard devi-
ation of 8.05 ± 1.99) and 24 age-and gender-matched healthy controls (11 M/13 F, age range from 5 to 12 years 
old with mean and standard deviation of 7.63 ± 2.12). There is no significant difference in age (p = 0.50, t-test) or 
gender (p = 0.76, chi-square test) between the two groups (see Table 1 for details). All participants in our study 
are right-handed. CAE was diagnosed according to the guidelines provided by the International League Against 
Epilepsy2. Patients were selected based on the following criteria: (1) routine video-EEG showing symmetric and 
synchronous generalized SWDs at approximately 3 Hz accompanied by clinical absence seizure; (2) normal neu-
rological and general physical examination; (3) normal structural imaging at 3.0 T MRI scanner.

This study was approved by the ethical boards of Nanjing Medical University. Written informed consent was 
obtained from the parents of each of the children participating in the research.

Image acquisition. All MRI data were acquired on a Siemens 3.0 T scanner (Erlangen, Germany). Diffusion 
weighted images were acquired using a single-shot echo planar imaging sequence with the following parameters: 
45 axial slices; slice thickness = 3 mm with no gap; repetition time (TR) = 6600 ms; echo time (TE) = 93 ms; 30 
diffusion directions with b = 1000 s/mm2; and an additional image without diffusion weighting (b = 0 s/mm2); 
acquisition matrix = 128 × 128; field of view (FOV) = 240 × 240 mm2. For the process of segmentation and regis-
tration, high-resolution T1-weighted MRI was also obtained using a three-dimensional rapid acquisition gradient 
echo sequence with the following parameters: 176 sagittal slices; slice thickness = 1 mm; TR = 1900 ms; TE = 2.48 
ms; flip angle = 9°; acquisition matrix = 512 × 512, FOV = 250 × 250 mm2.

To minimize head motion, participants were instructed to lie down in the supine position with their head 
restrained by foam pads during scanning.

Data processing and network construction. Processing and analysis of the DTI data were performed 
in FSL (FSL 4.1, FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The preprocessing procedure included 
eddy-current and head-motion correction. To address concerns about potential confounding effects of head 
motion on diffusion metrics, a single value, the total motion index (TMI)49 was calculated, and no significant 
difference in TMI between CAE patients ([mean ± SD]: 0.407 ± 1.199) and healthy controls ([mean ± SD]: 
0.252 ± 0.980) (p = 0.637) was detected. After fitting a tensor model to the diffusion-weighted images tensor, 
voxel-wise measures of fractional anisotropy (FA) images were calculated. All these steps were done using 
FMRIB’s Diffusion Toolbox. In addition, non-brain tissues were extracted using the Brain Extraction Toolbox 
(BET) implemented in FSL50. Then, a network composed of 90 nodes and a quantity of edges linking these nodes 
for each subject was constructed following the workflow in Fig. 4, including brain parcellation (Fig. 4A) and a 

Subjects ID Sex Age (y)
Disease 
duration (m)

Frequency of 
seizure (times/d)

AED 
treatment

Frequency of 
SWDs (Hz)

1 M 10 20 7 VPA 2–3

2 M 8 4 4 VPA 2.5–3

3 M 7 7 10 None 3

4 F 9 9 6 LEV 3

5 M 8 5 16 VPA 3–3.5

6 F 7 5 6 VPA 3

7 F 9 6 1 None 2–3

8 M 6 4 5 VPA 3

9 F 7 4 14 VPA 3

10 F 9 10 3 LEV 3

11 M 5 5 7 VPA 3

12 F 8 18 3 None 3–3.2

13 M 10 9 5 LEV 3

14 M 11 15 16 VPA, LEV 3

15 M 8 10 4 VPA 2.5–3

16 F 9 11 4 LEV 3

17 M 9 11 6 VPA 2.5–3.5

18 F 6 2 13 LEV 3

19 F 11 20 9 None 2.5–3.5

20 F 10 2 15 LEV 3

21 F 6 3 9 VPA 3

Table 1. Demographic and clinical data of patients. M = male; F = female; d = day; m = months; y = years; 
AED = antiepileptic drug; LEV = levetiracetam; VPA = valproic acid; SWDs = spike wave discharges.

http://www.fmrib.ox.ac.uk/fsl
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connectivity matrix resulting from probabilistic tractography (Fig. 4B). Finally, a 3D visualization of the network 
was rendered in Fig. 4C.

Brain parcellation and network node definition. To avoid bias from subjective judgements regarding 
anatomical correspondences, the Automated Anatomical Labelling (AAL) atlas19 was used for network node 
definition. First, T1-weighted images were co-registered to the b0 images in DTI space using a linear transforma-
tion. Next, the co-registered T1-weighted image was normalized to the T1 template in MNI space. Finally, inverse 
transformations were applied to warp the AAL atlas from the MNI space to the native diffusion space. Of note, 
discrete labelling values were preserved by the use of a nearest-neighbour interpolation method. All the works 
above were completed using SPM12 (Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/) running in MATLAB R2012b (Math Works, Natick, MA, USA). As a result, 90 cortical and subcortical 
regions (45 for each hemisphere), each of which represented a network node in graph theory, were obtained.

DTI tractography and network edge definition. Probabilistic fibre tracking was performed in native 
space using the FSL Diffusion Toolbox (FDT) as in previous studies43,51. For each defined node, the connectivity 
probability to each of the other 89 nodes was computed. As a result, a 90 × 90 network matrix N was generated, 
for element Nij means the connectivity probability from node i to node j. However, because of the tractography’s 
dependence on the seeding location, the probability from i to j did not exactly equal that from j to i. Therefore, 
we averaged the connectivity probability from i to j with that from j to i, and defined the average connectivity 
probability as the connection weight between node i and j, wij = (Nij + Nji)/2. Then, we got a symmetrical 90 × 90 
connection matrix, and a weighted network was also constructed for each individual participant.

Network properties. A brain network can be regarded as a graph G that consists of a set of nodes and a set 
of edges connecting these nodes15. For complex networks, the strength, global efficiency (Eglob), local efficiency 

Figure 4. Flowchart for brain network construction. Data from a typical healthy control is used to demonstrate 
the process of construction. (A) Raw high-resolution T1-weighted MRI and DTI images in native space and 
automated anatomical labelling (AAL) atlas in MNI space. (B) The connectivity matrix is built up according 
to the probabilistic tractography algorithm after the process of parcellation and normalization. (C) 3D 
visualization of the weighted network is rendered using BrainNet Viewer (BrainNet Viewer 1.53, Beijing 
Normal University, http://www.nitrc.org/projects/bnv/)55. The edges are encoded with their connection weights 
at the threshold of 0.01.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.nitrc.org/projects/bnv/
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(Eloc), clustering coefficient (CP), characteristic path length (LP), normalized clustering coefficient (γ), normalized 
characteristic path length (λ), small-worldness (σ), modularity of the network and nodal efficiency (Enodal) are 
commonly used metrics in network topological analyses. Brief descriptions of these parameters are addressed 
in Supplementary materials, and the mathematical definitions can be found in a previous study52. After acquir-
ing the weighted matrix of a network, these properties can be directly calculated with the Brain Connectivity 
Toolbox52 in MATLAB R2012b. It should be noted that there is currently no criterion for selecting a single thresh-
old to construct structural brain networks. For this reason, the individual weighted matrices were repeatedly 
analysed over a range of connectivity thresholds (ranging from 0.01 to 0.03 with an interval of 0.002, all 11 
thresholds), where a threshold indicates that only weights higher than the given threshold are preserved and 
others are ignored in the weighted matrix. Afterwards, the area under curve (AUC) of each metric over the range 
of thresholds (0.01~0.03) was calculated for each subject, which is an integrated scalar for the topological charac-
terization of brain networks and independent of a single threshold selection. These integrated metrics have also 
been employed in recent brain network research53,54.

Statistical Analysis. Two-sample t-tests were repeatedly performed for differences of network properties 
between the CAE patients and healthy controls. The relationships between network measures and clinical char-
acteristics of patients were analysed using Pearson’s correlation. All statistical analyses were performed in Matlab 
R2012b with the Statistics Toolbox and some custom scripts. Differences were accepted as significant at the level 
of 0.05 for each comparison. For multiple comparisons under 11 thresholds, a p-value < 0.05/11 was considered 
significant with Bonferroni correction.
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