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Genome-Wide Linkage-
Disequilibrium Mapping to the 
Candidate Gene Level in Melon 
(Cucumis melo)
Amit Gur1, Galil Tzuri1, Ayala Meir1, Uzi Sa’ar1, Vitaly Portnoy  1, Nurit Katzir1, Arthur A. 
Schaffer2, Li Li3, Joseph Burger1 & Yaakov Tadmor1

Cucumis melo is highly diverse for fruit traits providing wide breeding and genetic research 
opportunities, including genome-wide association (GWA) analysis. We used a collection of 177 
accessions representing the two C. melo subspecies and 11 horticultural groups for detailed 
characterization of fruit traits variation and evaluation of the potential of GWA for trait mapping in 
melon. Through genotyping-by-sequencing, 23,931 informative SNPs were selected for genome-wide 
analyses. We found that linkage-disequilibrium decays at ~100 Kb in this collection and that population 
structure effect on association results varies between traits. We mapped several monogenic traits to 
narrow intervals overlapping with known causative genes, demonstrating the potential of diverse 
collections and GWA for mapping Mendelian traits to a candidate-gene level in melon. We further 
report on mapping of fruit shape quantitative trait loci (QTLs) and comparison with multiple previous 
QTL studies. Expansion of sample size and a more balanced representation of taxonomic groups 
might improve efficiency for simple traits dissection. But, as in other plant species, integrated linkage-
association multi-allelic approaches are likely to produce better combination of statistical power, 
diversity capture and mapping resolution in melon. Our data can be utilized for selection of the most 
appropriate accessions for such approaches.

Melon (Cucumis melo L.: Cucurbitaceae) contains a wealth of phenotypic diversity for multiple attributes, espe-
cially for fruit traits such as size, shape, external (rind) and internal (flesh) color, sugar content, acidity, texture 
and aroma1. This wide diversity is the source for ongoing genetic research and breeding aimed at mapping and 
identifying quantitative trait loci (QTLs) and genes affecting key horticultural and consumers’ preference traits. 
Numerous genetic studies in recent years focused on fruit quality traits in melon, including fruit size and shape2–5, 
flesh color6–9, rind color10, netting and sutures11, 12, sweetness and aroma13, 14, acidity15 and ripening behavior16. 
Most of these studies utilized targeted bi-parental populations for the genetic analyses and trait mapping.

Bi-parental linkage mapping was, to a large extent, the default genetic mapping approach for simple and quan-
titative traits in plant species where generation time is short and the development of segregating populations is 
feasible. This approach is based on the analysis of the segregation of polymorphism between the parental lines and 
their progeny. Various linkage population types are commonly used in plant genetics, such as: F2:3, recombinant 
inbred lines (RILs), double-haploids (DH), introgression lines (ILs) or backcross inbred lines (BILs). While such 
populations display different attributes with respect to time and cost of creation, statistical power and genetic 
resolution, they all share the advantages and disadvantages of bi-allelic, non-structured designs.

Approximately 15 years ago, association mapping methodology started to become a valid alternative strategy 
for trait mapping in plants17, 18. Among the advantages of association genetics is the use of existing collections, 
the ability to simultaneously analyze wide phenotypic diversity resulting from multi-allelic genetic variation, and 
the exploitation of accumulated historical recombination events. A key limiting factor that inhibited the effective 
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implementation of this approach in plant genetics was the inherent effect of population structure on creation 
of spurious associations. The development and successful application of statistical and computational tools to 
control for genetic relatedness19–21 enhanced the use of this approach in plants. At first, the implementation of 
association mapping was mostly through the analysis of candidate-genes, due to the insufficient genome-wide 
marker coverage defined by linkage-disequilibrium (LD) decay profile and genome size22–24. However, with the 
growing application of NGS-based approaches for high-density genotyping, the genome wide association study 
(GWAS) approach is now extensively used for genome-wide genetic dissection of traits in many crop plants25, 26.

Several recent studies in melon have used germplasm collections for characterization of diversity, population 
structure and for trait mapping. Tomason et al. screened 87 melon accessions with 286 simple sequence repeat 
(SSR) markers to describe population structure and fruit traits variation27. Leida et al. used a set of 175 melon 
accessions genotyped with 251 single nucleotide polymorphisms (SNPs; 148 background SNPs and 103 within 
candidate genes for sugar metabolism and ripening) to describe population structure, LD and candidate gene 
associations for sugar accumulation and ripening behavior28. Two recent studies used genotyping-by-sequencing 
(GBS) to genotype melon panels and to describe population structure and LD using genome-wide high density 
markers coverage (13,789 SNPs and 25,422 SNPs)29, 30.

In the current study a diverse collection of 177 melon accessions was extensively phenotyped for a number 
of traits and genotyped with 23,931 SNPs using GBS. The main objective was to describe genetic properties 
of this diversity panel and to test the actual potential and effectiveness of the GWAS approach for trait map-
ping in melon. Population structure and genome-wide LD patterns are described. Through GWA analysis, we 
demonstrate the mapping of several Mendelian traits to a narrow interval overlapping with known causative 
genes, providing a first proof-of-concept for the potential of association genetics for high resolution mapping to 
a candidate-gene level in melon.

Results
Phenotypic diversity across GWAS panel. A diversity panel of 177 inbred melon accessions was used 
in the current study. This panel represents the two melon subspecies (melo and agrestis), encompassing 11 horti-
cultural groups (Fig. 1A,B Table S1). The collection was grown in a replicated trial in the open field at Newe Ya’ar 
in summer 2015 and phenotyped for fruit traits during fruit development and at maturity. Images were taken 
on developing fruits of all accessions throughout the season from anthesis till harvest. Fifteen mature fruits per 
accession were harvested from three replicated plots for phenotyping which allowed us to obtain high heritability 
values for the measured traits. One of the key advantages of using diverse collections compared to bi-parental 
segregating populations is the extended range of phenotypic variation captured across multiple traits. Figure 2 
shows normalized phenotypic ranges (ratio between min and max entry means) in three bi-parental melon pop-
ulations, relative to the range measured in the GWAS panel, where the ratio is standardized to 1, across numerous 
selected phenotypic traits (Table S2). These reference experimental bi-parental populations are derived from wide 
crosses aimed at mapping key fruit quality traits (details at the materials and methods and Figure S1). Range for 
fruit weight, for example, in the GWAS panel is between 50 g for the smallest accession and 5,000 g for the largest 
(100-fold difference) while the maximum polymorphism for this trait in the bi-parental populations is 5-fold 
for the SAS × DOYA cross. For total soluble solids (TSS) the range across the GWAS panel is between 3.5% and 
16.2% TSS (4.6-fold) while the ranges within the bi-parental populations are 3-, 2.4- and 1.1-fold. Flesh color is 
another example where the GWAS panel capture wide phenotypic spectrum in melon (from orange, through 
white, to green including the different intensities within each color category) and each of the bi-parental crosses 
captures only a fraction of this spectrum (SAS × DOYA: green, TAD × DUL: green-orange, PI × DUL: orange). 
The overall extended phenotypic variation captured within the GWAS panel compared to bi-parental populations 
is evident in our comparison also for time to maturity (i.e. earliness), fruit shape, rind stripes, ripening behavior 
and many of the other attributes that were measured.

Figure 1. Germplasm composition and structure. (A) Pie chart of the frequencies of the different horticultural 
groups across the melon collection. (B) Genetic PCA plot colored by horticultural group.
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Genetic variation and genome-wide LD patterns. The collection was genotyped using GBS 
approach31. Over 500,000,000 good barcoded reads were produced and 4,213,896 sequence-tags were extracted 
with minimum of 3 reads per tag. Fifty-five percent of the tags were uniquely aligned, 2.1% were aligned to more 
than one locus and 42.9% were unaligned. Such alignment rate for GBS tags in a plant genome can result from 
several possible factors: (1) Short tag sequence (too short to align significantly), (2) Tag sequence contains highly 
repetitive DNA, (3) The haplotype is too divergent from the reference to align, (4) Structural variation: the tag 
sequence is not present in the reference genome individual, or (5) Incomplete reference: the tag sequence is not 
present in the reference genome.

A total of 99,263 SNPs that were mapped to the melon genome32 were identified across the 177 melon acces-
sions. Following further filtration to minor allele frequency (MAF) > 0.05 and maximum of 6% missing data per 
site, 23,931 informative SNP markers were defined as the genotypic dataset in this study. As expected in GBS, 
SNP densities fluctuate within and between chromosomes, resulting in differential coverage across the genome 
(Figure S2) with a genome-wide average density of ~1 SNP/18 Kb. Principal component analysis (PCA) was 
performed using the whole-genome marker data. Two-dimensional PCA plot using PCA component#1 and 
PCA component#2 is presented in Fig. 1B where the 11 horticultural groups are color-coded. In general, good 
consensus is observed between the phenotypically defined groups and the clustering based on genetic related-
ness, with an obvious separation between the melo and agrestis sub-species (also shown as a phylogenetic tree in 
Figure S3). Also, the inodorous group is nicely clustered and separated from the reticulatus and cantalupensis types 
that cluster together with wide overlapping genetic variation within them. An admixture-based clustering model 
implemented in the software STRUCTURE33 was also used to infer the genetic structure of the collection. Clear 
division between the two subspecies was obtained at K = 2 across the whole collection, and K = 7 provided the 
second best fit for sub-grouping the accessions, in agreement with the taxonomic classification (Figure S4). We 
then used the genome-wide marker set to characterize patterns of LD across the genome. LD was calculated as R2 
between SNP pairs and plotted against their physical distance. On a genome-wide average, LD decay in this melon 
collection within ~100 Kb to a level below R2 = 0.2 (Fig. 3). Substantial variation in local LD patterns that exists 
along and between chromosomes is shown in Figures S2 and S5, where LD is plotted against physical positions 
or distance. Based on the genome-wide LD decay pattern (~100 Kb) and melon genome size (~450 Mb), the esti-
mated minimal number of markers required for efficient genome-wide scan using a panel similar in composition 
to the one used here would be ~5,000.

Whole genome LD mapping. While LD decay analysis provides a general averaged view on potential 
genetic resolution, we took a direct comparative mapping approach. To test the usefulness of GWAS approach 
for mapping traits using the melon diversity collection, we phenotyped and performed association mapping for 
several high heritability simple traits where causative genes are known. The obtained mapping results provide 
insight into local resolutions that can be achieved using this platform.

Characterization and mapping of sex determination trait. In melon, most plants are either monoe-
cious or andromonoecious. Monoecious female flowers contain only the female reproductive organs (carpels) 

Figure 2. Comparison of normalized phenotypic variation between the GWAS collection and bi-parental 
melon populations for various traits. Phenotypic range is expressed as the ratio between maximum and 
minimum entry means for each set where all values are adjusted relative to the range at the GWAS panel (that is 
therefore normalized to 1).
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and andromonoecious contain both female and male (stamens) organs. This trait was previously mapped to the 
a locus34 on chromosome 2 and the causative gene (CmACS-7) was subsequently cloned35. In the current study, 
female flowers at anthesis were visually characterized for their sex-expression type (monoecious or andromonoe-
cious, Fig. 4a) across all accessions. Sixteen percent of the accessions in the collection are monoecious and 84% 
are andromonoecious. Projection of the sex expression phenotypes on the genetic PCA plot provides an inform-
ative view on the distribution of the phenotypic classes across the genetic variation and population structure 
(Fig. 4b). While the main C. agrestis cluster in our sample (containing makuwa, chinensis and conomon acces-
sions) is monomorphic, showing only the andromonoecious phenotype, for the rest of our panel the distribution 
of the phenotypic classes is relatively uniform across the genetic variation and independent of population struc-
ture, which is an important attribute for effective association analysis. Using these phenotypes we then performed 
GWA analysis and found a single significant locus on chromosome 2 associated with this trait (P = 1.4 × 10−12 at 
mixed linear model (MLM) analysis, Fig. 4c,d). Zooming in on the genomic neighborhood of this locus showed 
that the peak of the trait locus is at position 1,771,409, ~60 Kb and one gene apart from the CmACS-7 gene, in 
which we did not have a SNP in our genotyping set (MELO3C015444: Chr2 1,708,995–1,711,002, Fig. 4e). To 
further validate the peak marker SNP for this trait (SNP1771409), we have genotyped a set of lines from the panel 
using PCR marker at the CmACS-7 gene sequence35. High LD is found between SNP1771409 and the CmACS-
7 PCR marker (Figure S6). Figure 4e also shows the decline of significance bellow the genome-wide threshold 
at a less than 100 KB window around the trait-locus peak, supported by the local LD pattern around this locus 
(Figure S7).

Characterization and mapping of flesh color. Three major flesh color categories are defined in melon; 
green, white and orange, with β-carotene and chlorophyll being the predominant pigments of the orange and 
green phenotypes, respectively. The major locus differentiating between orange and non-orange flesh is gf, pre-
viously mapped to chromosome 97. Recently, the gene CmOr was identified as gf and accounts for most of the 
orange/non-orange variation in melon9. In order to characterize flesh color variation in the GWAS panel, longi-
tudinal sections of fifteen fruits per accession were scanned and analyzed for multiple characteristics, including 
flesh color, using the Tomato Analyzer software36 (Fig. 5a). Nine of the fruits from each accession were also meas-
ured for flesh color using handheld colorimeter. Image-based color values were highly correlated with colorimeter 
measurements across 1500 fruits that were measured in parallel (R = 0.94, Figure S8). Overall flesh color showed 
very high broad-sense heritability in our experiment (H2 = 0.96, Figures S9 and S10). Flesh color phenotypes 
distribute uniformly within the GWAS panel with all three color categories represented in a significant propor-
tion (Fig. 5b). Projection of flesh color variation on the genetic PCA plot reveals the strong relationship between 
this trait and population structure (Fig. 5c). A large proportion of the orange accessions class in the reticulatus 
group and most of the white flesh accessions are in the inodorous group. Agrestis accessions are mostly white flesh. 
This non-random distribution and clear dependence between the genetic landscape and phenotypic variation is 
expected to yield excessive spurious associations if a simple statistical model is used for association analysis. This 
confounding effect can be controlled through the use of relatedness estimates as cofactor in MLM analysis21. We 
performed GWA analysis using both statistical models. As expected, the generalized linear model (GLM) resulted 
in high proportion of significant SNP effects across all chromosomes (Fig. 5d). However, a single SNP on chro-
mosome 9 (at position 20,550,439) was noticeable for its strong and highly significant effect (P = 10−34). MLM 
analysis removed most of the significant effects (a mix of mostly spurious and maybe some positive associations) 
and only the chromosome 9 SNP remained highly significant (P = 3.7 × 10−12) and passed the genome-wide 
threshold (false discovery rate (FDR) 5%, Fig. 5e,f). Zooming in on this SNP reveals that it is located within the 
causative CmOr gene (MELO3C0005449: Chr9 20,548,319–20,555,636). This SNP has MAF of 0.32, it explain 
~70% of the flesh color variation across the panel and effectively distinguish between orange and non-orange 

Figure 3. Genome-wide LD decay plot. R2 between intra-chromosomal marker pairs plotted against the 
physical distance between them.
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(Fig. 5g). The closest SNPs around this trait-peak marker are 40 Kb apart. This is a cluster of 3 SNPs in LD with 
each other that show P values of ~10−4, indicating the decline of LD at less than 100 Kb in this region. To further 
validate SNP20550439, we have genotyped all the lines in the panel for the polymorphism in the CmOr gene, as 
described by Tzuri et al. (2015)9, and obtained 99% match in allelic segregation (Figure S11). In consensus with 
the local LD decay in this region (Figures S2 and S12), this example also demonstrates the decline of significance 
within a relatively short interval around the peak, producing a manageable window of candidates that include the 
causative gene.

Characterization and mapping of yellow rind color. Melon accessions with yellow rind are present in 
our GWAS panel. We previously reported that the yellow color is caused by the accumulation of naringenin chal-
cone, a yellow flavonoid pigment37. A Kelch domain-containing F-box protein coding gene (CmKFB) on chro-
mosome 10 was identified as causative for the yellow rind phenotype in yellow casaba melon accession (C. melo, 
var inodorus)10. We characterized the collection for rind color through visual scoring and selected only smooth 
rind (without netting that could mask the rind color) accessions that are either yellow or white/cream (Fig. 6a) for 
association analysis. Sixty-nine accessions remained and were included in the yellow rind association analysis, 37 
accessions with white/cream rind and 32 with yellow rind. Projection of this trait on the genetic PCA plot is show-
ing population structure dependence for the phenotypic distribution with a high proportion of the white rind in 
the reticulatus group and most yellow accessions in inodorous. However, both agrestis and melo sub-species show 
polymorphism for this trait (Fig. 6b). GWAS was performed using both GLM and MLM approaches and the effect 
of population structure control on genome-wide significance levels are evident (Fig. 6c,d). While sample size used 
for this analysis is fairly small (due to the exclusion of netted and orange or green rind accessions), the strongest 
genome-wide effect that we found for this trait, on chromosome 10, was still marginally significant at FDR30% 
(P = 4 × 10−5, MLM). Zooming in on this region showed two SNPs at positions 3,541,676 and 3,541,866 (190 bp 
apart) that are in complete LD (R2 = 1). These SNPs, that showed the strongest association with yellow rind trait, 

Figure 4. Mapping of flower sex-expression. (a) Examples of monoecious (right) and andromonoecious 
(left) female flowers at anthesis in the diversity panel. (b) Female flower types projected on genetic PCA 
plot. (c) Manhattan plot of GWA of female flower type. Associations were tested using mixed-linear model 
(MLM_Q + K) for controlling population structure and relatedness. Genome-wide significance threshold is 
adjusted for multiple comparisons at FDR5%. (d) Quantile-quantile (Q-Q) plot for distribution of P values at 
the MLM_Q + K model. The negative logarithm of the observed (y axis) and the expected (x axis) P value is 
plotted for each SNP (dot). The gray dashed line indicates the null hypothesis. (e) Zoom in on chromosome 2 
peak where causative gene CmACS-735 (MELO3C015444) is shown.
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are located 65 Kb and 8 genes away from the CmKFB gene10 (MELO3C011980: Chr10 3,475,253–3,476,386, 
Fig. 6e). SNP3541676 has MAF of 0.45 across the ‘rind color’ panel and it is associated with rind color in 90% of 
the accessions (Fig. 6f). To further validate SNP3541676 and SNP3541866 at the QTL peak, we genotyped the 
yellow and white rind accessions using PCR marker at the CmKFB gene10 and good co-segregation with the peak 
markers was shown (Figure S13). Local LD decline pattern for this genomic region fits with the genome-wide 
average and supports the obtained resolution (Figures S2 and S14). It is important to note that yellow rind phe-
notyping was based here only on visual observation and not supported by chemical analysis of flavonoids or 
carotenoids. Therefore, it could be that some of the fruits defined as yellow in fact accumulate carotenoids rather 
than naringenin chalcone. Moreover, melons also exhibit genetic variability for waxiness of the cuticle38, 39. A 
waxy epicuticular layer can mask rind colors and lead to modified visual phenotyping. These factors may have 
introduced some ‘noise’ to our mapping, further reducing the significance of the Chr10 QTL.

Characterization and mapping of fruit shape. Extensive diversity is present in C. melo for fruit size 
and shape. Fruit weight varies 100-fold within our collection (50 g–5000 g) and fruit shape index (ratio between 
length and width) varies between 0.66 and 6.3 (10-fold) across the panel (Fig. 7a,b, Table S2, Figure S15). Fruit 
shape is an important trait from breeding perspective as, alongside other fruit attributes such as rind netting, 
flesh color and ripening behavior, it defines horticultural and marketing groups. While the components of fruit 
shape (fruit length and width) may be influenced by environmental conditions (as they reflect growth rate), shape 
index seem to be a very coordinated and conserved attribute. Furthermore, fruit shape is programmed early 
on in fruit development process as there is good correlation between ovary and mature fruit shape indexes in 

Figure 5. Mapping of flesh color. (a) Example of scanned longitudinal sections of melons from the diversity 
panel. 2,650 fruits were scanned and analyzed using Tomato Analyzer software36. (b) Frequency distribution 
of entry mean hue index as measured from fruit scans. Bar colors reflect the visual perception. (c) Flesh hue 
indexes projected on genetic PCA plot. (d) Manhattan plot of GWA of flesh color. Associations were tested 
using naïve General-linear model (GLM) (e) Manhattan plot of GWA of flesh color. Associations were tested 
using mixed-linear model (MLM_Q + K) for controlling population structure and relatedness. Genome-wide 
significance threshold is adjusted for multiple comparisons at FDR5%. (f) Quantile-quantile (Q-Q) plot for 
distribution of P values at the MLM_Q + K model. The negative logarithm of the observed (y axis) and the 
expected (x axis) P value is plotted for each SNP (dot). The gray dashed line indicates the null hypothesis. (g) 
Allelic effect plot for the SNP within CmOr gene (MELO3C005449). Each point represents accession mean 
color (hue index) and points are color-coded based on the visual color perception.
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melon40, 41. The collection was characterized for fruit shape through image-analysis-based measurements taken 
on digital scans of longitudinal fruit sections (Fig. 7a, see materials and methods). Fifteen fruits per accession 
were measured and the average shape index was calculated. The extensive diversity and wide sampling resulted 
in very high heritability obtained for this trait (H2 = 0.95, Figure S15). Projection of fruit shape means on the 
genetic PCA revealed the distribution of shape variation across the genetic landscape and the effect of population 
structure on phenotypic distribution (Fig. 7c). Most of the elongated fruits (index > 1.5) belong to C. melo ssp. 
melo var. inodorous and flexuosus, and C. melo ssp. agrestis var. makua. Next, we mapped fruit shape through 
GWA analysis. Significant SNPs in MLM analysis (at FDR5%) were found on all chromosomes (Fig. 7d, Table S3). 
We then compared our significant SNPs with previously mapped fruit shape QTLs from multiple studies that 
have been summarized into a consensus map5, 12. The polygenic architecture of fruit shape observed here is in 
agreement with these previous results where fruit shape QTLs were mapped in different studies to eleven out 
of the twelve melon chromosomes. Monforte et al.5 identified meta-QTLs for fruit shape on five chromosomes 
where common intervals were identified in several studies. We found significant SNPs (at Bonferroni adjusted 
threshold) on four of these chromosomes (FSQM-2, 8, 11 and 12, Fig. 7d,e and Table S3). On chromosomes 3, 6, 
and 10 we found significant SNPs that overlapped with QTLs that were reported in a previous study (FSQC3.5, 
FSQC6.4, FSQX6.1, FSQA10.1, FSQC10.25). Interestingly, large effects appear in higher frequencies for SNPs with 
MAF < 0.1 (Figure S16), while the distribution of allele frequencies is relatively uniform across our genotyping set 
filtered to MAF > 0.05 (Figure S17). Similar patterns of negative correlations between polymorphism effect size 
and allele frequency were also shown for multiple traits in maize42, 43.

Discussion
The power of combining NGS-based genotyping and GWAS for achieving mapping to the gene level resolution 
was demonstrated in several recent studies in plants44, 45. The ability to simultaneously screen diverse germplasm 

Figure 6. Mapping of yellow rind trait. (a) Examples of some fruits with yellow and white rinds used for 
the analysis of the trait. (b) Yellow or white rind colors projected on genetic PCA plot. (c) Manhattan plot 
of GWA of rind color (both simple model (GLM) and population structure corrected model (MLM_Q + K) 
are presented). (d) Quantile-quantile (Q-Q) plot for distribution of P values at the MLM_Q + K model. The 
negative logarithm of the observed (y axis) and the expected (x axis) P value is plotted for each SNP (dot). 
The gray dashed line indicates the null hypothesis. (e) Zoom in on chromosome 10 peak where causative gene 
CmKFB (MELO3C011980)10 is shown. (f) Contingency analysis for distribution of rind color across alleles at 
Chr10_SNP3541676.
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collections and map traits through GWAS was described as a mean to improve tomato flavor46, or identify 
candidate-genes for manganese efficiency in barely47.

The current study is aimed at establishing melon diversity collection as a permanent germplasm resource 
for discovery of phenotypic variation and genetic mapping of traits. We performed phenotypic and genotypic 
analyses to test and demonstrate the genetic resolution and overall effectiveness of this platform. The panel used 
in this study is composed of 177 accessions that represent large portion of the genetic and phenotypic diversity 
within C. melo. The collection was genotyped with 23,931 SNPs that cover all 12 melon chromosomes at an aver-
age density of ~1 SNP per 18 Kb. This density and coverage allowed us to calculate the extent of LD and show 
that LD decays on average across ~100 KB in this panel (Fig. 3), defining the potential mapping resolution and 
estimated number of markers required for GWAS in this crop. Since LD decay pattern reflects an average genetic 
attribute that describes theoretical mapping resolution, we performed real mapping of traits to test the actual 
resolution obtained. Three traits with high heritability, simple genetic basis and known causative genes were used 
as test cases: Sex-expression trait was mapped to chromosome 2, one gene away from the previously identified 
causative CmACS-7 gene35. Major flesh color locus was mapped within the causative CmOr gene that was mapped 
earlier using bi-parental linkage analyses7, 34 and later cloned using candidate gene approach9. The yellow rind 
trait locus was mapped 65 KB from the causative CmKFB gene that was previously identified through RNA-Seq 
bulk-segregant analysis (BSA) on F3s10.

Thus, three independent single gene traits were successfully mapped in the current study to narrow genomic 
intervals, where the most significant SNPs identified for each trait were located within less than 100 Kb windows 
from the known, previously mapped, causative genes. LD around these mapped trait loci decayed within the 
expected physical distance calculated at the whole genome level and allowed us to define confidence intervals 
containing less than 20 annotated open-reading frames (ORFs) in these three examples.

Fruit shape is highly polymorphic trait that has been extensively studied in melon and shown to be governed 
by multiple QTLs2–5. We analyzed fruit shape variation across the diversity panel and mapped QTLs for this trait. 

Figure 7. Characterization and mapping of fruit shape. (a) Examples of elongated and round fruits from the 
collection and the measurements taken for shape analysis. (b) Frequency distribution of fruit shape index for 
accession means. (c) Fruit shape index projected on genetic PCA plot. (d) Manhattan plots of GWA of fruit 
shape index. Upper panel: GLM analysis. Lower panel: MLM_Q + K analysis. Dashed gray horizontal lines 
are genome-wide significance thresholds adjusted for multiple comparisons using FDR5% and Bonferroni 
corrections. Horizontal bars bellow the plot indicate names and positions of previously mapped QTLs5. Dark 
red are meta-QTLs. Pink are QTLs identified in one or two experiments. (e) Quantile-quantile (Q-Q) plot for 
distribution of P values at the MLM_Q + K model. The negative logarithm of the observed (y axis) and the 
expected (x axis) P value is plotted for each SNP (dot). The gray dashed line indicates the null hypothesis.
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The extended variation and high heritability enabled the identification of multiple significant SNPs across all 
chromosomes (Fig. 7d, Table S3). Strong signals were detected in chromosomes 2, 8 and 11 where meta-QTLs 
were previously described5, as well as significant effects in other genomic regions mapped in specific studies. 
Availability of a reference genome for melon32 facilitates effective comparative mapping through alignment of 
results from different studies into a common framework48. The added value of using multi-allelic population is 
demonstrated here for fruit shape through the simultaneous identification of QTLs that were previously found in 
different populations.

Visual projection of phenotypic variation on the genetic landscape (expressed as 2D PCA plots) is shown 
here as a useful instrument to evaluate the relation between population structure and trait variation and to gain 
perspective about the history of allelic variation in target traits. For example, one can hypothesize that the CmOr 
gene dominant mutation, which governs the accumulation of carotenoids (mainly β-carotene) and orange flesh 
color9, most likely occurred during sub-speciation as the orange allele is present only in one accession of the ssp. 
agrestis group in our collection (6%) while the frequency of the Orange allele at the ssp. melo group is 41%. The 
genotypic data localize the light-orange-flesh ssp. agrestis accession (PI414723) intermediate between the two 
sub-species, supporting this hypothesis (Fig. 5c). A second flesh color variant, wf, that is associated with the tran-
sition from white to green flesh and was previously described and mapped to chromosome 83, 49 is evident only 
within the ssp. melo group. The effect of breeding selection is reflected by the clear division between color cate-
gories within C. melo ssp. melo where most orange accessions belong to the reticulatus and cantalupensis groups 
and most white accessions are among inodorous. This trait is now readily transferred across genetic backgrounds 
using marker-assisted selection and it is expected that distribution of flesh color across horticultural groups will 
be more uniform with the development and distribution of new product combinations.

Population structure and cryptic relatedness may lead to false-positive discoveries in association analyses50. 
The correlation between population structure and trait distribution is defining the expected rate of spurious 
associations and the impact of correcting for structure and relatedness on distribution of P values21. We show 
in the current study the varying effect of population structure on GWA results across different traits in melon. 
The most striking example is ovary hairiness, spreading versus appressed, which determined subdivision of C. 
melo into two subspecies, ssp. melo (spreading) and ssp. agrestis (appressed)51. As expected, hairiness phenotypic 
distribution is completely correlated with sub-specific division and therefore excess of significant effects (false 
positive associations) are found genome-wide (Figures S18). Another trait where distribution of phenotypes is 
confounded with population structure is flesh color (Fig. 5c). The prominent difference in distribution of GWA P 
values between GLM and MLM analyses in both of these traits (Fig. 5d,e, Figure S18D,E, Figure S19) is a clear evi-
dence for that. While the control for population structure reduced the false-discovery ‘noise’ but did not exclude 
the detection and mapping accuracy for the major flesh color gene CmOr, it has most likely eliminated other 
true-positive associations that explain quantitative variation in color6, 7, 11. Flesh color and ovary hairiness are 
therefore examples for traits where the confounding effect of population structure reduce the power of association 
mapping and highlight the advantage of non-structured linkage designs. Similar situation was described for flow-
ering time and other traits in maize52. This limitation of association mapping approach has led to the development 
and implementation of alternative multi-allelic designs in plant53 and animal54 genetics that combine association 
and linkage properties. In maize, Nested-Association Mapping (NAM) and Multi-parent Advanced Generation 
InterCrosses (MAGIC) designs were demonstrated as efficient platforms for high resolution trait dissection55, 56. 
MAGIC design was also recently used in tomato to detect candidate SNPs underlying QTLs57.

Advances in genotyping technologies, computational and statistical tools are supporting the implementation 
of multi-allelic designs. The ability to simultaneously capture a wide spectrum of allelic variation for genetic 
mapping is appealing compared to traditional bi-parental designs, particularly in cases where multiple traits are 
targeted in parallel. The goal of the current study was to evaluate the potential of using diverse collection for LD 
mapping in Cucumis melo. The results presented here provide demonstration for the effectiveness of the melon 
diversity collection and GWAS approach to map simple traits to candidate-gene level. Based on experience and 
lessons from other crops, the next logical step to promote the efficient dissection of complex traits in melon would 
be the development of multi-allelic segregating populations that will overcome the inherent limitations of GWAS 
and can serve as a community resource for broader comparative genetics within the Cucurbitaceae. The genotypic 
and phenotypic infrastructure laid in this study can support the selection of balanced representative core panel 
for that purpose as shown for our current 25 founders core panel (Fig. 8, materials and methods), where for both 
phenotypic and genotypic plots, selected accessions are distributed uniformly and capture the diversity spectrum.

Materials and Methods
Plant materials and field experiment. The Newe-Ya’ar melon diversity collection used in this study is 
comprised of 177 inbred accessions derived from many countries and encompassing the two melon subspecies 
(ssp. agrestis and ssp. melo) and 11 horticultural groups (Fig. 1, Table S1, Figures S3 and S4). Seeds of each of the 
accessions were sown in seedling trays in early March, 2015. Seedlings were transplanted in early April to the field 
at Newe Ya’ar (32°43′05.4″N 35°10′47.7″E). The seedlings were spaced 50 cm apart, on raised beds covered with 
silver-colored plastic mulch (Ginnegar), 200 cm between bed centers. Soil type was grumusol, and the plants were 
drip-irrigated and drip-fertilized, to approximately 180 L/m2 over the course of the growing season. Each acces-
sion was represented by three plots of five plants each; in a randomized block design (RCBD).

The bi-parental populations that were used as reference for phenotypic variation spectrum in this study are 
created with lines that are part of the diverse collection and are shown in Figure S1. The three populations are: 
(1) SAS × DOYA population (120 F4 lines); cross between a sweet round-fruited accession (C. melo ssp. agrestis, 
var makuwa) and the non-sweet elongated pickling melon (C. melo ssp. melo, var flexuosus). (2) TAD × DUL 
population (166 RILs; F7); cross between an honey-dew line (C. melo ssp. melo, var inodorus) and an American 
cantaloupe melon (C. melo ssp. melo, var reticulatus). (3) PI414723 x DUL population11 (99 RILs); a wide cross 
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between a C. melo ssp. agrestis, var momordica accession and an American cantaloupe melon (C. melo ssp. melo, 
var reticulatus). These populations were grown during several years in the same location (Newe-Yaar) and similar 
growing regime.

Core panel of 25 founder lines for future multi-allelic segregating populations was selected based on multiple 
criteria derived from this study: initial tentative set (n = 40) was constructed to represent all the different horti-
cultural groups in the diverse collection (based on traditional classification). Phenotypic profiles were then used 
as the second primary factor; the preliminary core set was projected on the distribution of the different traits 
to ensure phenotypic spectrum is well captured in the core panel (as illustrated in Fig. 8). Following required 
adjustments and narrowing of the set to n = 30, based on the first two steps, final set was selected to meet the 25 
accessions target, taking into account maximum polymorphism information content (PIC) value and uniform 
distribution on genetic diversity plots (PCA and phylogenetic tree).

Phenotyping. The collection was subjected to phenotypic characterization of fruits throughout the growing 
season to reflect variation in fruit development, with most effort on mature fruits. Phenotyping during fruit 
development was largely based on images taken at the field using digital camera. Representative female flowers 
and fruits from each accession were pictured once a week from anthesis till harvest. Images were tagged and 
used for manual annotations of fruit traits. Melons were harvested when fully ripe, as defined by number of days 
after anthesis, rind color and firmness in the non-climacteric accessions and by abscission of the fruit from the 
peduncle (fruit stem) in climacteric accessions. Five mature fruits per plot were sampled in multiple harvests and 
total of 15 fruits per accession were analyzed. Due to large variation in maturity time across the diverse collec-
tion, the field was walked through on a two-daily basis from middle of June till end of July for selective harvest 
of mature fruits. Melons were weighed and cut longitudinally for external and internal imaging. Internal side of 
all fruits was scanned using a standard document scanner (Canon, Lide120). Three fruits per plot were used for 
flesh color measurement (three reads per fruit) using hand colorimeter (Minolta Sensing Inc, Minolta Chroma 
Meter Model CR-400, Osaka, Japan). Flesh and rind samples were taken as bulks from at least three fruits per plot 
and immediately frozen in 50 ml tubes in liquid nitrogen, for further biochemical and molecular analyses. Fruit 
internal scanned images were analyzed using the Tomato-Analyzer software36 for the extraction of color, shape 
and size attributes.

Figure 8. Core-panel (25 accessions) that represent genotypic and phenotypic spectrums across the diverse 
collection. (a) Two-dimensional genetic PCA plot. Core-panel accessions are shown in red. (b) Frequency 
distributions of various phenotypic traits. Core-panel accessions are highlighted in red.



www.nature.com/scientificreports/

1 1SCIenTIfIC REPORTS | 7: 9770  | DOI:10.1038/s41598-017-09987-4

SNP genotyping. DNA isolation for GBS. Total genomic DNA extractions were performed on the177 
accessions. DNA isolation was performed using the GenEluteTM Plant Genomic DNA miniprep kit (Sigma, St. 
Louis, MO). The quality of the DNA was analyzed by ND-1000 Spectrophotometer (Nanodrop Technologies, 
Wilmington, DE) and by electrophoresis on agarose gel. The concentration of DNA was estimated using Qubit® 
2.0 Fluorometer (Life Technologies, Singapore) and Qubit® dsDNA BR Assay Kit (Life Technologies, Eugene, 
OR).

GBS analysis. DNA was shipped to the Institute for Genomic Diversity facility at Cornell University for GBS. 
GBS 96-plex libraries were prepared using the restriction enzyme ApeKI, following an established protocol31. 
Fragments were sequenced on an Illumina HiSeq. 2500 as 100 bp, single-end reads and aligned to the reference 
genome of C. melo32 available at https://melonomics.net/files/Genome/Melon_genome_v3.5.1/. TASSEL pipeline 
v3.0.173 was used for sequence alignment and single nucleotide polymorphism (SNP) calling58. Further filtration 
was performed using TASSEL v5.2.3359; SNP list was filtered to MAF > 0.05 and maximum of 6% missing data 
per site.

Validation of trait peak markers. Association results for flower sex-expression, flesh color and yellow rind 
were validated by genotyping polymorphisms at the causative genes: polymorphism at the CmACS-7 gene 
(MELO3C015444) was genotyped using CAPs marker adapted from Boualem et al.35. A 234 bp amplicon was pro-
duced (Forward primer: AGATTCGCCGTATTTTGCTG, Reverse primer: CCCTCACAATTTTCCTCCAA), 
cleaved with Alu I restriction enzyme and seperated on a 2% agarose gel. For CmOr gene (MELO3C05449) 
polymorphism was genotyped based on the SNP described by Tzuri et al.9. 500 bp amplicons (Forward: 
CTCCTTGGTTTTCTTCATG, Reverse: CAACAAAACCCATCAAGTC) were sequenced and aligned across 
all samples. SNP at position 160 was called. Polymorphism at the CmKFB gene was genotyped using a protocol 
adapted from Feder et al.10. A 81 bp product was amplified (Forward: AACACTCAAAATTCACTAAATGGTCT, 
Reverse: TGTCGTAATTTTAATTTTACTTATTTTTATC) and a 23 bp indel differentiating between the alleles 
was scored on a 2.5% agarose gel.

Data analysis. Population structure, Kinship and LD analysis. TASSEL software (V 5.2.33)59 was used to 
estimate the relatedness matrix of pairwise kinship (k matrix) from the filtered SNP dataset using the Centered_
IBS method60. Intra-chromosomal LD between pairs of sites was calculated in TASSEL on SNP set filtered to 
MAF > 0.15 to ensure reliable estimates. Phylogenetic tree was built using the neighbor-joining function in 
MEGA61. An admixture-based clustering model implemented in the software STRUCTURE33 was used to infer 
the genetic structure of the collection. Ten independent runs for each K value ranging from 1 to 10 were per-
formed with a burn-in length of 100,000 and 100,000 Markov chain Monte Carlo (MCMC) repeats after burn-in. 
The optimal subpopulations number was calculated from the second order rate of change of likelihood (delta K 
method)62.

GWA mapping. In this study, four models (run in TASSEL) were used for the association analysis: the first used 
a generalized linear model (GLM) without any consideration for population structure; the second was GLM + Q 
where inferred ancestry of individuals (Q matrix) is used as covariate in the model; the third model was mixed 
linear model (MLM) using kinship matrix (k; random effect based on the genetic relatedness across all accessions) 
and the fourth model was MLM using both population structure (Q matrix) and relatedness (kinshp matrix).This 
model considered population structure and cryptic relationships thereby minimizing false positives and increas-
ing the statistical power. Supplementary Figure S19 is showing Quantile-quantile (Q-Q) plots where distributions 
of P values at the different models are compared to the expected null hypothesis distribution. Significance thresh-
old was corrected for multiple comparisons using the FDR approach63. For fruit shape GWA analysis, stringent 
Bonferroni correction was used to control for multiple comparisons.
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