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Radial arrangement of apical 
adhesive sites promotes 
contact self-alignment of 
fruits in Commicarpus plants 
(Nyctaginaceae)
Alexander E. Filippov1,2, Elena V. Gorb1 & Stanislav N. Gorb1

Fruits of the plants from the genus Commicarpus (Nyctaginaceae) use their adhesive properties for 
dispersal. They can readily stick to various surfaces including skin, fur, and feathers of potential 
dispersal vectors using the secretion provided by the set of glands arranged radially at the distal end 
of the cut-cone-shaped fruit. Field observations show that this particular geometry promotes self-
alignment of the fruit to various surfaces after initial contact just by one gland is established. Such 
self-alignment in turn leads to an increase of the number of contacting points and to the enhancement 
of adhesive contact area. Here, we study this particular geometry from a theoretical point of view, by 
probing adhesion ability of geometries having from 2 to 7 radially distributed attachment points. The 
results show that the radial arrangement provides rapid alignment to the surface. The robust adhesion 
can be reached already at 5 adhesive points and their further increase does not substantially improve 
the performance. This study is important not only for our understanding of the functional morphology 
of biological adhesive systems, but also for the development of technical self-aligning adhesive devices.

Genus Commicarpus consists of about 30–35 species distributed in arid areas of Africa and western Asia1, 2. Fruit 
structure is 10-ribbed with 5–10 viscid and 5 mucilaginous glands at the distal part of the funnel-shaped fruit3. 
As described by Struwig and Siebert3, after fertilization, the upper, petaloid part of the flower falls off, whereas 
the lower part enlarges and develops into a protective structure around the fruit, which is collectively called 
the anthocarp4–6 (Fig. 1a). The shape of the anthocarp and the arrangement of glands are species specific for 
Commicarpus7, 8. The shape of the anthocarps varies in different species from cylindrical, fusiform, clavate to ellip-
tic clavate. The apex is surrounded by either 5 or 10 glands, which can be stalked or sessile (Fig. 1b). Additionally, 
sessile wart-like glands are scattered across the surface of the anthrocarp (called fruit throughout the text) below 
the apex (Fig. 1b).

In ripe fruits, when an apical gland touches the surface of a moving object, the adhesive secretion is discharged 
and the fruit generates an adhesive contact with the surface (Fig. 1c). When the pulling force is further applied, 
the ripe fruit can be easily detached from the plant stem and remain adhering to the substrate (Fig. 1d). Our field 
observations showed that the applied pulling force to the fruit, which has built an initial contact with one apical 
gland, effected in a self-alignment of the fruit on the substrate and this led to the situation, when additional apical 
glands were coming into contact (Fig. 1e–h). The higher number of glands provided stronger adhesion to the 
surface. Since radial arrangement of 5–10 apical adhesive glands is very characteristic for the Commicarpus fruits, 
one can ask, whether the specific shape of the fruit and radial arrangement of apical glands are adaptations for the 
self-alignment and adhesion enhancement during the initial contact of the fruit with a potential dispersal vector.

We observed Commicarpus helenas plants at Fuerteventura (Canary Islands, Spain)9 and realized their quick 
and robust adhesive contact formation with almost any surface independently of its structure and chemistry. 
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More than 80% of fruits have been observed adhered by the full set of apical adhesive glands also to uneven and 
corrugated surfaces. In the present study, we applied numerical modeling to answer following questions. (1) Does 
specific shape of the fruit and the specific apical+radial arrangement of adhesive glands provide self-alignment 
mechanism to various substrate geometries during contact formation? (2) What is the minimal/optimal number 
of apical glands necessary for contact formation? (3) Is there any dependence of the self-alignment effectiveness 
on the direction of the external pulling force relatively to the position of the first gland in contact?

Numerical model and simulations
To simulate numerically adhesive contact of the radially arranged apical glands, we constructed the following 
simplified model (Fig. 2a,b). First of all, we reduced a complex structure of the fruit. The shape of the natural sys-
tem has almost rotational cylindrical symmetry (or maybe rather close to a conical structure) with some number 
of adhesive contact glands. However, to simplify the model we will reduce the structure to a kind of “pyramid” 
having N adhesive contact points and one central vortex, which are elastically connected one with another. The 
cylindrical symmetry will be reflected in the model by the isotropical connection between every contact point 
with its nearest neighbors as well as with the center of the circle in the pyramid base and with the main vortex on 
its top.

The main simplification here is a reduction of number of degrees of freedom. Instead of a continuous surface 
we conserve only discrete number of main elements and connections between them. It allows us to strongly 
reduce time consuming calculations. Let us note also that in the simulation, the number of the contact glands 
N = 2, 3, ... is not restricted by actual experimental observations. It will be varied to allow us to model different 
systems, which even do not exist in nature, in order to extract the information for further possible optimization.

In the particular case illustrated in Fig. 2a,b, we used the same number N = 5 as in the real system depicted 
in Fig. 1. We also accounted that before contact formation in initially non-contact state near rough surface, the 
pyramid is placed at some arbitrary angle α to the vertical line: such a configuration is reproduced in Fig. 2a.

It is supposed that due to adhesion force, an apical gland of the fruit being close enough to the surface is gener-
ally attracted to the substrate. However, the adhesion is a short range force and the pyramid, even contacting with 
the surface by one or two of its possible contact points (apical glands), can remain for a long time attached by the 

Figure 1.  Fruits (anthocarps) of the Commicarpus helenas plant. (a) Intact fruits on the plant ready for 
adhesion to the surface of a potential dispersal vector. (b) Single fruit with five radially arranged apical glands 
(marked here with arrows) delivering adhesive secretion as soon as contact is formed. (c). Single not completely 
aligned fruit adhering with only two glands (glands on the right hand side) to the glass surface (view from below 
through the transparent glass). (d). Single completely aligned fruit adhering with five glands to the glass surface 
(view from above, cryo-SEM image). (e–h) Field situation: fruits adhering to the human skin. Please, note that 
most of them adhere to the uneven and rather corrugated surface with all five radially arranged apical glands.
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only these initially contacting points. The principle possibility, rate of the attraction process and stability of the 
final completely “attached” configuration is determined by a compromise between a number of competing forces 
and parameters of the system/problem. Some of these parameters are (1) roughness of the surface, (2) adhesive 
strength generated by the glands, (3) external force acting on the fruit, (4) angle, at which the external force is 
applied, and (5) its fluctuations with the time.

To study the relative role of different parameters in the fruit alignment and to avoid too time consuming cal-
culations, we minimized a number of mechanical degrees of freedom of the problem to as small as possible and 
reproduced the system by the only N + 1 movable points, where n = 1, 2, ..., N basal adhesive points are elastically 
connected with each other as well as with the one in the geometrical center of the apical construction. The latter 
point is further numerated as the point number zero n = 0.

The real fruit is relatively rigid, but the apical glands due to the adhesive layer are slightly flexible. To maintain 
more or less constant shape of the structure with very few movable segments in three-dimensional space, the 
elastic interaction can be organized as it was done in previous studies (see for review Popov et al.10 and references 
there). It is provided with strong longitudinal stiffness of 2-valley potential k|| preventing extension and compres-
sion of practically rigid segments connecting the neighboring nodes with each other rj and with the central one 

(j = 0, 1, ..., N). The corresponding force = − − −
→||

|| → → → →
f k r r r r r( )[1 (( )/ ) ]jk j k j k jk0

2  tends to keep a distance between 
the nodes rj and rk close to the equilibrium r0jk due to the attraction factor − −

 r r r[1 (( )/ ) ]j k jk0
2 . The equilibrium 

array r0jk is calculated from the trial initial distribution of the segments reproducing the realistic configuration.

Figure 2.  Conceptual structure of the model (a,b) and vertical projection of the system (c). Subplot (a) 
illustrates the pyramid with N apical contact points. In this particular case, N = 5 corresponds to the real 
configuration of the Commicarpus fruit. The pyramid is originally placed at the angle α to the vertical line of the 
pyramid near rough substrate surface. It is attracted to the surface by apical contact points corresponding to the 
apical glands of the real fruit and at some intermediate time moment, it is turned to contact with the surface, 
depending on the relative configuration of apical points to the surface profile, as shown in subplot (b). Subplot 
(c) illustrates the projections of the trajectories of apical points (glands) and the central point, plotted by the 
thin and bold curves, respectively, between time moments shown in the subplots (a) and (b). The contour plot 
reproduces the same realization of the random rough surface as represented in the subplots (a) and (b). Constant 
external force Fext is applied to the central point of the pyramid at the azimuth angle β to the axis x. All the 
distances here are normalized to the size of the glands r0 = 1 (which is equal to r0 = 500 μm in physical units).
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For definiteness and simplicity, the adhesion force is modeled by the Morse potential =UVdW
− − −f r r r r[1 exp( ( )/ ) ]0 0 0 0

2 , which is often used in such studies. From preliminary experiments, we have esti-
mations for the physical values of the parameters f0 and r0. The characteristic force f0 belongs to the interval 
65 mN ≤ f0 ≤ 71 mN and the distance r0 of effective adhesive interaction = − − −U f r r r r[1 exp( ( )/ ) ]VdW 0 0 0 0

2  
should be associated with the real size of the glands r0 = 500 μm.

It is convenient to perform all the calculations in dimensionless units. Below, all the lengths and forces of the 
problem are measured in the units of the effective adhesion strength f0 and its characteristic distance r0, respec-
tively. In other words, below f0 = 1 and r0 = 1. In the same units, the height H of the cone (pyramid) is equal to 
H ≈ 10r0 = 10 and the radius of the circle in its base R is approximately: R ≈ 5.8r0 = 5.8 (independently on the 
number of adhesive points placed on its perimeter).

Equilibrium distances r0jk between the glands and vortex of the pyramide are completely defined by the geom-
etry. They should be numerically recalculated each time for every particular number of the glands N = 2, 3, ... . For 
example, the distance between the nearest neighbors on the pentagonal N = 5 base is equal to r0jj + 

1 = − ≈ .R (5 5 )/2 6 8.
Another important value is the longitudinal stiffness k || of 2-valley potential in the formula 
= − − −

�� � � � �f k r r r r r( )[1 (( )/ ) ]jk j k j k jk0
2 . It can be also recalculated now in dimensionless form. Young’s modulus 

E of the seed measured experimentally by us is in average about 8 GPa. Being now applied to the elastic interac-
tion between the glands =

+
k r E

f r r( / )jj

0
2

0 0 1 0
 and normalized to f0 and r0 in physical units, it gives dimensionless coef-

ficient k|| approximately equal to k|| ≈ 9.8. This value makes the pyramid quite rigid, but still allows small 
deformations in the frames of the model. These deformations are slightly visible in the short projections of the 
trajectories of the contact points to the surface in Fig. 2.

The rough surface Z(x, y) can be alternatively modeled either as a sum of Fourier harmonics 
∫ ξ= +

π
Z x c q qx( ) ( )cos( )

q

q1
2 min

max  with scaling spectrum c(q) = c0qβ and random δ-correlated phase 〈ζ(x)〉 = 0, 〈ζ(x-
)ζ(x′)〉 = δ(x − x′) (see Popov et al.10) or by a random deposition of localized functions (Gaussians, for example) with 
randomly varied positions, amplitudes and widths: = ∑ = ∑ − − + −Z x y G x y a x x y y w( , ) ( , ) exp[ (( ) ( ) )/ ]n n n n n n n

2 2 2 . 
In the second case, the structure is regulated by a number of Gaussians, their widths and typical distance between the 
hills and valleys of the desired randomly accumulated surface Z(x, y) = ∑nGn.

In both cases, the limiting scales of the surface irregularities are defined by a choice of the smallest and largest 
wavelengths regulated by qmax and qmin in Fourier approach, or by the minimal wmin and maximal wmax widths 
of the Gaussians included into the expansions. For some biological applications besides to ordinary fractal com-
ponent, a contact substrate can include also well pronounced regular superstructure with its own characteristic 
scale. In such a case, the second variant seems to be more convenient, because it allows naturally including it to 
the expansion or simply enhancing the corresponding scale in it.

From biological point of view, it reminds well known and already previously studied by us experimental sit-
uations with the spatules of different animals11. The spatules practically ignore irregularities, which are much 
smaller or much larger than their own size. As a result, they effectively “feel” such surfaces as almost flat.

Additional reason for this choice appears from limitations of the minimalistic models like the one, which is 
used here. Minimal and maximal scales of roughness are limited by the size of solitary gland (radius of the adhe-
sion r0 in the model) and the object size itself (height H and radius R of the pyramid, which are only 6÷10 times 
bigger than r0). So, the model pyramid simply cannot penetrate deeper than r0 and cannot overcome irregularities 
bigger than its own height H = 10r0.

It dictates the limitations that the scales of the irregularities have to be comparable with the scales of the pyra-
mid itself. Finally, the amplitude of roughness after accumulation is regulated by the normalization 

→ − −Z x y A Z x y Z Z Z( , ) ( ( , ) min( ))/(max( ) min( )), where a desirable amplitude A can be chosen from the 
limit of the flat surface A = 0 to the values comparable with the lengths of the pyramid segments.

The restriction that the widths of the Gaussians are limited by wmin comparable with r0 does not mean that the 
pyramid does not interact completely with the smaller scales. First of all, it is supposed that every apical point 
(gland) interacts by adhesion force with each segment of the numerically generated discrete array of the surface 
Z(x, y) with much smaller cells of the array. Besides, an interaction with the smaller scales is included in the 
model by the dissipation, which phenomenologically involves all the losses down to the very small scales, like 
microscopic excitations inside the surface.

The central vortex on top of the pyramid (which is not adhesive) is affected by the constant external force 
��
Fext. 

In general case, this force can be directed at some (quite arbitrary) angle β to the vertical plane (x, z). Due to elas-
tic connection between this point and all other ones, the force is transferred to the motion of the whole 
pyramid.

It is generally accepted that for the scales of the problem under consideration, one can neglect inertial terms in 
Newtonian equations and reduce the problem into an over-damped one. Then motion takes the following form:

τ ∂ ∂ = + + .
� �� �� ��
r t f f F/n elastic VdW ext

Here, the forces have different nature depending on the particular point with the numbers n = 0 and n = 1, .., N 
and must be numerically accumulated from all the sources described above. As typical for over-damped equa-
tions, the multiplicative constant τ defines characteristic time of the process and can be used as a unit to measure 
all time-dependant values: τ = 1.

In a general case, being affected by the combined adhesion, elastic and external forces, the pyramid is moving 
and rotating in three-dimensional space. Adhesion gradually turns its basal plane to the surface and at the same 
time, the system tends to shift itself along the substrate in a some direction found as a compromise between the 
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relief of UVdW and the external force 
��
Fext. A projection of this motion to the horizontal plane (x, y) for the same 

particular realization of the surface Z(x, y) = ∑nGn as in Fig. 2a,b is reproduced in Fig. 2c.
Intuitively, one can expect that if the external force is weak enough, the pyramid would fall by its base to the 

surface, stick to it due to the adhesion force and stop. In an opposite limit, the strong force pulling the pyramid top 
would overcome adhesion and continue to rotate the system in spite of some instant contact of its basal points to 
the surface. So, even after some temporal contact, the point (gland) can be detached from the surface.

It is important to admit that the present simple model completely ignores fine processes lying under the adhe-
sion in tangential contact, in particular, a chemical process of destruction and recovering of the contact after its 
destruction. However, our preliminary experimental observations demonstrate that a full recovery of adhesive 
contact in multiple bonding and debonding cycles is possible. The aim of our modeling was only to get insight 
into a very specific shape of the fruit and particular distribution of its adhesive sites. The simple model describes 
its self-alignment properties very well, and that is why the more complex models are here superfluous.

Let us return back to the statement that if the external force is weak enough, the pyramid falls to the surface 
and stops, but if the force is strong, some of the contacts detach again and the pyramid restarts moving. This 
qualitative observation can be quantitatively supported by a calculation of the time dependencies for the angle 
α(t) and velocity of the central point 

��
V t( )0 . To reduce the number of degrees of freedom, we first study the flat 

surface A = 0 and motion along x-axis only at β = 0 and 
��
�V t Vx t( ) ( )0 0 . The results of this study are accumulated in 

Fig. 3, where time-dependant angle α and the velocity of the central point Vx0 are calculated at different values of 
the external force. Here, the curves are plotted in logarithmic scale along the time axis in order to extend short 
time interval of fast rotation at the very beginning and to compress much longer asymptotic part with small 
changes of the variables. The main reason for this difference in the rates of the process is related to a strong impact 
to the motion of the central point caused by the rotation of the pyramid. This fact is clearly seen from the compar-
ison of the subplots (a) and (b) in Fig. 3. Even small deflections in the curves for the angle α = α(t) are accompa-
nied by the maximums of the velocity Vx0(t). As an example, two local maxima of Vx0(t) are marked by the 
vertical lines crossing both subplots in Fig. 3.

Rotation of the pyramid is also accompanied by relatively fast motions of all adhesive points. This motion is 
presented in Fig. 4 by a family of thin curves for the array vxk(t), where k = 1, 2, ..., N. The maximums of these 
curves are much lower that the main maximum of Vx0(t) (bold line), but still well pronounced. It is also important 
to note a strong difference between coordinate- and time-dependencies of the velocities in subplots (a) and (b), 
respectively. The reason for this is that the displacements along the x-axis stop quite quickly. This means that the 
contact points are almost completely attached to the substrate and the variable x0 practically does not change after 
x0 ≈ 2. However, some slow drift of all components of the system at longer time still occurs. It can be seen in the 
logarithmic plot shown in the insert to the subplot (b).

As for the situation with an arbitrary orientation of the external force β ≠ 0, counting that the pyramid starts 
to build contact from arbitrary inclined position with non-zero angle α ≠ 0, one can expect that its rotation will 
essentially depend on the direction of the external force. Indeed, when an external influence is absent (Fext = 0), 
the pyramid spontaneously falls to the surface into the direction of x. If the external force (Fext ≠ 0) is parallel to 

Figure 3.  Time-dependant angle α (a) and the velocity of the central point Vx0 (b) calculated at different values 
of the external force for the flat contact surface. The saddle-point curve corresponding to the critical value of 
the force Fext, at which the system stops exactly in the vertical position, is plotted by the bold line. For more 
explanations, see the text.
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this direction, it supports the rotation. In all other cases, the result of interplay between this force and adhesion is 
not so transparent and one needs to perform the further numerical experiment.

The results of the solution for a number of different angles β π π π= ..0, /8, /4,  are collected in Fig. 5. It is 
demonstrated that up to the perpendicular force β = π/2, an absolute velocity = +V Vx Vy0 0

2
0

2  generally 
increases: this tendency is shown by the bold arrow in Fig. 5. After this value, the tendency changes to the reverse 
one and is shown by the opposite, fine arrow in the same Fig. 5. The reason for this is that the x-projection of the 
external force is now opposite to the x-projection of the adhesion force. These two forces compete at the begin-
ning of the process and reduce the pyramid rotation and, as a result, reduce total velocity |V0|. It is found that the 
minimum of horizontal velocity is reached for exactly negative orientation of the external force at β = π.

To discuss the minimal/optimal number of apical glands necessary for contact formation, we now examine 
the simplest case of the fixed angle β = 0, the value of the external force Fext = 0.25, and vary the number of 
glands N = 2, 3, 4, ... . Figure 6 presents the results of the simulation based on these constants. Here, the family 
of time-dependant absolute velocities |v0| at different number of the contacts N = 2, 3, 4, ... is generated. From 
the main plot of this figure, we see that for the numbers N = 5, N = 6 and N = 7, the curves practically coincide at 
starting short time intervals. Small differences appear for the longer times. The insert in Fig. 6, which magnifies 
vertical scale for a fragment of the full image, illustrates monotonous variation of |v0| for different values of N.

Above, we artificially reduced roughness of the substrate to the zero A = 0 in order to make the dependencies 
on different parameters of the problem regular and more transparent. However, for any contact problem, the 
amplitude of roughness is a very important property of the real surface. To extract information related to this 
property in the same regular manner, as we did this before for other parameters, we return now to the fixed num-
ber of the glands and chose again N = 5, as it represents the most interesting biological case. Besides, we return to 
the trivial angle β = 0 and again keep the fixed intermediate value of the external force Fext = 0.25.

Figure 4.  Spatial- and time-dependencies of the velocities. Subplots (a) and (b) show the velocities of the 
central point (bold line) and array of the contact points vxk (where k = 1, 2, .., N), respectively. The insert shows 
the same time-dependence as the main subplot (b) in logarithmic scale in order to extend an initial interval of 
fast motion at the beginning of the process.

Figure 5.  Azimuth angle β dependence of the time-dependant absolute velocity of the central point |v0| at 
the fixed intermediate external force Fext = 0.25. The curves corresponding to the symmetrically important 
directions β = 0,π/2,π are plotted by the bold lines.
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It is important to note that the chosen value Fext = 0.25 gave a possibility to study all stages of fruit motion 
in each numerical experiment. This force is not too strong to immediately turn the fruit (and quickly remove it 
from contact), but not too weak to allow the apical glands to stick to the substrate from the very beginning of the 
contact formation. Intuitively, one can expect that varying roughness of the contact surface A ≠ 0 would cause a 
competition of these two factors: From one side, if the surface is strongly corrugated, it is difficult to adjust a good 
spatial configuration of the glands for simultaneous contact of all or the majority of them with the surface. From 
the other side, if the surface consists of deep “hills and valleys”, every gland being once attached can be strongly 
trapped in narrow spaces between hills of the roughness. In this case, it may be difficult to remove it from such a 
trapped position.

Which factor will prevail in the contact formation process certainly depends on the spatial distribution of the 
contacts. One can expect that simple planar “contact pad” can conflict with the random asperities on a complex 
surface. First occasionally formed contact will prevent formation of new ones. From our previous studies of the 
analogous contact problems, we know that adhesion can be strongly enhanced by the “hairy” configuration of the 
contact device10, which allows every fragment of the system to turn and find more optimal contact configuration. 
In order to test this idea for the adhesive fruit system under consideration, we calculate the time-dependant angle 
α(t) and absolute velocity |v0| for a set of different amplitudes of the roughness A.

Figure 7 shows that despite of a relatively complex behavior, the contact ability of the adhesive fruit system is 
generally stronger on rough substrates. The value A = 0, 0.125, 0.25, 0.375, 0.5 varies starting from the completely 
flat surface A = 0 up to the new critical one Acrit ≈ 0.5. The latter value corresponds to the roughness, at which pre-
viously “intermediate” external force Fext = 0.25 becomes critical. This means that in contrast to the flat substrate 
surface at Fext = 0.25, the system completely adheres to the substrate. Both the angle α and absolute velocity |v0| 
simultaneously tend to zero: corresponding curves in Fig. 7a and b are marked by the bold lines.

In reality, another important source for randomness and possible instability is the randomly fluctuating exter-
nal force Fext. Certainly, we can not account for all the possible sources of the fluctuations, but it can be assumed 
that the force Fext, caused by potential dispersal agents, such as vertebrates, is never fixed in a real situation. 
Additionally, the angle β of the force acting on the fruit is continuously varying. Below, we model the second 
reason of the fluctuations.

Mathematically, these fluctuations mean that even at more or less fixed strength of the external force 
Fext ≈ const., the direction of the force Fext (for example, caused by motion of animals, or by hits of some close 
branches in the bush perturbed by wind, etc.) permanently changes. To simulate this, one requires an addi-
tional equation (providing a kind of chaotic component) for the angle ∂β/∂t = ξ(t) to the equations of motion. 
It describes so-called „random walk“ of the angle β. Time-dependant source of the fluctuations ξ(t) here is 
δ-correlated Gaussian noise with zero mean value 〈ξ(t)〉 = 0 and the strength 〈ξ(t)ξ(t')〉 = σδ(t − t'), which is 
defined by the intensity σ of the fluctuations.

Above (see Fig. 5), we already saw that different angles β led to different dynamic scenarios changing the abso-
lute velocity |V0| in particular time dependence. Now, the angle β of the external force Fext permanently changes 
∂β/∂t = ξ(t). Depending on the relationship between characteristic times and forces of the attachment from one 
side and fluctuations from another side, different scenarios are possible.

If the fluctuations are too weak (or if their oscillations are too fast), they will not affect the motion at all. In the 
opposite limit of sufficient force Fext and slow rotation of its direction ∂β/∂t = ξ(t), we return to already discussed 
case of the strong and regular force Fext. The most interesting intermediate case is presented in Fig. 8, where 

Figure 6.  Time-dependant absolute velocity |v0| at different numbers of contact points N = 2, 3, 4, ... . Inset 
magnifies the |v0| values for the range of 0.3 < t < 1, to illustrate monotonous tendency of the velocity |v0| with 
the number N.
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complicated time dependency is shown. It corresponds to the situation, when the direction of Fext changes few 
times during characteristic time of rotation of the angle α and, as a result, absolute velocity |V0|.

One can see that despite extremely strong effect of fluctuations in this case and visually wide variations of the 
velocity |V0|, the behavior remains stable and the fruit after all attaches to the surface. It is interesting to note here 
well pronounced correlations between the instant angles β in Fig. 8b and resulting velocities |V0| in Fig. 8a. These 
correlations are found to be in perfect agreement with the results found earlier for the array of regular fixed angles 
β presented in Fig. 5.

It is expected from Fig. 5 that when randomly walking angle β(t) for relatively long time remains near the val-
ues close to β = π or β = π/2 (β = 3π/2), the velocity would attract to its maximal or minimal values at this stage 
of motion. To elucidate this, we plot the rotation of the angle β(t) in Fig. 8b as reduced to the physical interval 
[0,2π]. Two typical regions, where the angle is close to the values of maximal and minimal velocities (near β = π 
and β = 3π/2, respectively), are marked by the vertical straight lines connecting both subplots.

Figure 7.  Time-dependant angle α (a) and absolute velocity |v0| (b) at different amplitudes of the roughness. 
A = 0, 0.125, 0.25, 0.375, 0.5 varies from the completely flat surface A = 0 to the roughness Acrit ≈ 0.5, at which 
external force Fext = 0.25 becomes critical; corresponding curves are marked by the bold lines.

Figure 8.  Time-dependant absolute velocity |v0| at random walk of the azimuth angle β. The rotation of the 
angle β(t) in the plot is reduced to the physical interval [0,2π]. The vertical straight lines mark two typical 
regions, where the angle is close to the values of maximal and minimal velocities (near β = π and β = 3π/2, 
respectively).
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Desirable stability of the behavior even under relatively strong fluctuation means that despite of strong varia-
tions, absolute velocity |V0| still remains close to the function obtained before at an intermediate constant angle β. 
From symmetrical point of view, one can predict that in the case of permanent rotation, an expected curve will be 
close to that at the angle β = π/4. However, Fig. 5 shows that the curves are slightly shifted down from the mean 
region in the complete interval between β = 0 and β = π. This leads to some shift of the mathematical expectation 
for the average |V0|. As a result, the value appears around angle β = π/5; the corresponding (smooth) curve is 
added to Fig. 8a.

Biological interpretation
After getting into the first contact with the surface of surrounding objects, such as stones, other plants, soil, or 
potential dispersal agents, the fruit may experience an external force caused by wind, substrate vibrations, touch, 
etc. The results of our numerical modeling demonstrate that this force, if it is higher than some critical value, can 
either enhance contact area, when applied in one direction, or reduce contact area (and sequentially, adhesion) 
and even remove the fruit from the surface, when applied in another direction. If the force is lower than critical 
value, the contact (and sequentially, adhesion) will be almost always enhanced.

As it is mentioned in the previous paragraph, the result of this force action is angle-dependant. If the angle is 
situated in the way that it tends to rotate the fruit in an opposite direction relatively to the location of the majority 
of other adhesive glands, the chance to continue rotation and remove the fruit from the substrate is rather high. If 
the angle is situated exactly in the opposite direction, the chance for the fruit to be removed is low and the chance 
to enhance contact/adhesion is high. The intermediate angles would effect in an intermediate result with different 
degrees of probability.

However, in the reality, the external force is seldom oriented to one particular direction. It usually changes its 
direction, and the direction, in turn, can change the force rate/speed. The question appears how the changeability 
of the external force influences the fruit anchoring to the substrate. We found that if the external force changes its 
direction at the times corresponding to those of the fruit rotation, then in spite of non-constant force direction-
ality, the fruit in contact will behave stably and sometimes even enhance its probability to adhere firmly to the 
substrate with the maximum number of its apical adhesive glands.

From the evolutionary point of view, the question about an optimal number of apical adhesive glands is prob-
ably one of the most important for biology of the plant. In the representatives of the genus Commicarpus, the 
typical number of the glands is 5 (one circle of glands) – 10 (two circles). The results of our simulation show that 
having only one or two contacts might be rather critical to maintain the contact under action of the external 
force. However with three contacts, the self-stabilization mechanism, although still rather weak, will take place. 
Furthermore, we did not obtain much stronger enhancement of contact formation in the fruits with more than 
five individual apical contacts. This particular geometry of adhesive contacts distribution at the circumference of 
the pyramid base reaches its saturation approximately at five individual contacts. In other words, more than five 
apical glands would be redundant for the effects discussed in this paper.

Natural substrates, which Commicarpus fruits usually adhere to, are not smooth and flat, but rather strongly 
corrugated. From our field observations, we concluded that the fruits adhere well to rough surfaces. Furthermore, 
the results of numerical simulation demonstrate that an increase of the roughness amplitude leads to an increase 
of adhesive ability of the fruit, because on the rough surface, the action of the external force will be always redi-
rected to the direction, which almost never corresponds to the “bad” angle. That is why, this situation will effect 
in a stronger anchoring of the fruit to the 3D surface due to the recruiting of a higher number of individual apical 
glands in contact.

In summary, the specific geometry of Commicarpus fruits with the 5 + adhesive glands situated apically at 
the perimeter of the pyramid base represents an adaptation to enhance the number of glands in contact after 
initial adhesive contact formation with just one individual gland. Such an adhesive gland distribution increases 
adhesion to rough substrates and under action of the external force with changeable direction. More than three 
glands are sufficient for the occurrence of these effects. This geometrical adaptation, in combination with the 
properties of the glue itself, makes the fruit to the self-enhancing adhesive system capable of strong adhesion force 
generation after the formation of the first discrete adhesive contact. All these features contribute to the success of 
the epizoochorous fruit dispersal and to the fruit anchoring and stabilization between the stones or/and in soil.
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