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Synergistic impact of mutations 
in Hepatitis B Virus genome 
contribute to its occult phenotype 
in chronic Hepatitis C Virus carriers
Rajiv Kumar Mondal1, Mousumi Khatun1, Priyanka Banerjee1, Alip Ghosh1, Sumanta Sarkar1, 
Amal Santra1, Kausik Das2, Abhijit Chowdhury2, Soma Banerjee1 & Simanti Datta1

We characterized occult HBV (OHBV) from hepatitis B surface antigen (HBsAg)-negative chronic HCV 
carriers of Eastern India to explore the impact of genomic variability of HBV in causing undetectability 
of HBsAg and low viremia that define the occult phenomenon. Screening of sera samples revealed the 
presence of OHBV in 17.8% of HCV-infected patients. Determination of full-length OHBV sequences 
and comparison with that from HBsAg-positive carriers led to the detection of distinct substitutions/
mutations in PreS2, S, P and X ORFs and in X-promoter and Enhancer-II of OHBV. These mutations were 
introduced in wild-type HBV and their effects were evaluated by transfection in Huh7 cells.  
In vitro assays demonstrated that S-substitutions resulted in antigenically modified HBsAg that escaped 
detection by immunoassays whereas those in ORF-P caused significant decline in viral replication. 
Impairment in Enhancer-II and X-promoter activities were noted due to occult-associated mutations 
that generated reduced pregenomic RNA and intracellular HBV-DNA. Additionally, Enhancer-II 
mutations altered the small to large surface protein ratio and diminished extracellular HBV-DNA and 
HBsAg secretion. Further, mutations in PreS2, X and enhancer-II increased Grp78-promoter activity, 
suggesting that OHBV could trigger endoplasmic reticulum stress. Thus viral mutations contribute 
synergistically towards the genesis of occult phenotype and disease progression.

Infection by Hepatitis B virus (HBV) constitutes the most common cause of chronic liver disease including 
chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC)1. The current routine diagnosis of HBV infec-
tion relies on the detection of Hepatitis B surface antigen (HBsAg) in the patients’ sera and its disappearance 
has been correlated with clearance of viremia and resolution of liver injury1. However, with the availability of 
highly sensitive genome amplification methods, low-level of HBV-DNA could be detected in sera or liver tissues 
of HBsAg-negative patients and this particular form of viral persistence has been commonly termed as “occult” 
HBV infection (OBI)2. The molecular mechanisms underlying the occult phenomenon still remain ambiguous. 
Both viral and host factors have been implicated in the induction of OBI, although recent studies have placed 
more emphasis on the role of host immunological and epigenetic factors in this regard3–5.

OHBV had been identified in patients with chronic hepatitis C virus (HCV) infection, given that these two 
viruses share the same modes of transmission. It had been suggested that OHBV may interfere with the clinical 
outcome of chronic hepatitis C and favor or accelerate the evolution to cirrhosis or development of HCC2, 3. In 
addition the presence of OHBV had been correlated with poor response of HCV patients to interferon therapy3 
and their propensity for reactivation could undermine the success of liver transplantation6 that is often recom-
mended for patients with HCV-related cirrhosis. The recent introduction of a variety of direct-acting antiviral 
agents has made HCV cure possible but has increased the likelihood of occult HBV reactivation in co-infected 
patients that may even lead to fatal hepatitis B7, 8. Hence identifying HCV carriers carrying OHBV and expansion 
of the knowledge about OHBV biology are needed to guide treatment decisions, to design improved methods 
of OHBV detection and to fathom the pathogenic potential or the clinical implications of the occult virus. The 
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available data on the frequency of OBI in HCV patients are widely divergent9, 10 and there has been no study on 
the molecular characterization of full-length OHBV in HCV carriers. India has over 40 million HBV carriers11 
and about 15 million HCV carriers12 and the incidence of HBV and HCV co-infection in chronic liver disease 
population had been variously reported between 3–56%13. But there is limited information on the prevalence and 
genetic features of OHBV in chronically HCV-infected Indian patients. Hence, the present study sought to deter-
mine the OBI prevalence in chronic HCV carriers of Eastern India and to carry out comprehensive molecular and 
functional analyses of OHBV to explore the possible role of genomic variability in causing (1) absence of HBsAg 
and (2) low viremia, the two defining features of OBI. In addition, the contribution of OHBV towards disease 
pathogenesis was also investigated.

Results
Prevalence of serological markers of HBV among HCV patients. A total of 213 treatment-naïve, 
HBsAg-negative patients with chronic HCV infection were recruited in the study and their demographic and 
clinical features are summarized in Table 1. The prevalence of antibody to hepatitis B core antigen (anti-HBc) and 
antibody to HBsAg (anti-HBs) were tested in all HCV carriers. It was observed that ~15% of these patients were 
positive for both anti-HBs and anti-HBc, ~24% had isolated anti-HBc, ~11% showed only anti-HBs sero-positiv-
ity, while ~51% of the patients did not possess any anti-HBV serological marker (Table 1).

Detection of OBI. By applying the currently accepted criteria for the identification of OBI, which entails 
the positive detection of HBV-DNA in at least two out of at least three different genomic regions of HBV ana-
lyzed by nested PCR2, 38 (17.8%) out of 213 HCV patients were found to carry OHBV. Further, among these 38 
OBI-positive patients, the presence of both anti-HBs and anti-HBc were noted in 8 (~21%) patients; isolated 
anti-HBc was identified in 7 (18%), anti-HBs alone in 5 (13%) while 18 (47%) patients had no evidence of prior 
HBV exposure or remote infection (anti-HBs−/anti-HBc−) (Table 1). The median HBV DNA level in these 38 
HCV patients was 237 copies/ml (range, 10–1056 copies/ml) (Table 1).

OHBV genotype. Amplification and full-genome sequencing of OHBV was attempted from 38 OBI-positive 
samples of HCV-infected patients. However complete sequences were obtained from 19 OHBV isolates. 
Phylogenetic analysis revealed that 17 (89.5%) out of 19 OHBV isolates clustered with genotype D, whereas the 
remaining two were of genotype C (Supplementary Figure S1). Subsequent analyses of genetic diversification and 
properties of OHBV were carried out exclusively on 17 OHBV/D isolates.

Identification of Occult-associated mutations in HBV. To identify distinct nucleotide/amino acid 
changes that characterize OHBV, the 17 full-length OHBV/D sequences determined in the study were compared 
with 105 HBV/D sequences derived from HBsAg-positive chronic HBV carriers in different parts of the world 
(WRLD) and 62 HBV/D sequences from Eastern India (EI) and the following mutations were observed (Table 2).

ORF-PreS1/PreS2/S. The HBV surface gene consists of a single ORF divided into three coding regions: preS1, 
preS2 and S. A combination of all three regions form the Large surface protein (LHBs), the PreS2 and S domains 
form the middle (MHBs) while the S domain codes for the small surface protein (SHBs or HBsAg). The amino 
acid sequences of the surface proteins of OHBV/D revealed that the substitutions, P36L and I42L in PreS2 
occurred at significantly high frequency, either singly or dually, relative to that from HBsAg-positive carriers 
(Table 2). In addition, two substitutions, T125M and P127T within the major B-cell epitope cluster [amino acid 

Total HCV Patients HCV patients with OBI HCV patients without OBI

p valuen = 213 n = 38 n = 175

Age (Year), median (range) 52 (6–80) 55 (14–78) 50 (6–80) >0.05a

anti-HBs+/anti-HBc+ (%) 31 (14.6) 8 (21.1) 23 (13.1) >0.05b

anti-HBs−/anti-HBc+ (%) 51 (23.9) 7 (18.4) 44 (25.1) >0.05b

anti-HBs+/anti-HBc− (%) 23 (10.8) 5 (13.2) 18 (10.3) >0.05b

anti-HBs−/anti-HBc− (%) 108 (50.7) 18 (47.4) 90 (51.4) >0.05b

Sex, M:F 144:69 28:10 116:59 >0.05b

ALT (IU/L), median (range) 57.5 (11–237) 57 (19–117) 58 (11–237) >0.05a

AST (IU/L), median (range) 76 (19–195) 76.65 (22–111) 76 (19–195) >0.05a

Total bilirubin (mg/dL), median 
(range) 0.97 (0.4–5.8) 1.14 (0.5–5.4) 0.9 (0.4–5.8) >0.05a

Alkaline phosphatase (IU/L), median 
(range) 141 (28–418) 140 (47.1–400) 151 (28–418) >0.05a

OHBV-DNA (copies/mL), median 
(range) NA 237.1 (10–1056) NA NA

HCV-RNA (copies/mL), median 
(range) 92867 (100–5 × 106) 49100 (100–6.5 × 105) 281050 (100–5 × 106) >0.05a

Table 1. Clinical, demographic and biochemical data of HCV patients with or without OBI. OBI, Occult HBV 
infection; ALT, alanine aminotransferase; AST, aspartate aminotransferase; IU, international unit; NA, Not 
Applicable. aMann Whitney test, p value. bFisher’s exact test, p value.
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(aa) 124–147] (referred to as “a”-determinant)4, 5 of S-ORF had significantly higher prevalence in OHBV/D than 
in overt HBV, irrespective of their geographical origin (Table 2).

ORF-X. Within ORF-X, two substitutions, R26C and P33S were perceived at significantly higher rates (64.9%) 
in OHBV/D in comparison to HBV from HBsAg-positive individuals (Table 2). Of these, P33S lies in B-cell 
epitope (aa.29–48) while R26C falls in non-epitope region of X.

ORF-P. A total of 13 substitutions in ORF-P, including four in spacer (sp), seven in rt and two in rh domains 
were detected at a significantly high proportion in OHBV isolates as compared to that from HBsAg-positive cases 
(Table 2). As the PreS/S-ORF completely overlaps ORF-P, two substitutions, I42L in PreS2 and P127T in S corre-
sponded to two additional changes, spH153L and rtS135Y respectively in ORF-P and had distribution patterns 
identical to those of PreS1 and S variants in the study groups.

HBV Regulatory Regions. Analysis of the sequences of HBV regulatory regions, namely, basal core promoter 
(BCP; nt.1742–1849), PreS1-promoter (nt.2704–2823), PreS2/S-promoter (nt.2978–3207), Enh-I (nt.1074–1234) 
and negative regulatory element (nt.1613–1636) of OHBV showed no significant difference from that derived 
from HBsAg-positive cases. However within X-promoter (nt.957–1354), four mutations, T1050G, A1053G, 
C1059T and C1350A were found to be significantly high in OHBV as compared to that from HBsAg-positive (or 
overt) infections in same or different geographical regions (Table 2). However, owing to the overlap between X 
promoter and ORF-P, one substitution in rt (rtV278I) and two substitutions in rh domain (rhL30S and rhL55I) of 
ORF-P (Table 2) resulted in four additional changes (G961A, C1249T, T1250C and C1324A) in X-promoter. In 

Site in HBV Amino Acid/
Nucleotide Substitution

OHBV/D sequences 
determined in this study 
(n = 17)(%)

HBV/D sequences from 
HBsAg-Positive carriers of 
Eastern India (EI) (n = 62)(%)

HBV/D sequences from HBsAg-Positive 
carriers of other geographical regions 
(WRLD) (n = 105)(%)

p2 (OHBV vs 
HBV/D_EI)a

p1 (OHBV vs 
HBV/D_WRLD)a

PreS1/PreS2/S-ORF

PreS2-P36L 11(64.9) 10(16) 1(0.9) 1.97E-04 1.01E-10

PreS2-I42L 14(82.6) 16(25.6) 27(25.6) 3.59E-05 1.25E-05

P36L+I42L 11(64.9) 9(14.4) 1(0.9) 1.03E-04 1.01E-10

sT125M 16(94.4) 22(35.2) 20(19) 1.37E-05 2.48E-09

sP127T 17(100) 43(68.8) 39(37) 8.29E-03 3.82E-07

sT125M+sP127T 16(94.4) 21(33.6) 20(19) 1.02E-05 2.48E-09

X-ORF

R26C 11(64.9) 11(17.6) 19(18) 3.57E-04 1.70E-04

P33S 11(64.9) 19(30.4) 34(32.3) 2.19E-02 1.46E-02

R26C+P33S 11(64.9) 11(17.6) 10(9.5) 3.57E-04 1.84E-06

ORF-P

spE1D 12(70.8) 10(16.1) 13(12.4) 3.65E-05 1.38E-06

spI59F 10(59) 13(20.9) 22(20.9) 5.17E-03 2.23E-03

spL80F 11(64.9) 14(22.5) 35(33.3) 2.26E-03 1.68E-02

spL116F 10(59) 10(16.1) 13(12.3) 8.92E-04 7.26E-05

rtA21S 11(64.9) 15(24.2) 26(24.7) 3.01E-03 2.97E-03

rtF122L 10(59) 14(22.5) 24(22.8) 6.87E-03 6.33E-03

rtH124N 13(76.7) 9(14.5) 5(4.7) 2.58E-06 1.56E-10

rtQ130P 10(59) 17(27.4) 22(20.9) 2.19E-02 2.23E-03

rtN131D 10(59) 9(14.5) 4(3.8) 4.97E-04 1.11E-07

rtD263E 14(82.6) 28(45.1) 40(38) 1.20E-02 1.04E-03

rtV278I 11(64.9) 8(12.9) 14(13.3) 5.10E-05 4.57E-05

rhL30S 11(64.9) 7(11.3) 10(9.5) 2.35E-05 1.84E-06

rhL55I 14(82.6) 27(43.5) 38(36.1) 5.79E-03 4.53E-04

X-Promoter

T1050G 12(70.6) 12(19.4) 12(11.4) 1.29E-04 7.52E-07

A1053G 11(64.7) 11(17.7) 10(9.5) 3.57E-04 1.84E-06

C1059T 11(64.7) 13(21) 14(13.3) 1.89E-03 1.85E-05

C1350A 11(64.7) 8(12.9) 2(1.9) 5.10E-05 6.21E-10

Enh-II

C1637A 11(64.7) 9(14.5) 9(8.6) 1.03E-04 9.23E-07

T1676A 12(70.6) 13(21) 7(6.7) 2.28E-04 1.77E-08

Table 2. Frequencies of mutations across the complete genome of OHBV/D as compared to HBV/D 
from HBsAg-positive carriers. aFisher’s exact test, p value; ORF, open reading frame; sp, spacer; rt, reverse 
transcriptase; rh, RNaseH.
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addition, two mutations, C1637A and T1676A were detected within the Enh-II (nt.1636–1741) that had signifi-
cantly higher prevalence in OHBV than in reference sequences (Table 2).

Combination of occult-associated mutations. We evaluated the number of OHBV isolates that harboured all the 
above mutations synchronically. All identified mutations within coding and regulatory regions were found to 
co-exist in 10 (58.8%) out of 17 OHBV/D.

Effect of S-substitutions on Antigenicity, expression and detection of HBsAg. We first exam-
ined the impact of the substitutions, T125M and P127T on the antigenicity of the B-cell epitope (aa 124–147) 
of HBsAg by Kolaskar and Tongaonkar Antigenicity Prediction method and observed that both substitutions 
resulted in decreased antigenicity relative to wild-type (wt) residues (Fig. 1A), suggesting that these changes may 
affect the binding of HBsAg to anti-HBs and its detection by immunoassays.

Further, introduction of these two S-mutations in wild-type full-length HBV and transfection of both the 
wild-type and mutant HBV genomes into Huh7 cells demonstrated that the presence of T125M and P127T in 
HBsAg did not alter the levels of PreS2/S transcripts relative to wt, as determined by Real time PCR (Fig. 1B) but 
resulted in significant reduction in HBsAg detection both intracellularly by immunoblotting (Fig. 1C) and in 
culture supernatant by ELISA (p < 0.0001) (Fig. 1D).

Effect of substitutions in ORF-P on HBV replication. To investigate whether the substitutions 
detected in ORF-P, particularly in the rt and rh domains of OHBV affect its replication capacity in comparison 
to the wild-type isolates lacking these substitutions, HBV constructs, pTriEXMod/HBV-D-wt and pTriEXMod/
HBV-D-mt, differing only in rt and rh domains were generated, such that pTriEX-Mod/HBV-D-mt harboured 
seven substitutions in rt and two substitutions in rh domains, whereas pTriEXMod/HBV-D-wt carried wild-type 
residues at analogous positions. Transfection of these constructs into a Huh7 cell line and quantification of 
intracellular core-associated HBV DNA indicated that HBV expressed from pTriEX-Mod/HBV-D-mt had a 

Figure 1. Effects of substitutions in ORF-S on HBsAg antigenicity and its detection. (A) Antigenicity plot of “a” 
determinant (aa.124–147) of HBsAg showing decreased antigenicity due to substitutions T125M and P127T as 
obtained by Kolaskar and Tongaonkar Antigenicity Prediction method. The relative ratio of PreS2/S and PreS1 
mRNA determined by quantitative real-time PCR (B), the expression of HBV envelope proteins by immunoblot 
assay with mouse monoclonal anti-HBs primary antibody [the cropped gels are shown here for clarity while the 
full-length blots are presented in Supplementary Figure S2 (A); α-Tubulin served as the loading control] (C) 
and HBsAg level [Signal(S)/Cutoff(CO)] in culture supernatant estimated by ELISA (D), following transfection 
of wt-HBV (HBV/D-wt) and mutant construct [HBV/D-mt(HBsAg)], having T125M and P127T substitutions 
in Huh7 cells. Paired t-test p values; ***p < 0.0005, ns; non-significant.
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mean ~2.15 fold lower replication efficiency than HBV from pTriEX-Mod/HBV-D-wt (p < 0.0001) (Fig. 2A). 
Consistent with these data, ~2.9-fold decrease in HBsAg (p = 0.0015) was noted in culture supernatant when 
pTriEX-Mod/HBV-D-mt was used (Fig. 2B).

Effect of Enh-II mutations on HBV replication and HBsAg expression. Enh-II is known to stimu-
late transcription from different HBV promoters, importantly BCP and PreS2/S-promoter and thereby regulates 
the expression of HBV genes and viral replication14. We first sought to determine the effects of the two mutations, 
C1637A and T1676A on the enhancer activity, for which the wild type and mutant Enh-II element was sepa-
rately cloned in enhancer-less pGL3 promoter vector. It was noted that the level of luciferase activity directed by 
mutant-Enh-II was significantly less than that conferred by wild-type Enh-II (Fig. 3A) (p = 0.0011), suggestive of 
a decline in enhancer activity in OHBV.

We next explored whether the Enh-II mutations could impact the replication efficiency of HBV and we trans-
fected the full-length wild-type HBV and its mutant counterpart (carrying the above two mutations) into Huh7 
cells. As shown in Fig. 3B–D, Enh-II-mutated HBV demonstrated ~2 fold reduced levels of pregenomic RNA 
(pgRNA), transcribed from BCP and similar decline in intracellular and extracellular HBV-DNA as compared to 
wt-HBV (p < 0.05).

We also evaluated the expression of HBV surface proteins in Huh7 cells transfected with wt- or Enh-II-mutated 
HBV to discern whether the Enh-II mutations alter the natural stoichiometry between the LHBs and SHBs that is 
critical for secretion of virions and HBsAg15. It was noted that the PreS2/S transcript as well as intracellular SHBs 
was reduced in presence of Enh-II mutations while the levels of PreS1-mRNA and LHBs were comparable to that 
of wt-HBV, thereby implying a low SHBs:LHBs ratio in Enh-II-mutated virus (Fig. 4A and B). Concurrently, a 
reduced level of both extracellular HBV-DNA and HBsAg was detected in the culture supernatant of mutant virus 
(Fig. 3D,C). Collectively, these results illustrated that Enh-II mutations contributed to attenuated HBV replica-
tion, reduced SHBs expression and alteration in relative levels of LHBs and SHBs, resulting in suboptimal virion 
and HBsAg secretion.

Effect of Occult-associated mutations inside X-Promoter. HBx is known to augment viral transcrip-
tion as well as replication16. The expression of HBx is directed by the X-promoter, where four mutations were iden-
tified in OHBV/D. We first assessed the impact of these four mutations on the activity of the X promoter for which, 
the full-length promoter region of HBx with or without these mutations was cloned in pGL3 basic vector and 
the abilities of the constructs, pGL3-B-HBx-promoter-mt and pGL3-B-HBx-promoter-wt to drive the luciferase 
expression were studied following transfection in Huh7 cells. It was observed that the mutant X-promoter exhibited 
~48% lower luciferase activity than the native one (Fig. 5A), implying a reduced intrinsic strength of the mutant 

Figure 2. Effects of substitutions in reverse transcriptase (rt) and RNaseH (rh) domains of ORF-P on HBV 
replication. The relative intracellular HBV-DNA level measured by quantitative real-time PCR (A) and 
HBsAg level [Signal(S)/Cutoff(CO)] in culture supernatant estimated by ELISA (B), following transfection 
of the wt-HBV (pTriEx-Mod/HBV-D-wt) and mutant construct (pTriEx-Mod/HBV-D-mt), having rt and rh 
substitutions in Huh7 cells. Paired t-test p values; **p < 0.005, ***p < 0.0005.
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X-promoter that in turn would also inhibit the expression of HBx. Further, transfection of full-length HBV bearing 
the four X-promoter mutations in Huh7 cells resulted in a significant decrease in both pgRNA (~1.6 fold) and intra-
cellular HBV-DNA (~2.6 fold) relative to wild-type HBV (p < 0.005) (Fig. 5B,C), suggesting that these X-promoter 
mutations had the potential to negatively regulate HBV replication that may lead to the occult phenotype.

Effect of mutations inside PreS2 and X protein as well as in Enh-II on generation of ER Stress.  
We attempted to determine whether HBV harbouring the combined substitutions, P36L and I42L inside PreS2 
and R26C and P33S in HBX could generate greater ER stress in infected hepatocytes than wild-type HBV. Since 
we observed altered expression ratio of LHBs to SHBs in HBV with mutated Enh-II, we also speculated that this 
mutant could result in up-regulation of the ER stress pathway in the host cells. Hence we studied the transcrip-
tional activation of the promoter of GRP78, the pro-survival ER chaperon, cloned in pGL3-Basic vector in pres-
ence of these different HBV mutants. A significant increase in GRP78-promoter activity was detected when all 
these mutants were separately transfected in Huh7 cells, relative to wt-HBV (p < 0.03) (Fig. 6).

Figure 3. Effects of substitutions in Enh-II on enhancer activity, pgRNA expression and HBV-DNA level. (A) 
Relative luciferase activities of the constructs pGL3-P-wt-Enh-II and pGL3-P-mt-Enh-II carrying wild-type and 
mutant Enh-II elements respectively in pGL3-promoter vector. Relative expression of pgRNA (B), intracellular 
HBV-DNA level (C) and extracellular HBV-DNA level (D), as measured by quantitative real-time PCR, 
following transfection of the full-length, wild-type HBV/D (HBV/D-wt) and corresponding Enh-II-mutated 
HBV [HBV/D-mt(Enh-II)] in Huh7 cells. Paired t-test p values; *p < 0.05, **p < 0.005, ***p < 0.0005.
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Discussion
In the present study, we analyzed the prevalence of OBI in chronically HCV infected patients of Eastern India and 
performed an extensive molecular characterization of OHBV to gain an insight into plausible virological mech-
anisms that might be linked to the occult infection. While previous studies had illustrated the impact of HCV, 
particularly, the role of HCV core17 and NS2 protein18 in suppressing HBV replication and antigen expression and 
also highlighted the contribution of host immune response-related3, 19 and epigenetic mechanisms20 in induction 
of OBI, we have demonstrated that mutations in the coding and transcriptional regulatory regions of HBV could 
also play a pivotal role in the genesis of OBI. Thus our findings add to the existing knowledge on the mechanisms 
leading to the occult phenomenon.

OBI is relatively common in patients with chronic HCV infection and its prevalence had been reported to be 
15–33% in different studies3. In India, the population prevalence of chronic HBV and HCV infection are ~2–4% 
and ~1% respectively21 but the sheer enormity of the population of this region accounts for a large chunk of the 
entire global pool of HBV and HCV carriers. However, till date only a single study reported the detection of OBI 
in 7.3% of chronic hepatitis C patients in southern India22. Here we noted that 17.8% of chronic HCV carriers 
of Eastern India carried OHBV. In contrast to previous reports suggesting a strong association between OBI and 
presence of anti-HBc and anti-HBs antibodies2, 3, we observed that the prevalence of OBI was particularly high 

Figure 4. Effects of substitutions in Enh-II on the envelope protein expression. Relative ratio of PreS2 and 
PreS1-mRNA as determined by quantitative real-time PCR (A), expression of HBV envelope proteins by 
immunoblot assay with mouse monoclonal anti-HBs primary antibody [the cropped gels are shown here for 
clarity while the full-length blots are presented in Supplementary Figure S2 (B); α-Tubulin served as the loading 
control] (B) and HBsAg level [Signal(S)/Cutoff(CO)] in culture supernatant estimated by ELISA (C), following 
transfection of the full-length, wild-type HBV/D (HBV/D-wt) and corresponding Enh-II-mutated HBV [HBV/
D-mt(Enh-II)] in Huh7 cells. Paired t-test p values; *p < 0.05.

Figure 5. Effects of substitutions in X-promoter on promoter activity, pgRNA expression and HBV-DNA level. 
(A) Relative luciferase activities of the constructs pGL3-B-HBx-promoter-wt and pGL3-B-HBx-promoter-mt 
carrying wild-type and mutated X-promoter respectively cloned in pGL3-Basic vector. Relative expression 
of pgRNA (B) and intracellular HBV-DNA level (C) as measured by quantitative real-time PCR, following 
transfection of the full-length, wild-type HBV/D (HBV/D-wt) and corresponding X-promoter-mutated HBV 
[HBV/D-mt(X-prom)] in Huh7 cells. Paired t-test p values; *p < 0.05, **p < 0.005, ***p < 0.0005.
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(47.4%) in those HCV-infected patients without any evidence of prior HBV infection. A similar high incidence 
of OHBV had been described by Fukuda et al. who documented the presence of OBI in 50% of HCV infected 
patients without any serum markers of HBV infection9. Yotsuyanagi et al. also reported the detection of OHBV 
in sera of 53.8% HCC patients who were negative for HBsAg, anti-HBs, anti-HBc and anti-HCV23. It is unclear 
whether the complete seronegativity results due to gradual disappearance of all viral markers in the years after the 
resolution of an acute infection or whether it occurs from the beginning of the infection or whether both these 
two conditions (i.e presence and absence of serum HBV markers) may occur in various cases. Nonetheless, our 
findings reiterate the fact that sensitive HBV DNA amplification assays should be used for detection of OBI over 
HBV serological screening.

Owing to the very low titre of HBV-DNA in OBI, a very few studies had analyzed the full-length OHBV 
genome24, 25 while most had been restricted to analysis of one or two subgenomic regions3. Here we sequenced 
the full-length OHBV from 19 HCV patients, 17 of which belonged to genotype D. A robust genotype-matched 
comparison of OHBV/D sequences with HBV/D from HBsAg-positive chronic carriers in the same or different 
geographical settings led to the identification of mutations in PreS2, S, X, polymerase and in X-promoter and 
Enh-II of HBV that were potentially associated with occult status. We further studied the biological implications 
of these mutations in the generation of OBI.

Mutations within HBsAg, particularly in “a” determinant region, were one of the earliest known mechanisms 
leading to OBI3. We observed a striking preponderance of two “a” determinant mutations, T125M and P127T 
in OHBV as compared to the overt virus. These two mutations had been detected in OHBV from Greek26 and 
Egyptian blood donors27 while T125M was common in anti-HBc-positive blood donors of South-eastern India28. 
A decrease in the antigenicity of the HBsAg due to the presence of these mutations had been suggested previ-
ously29, although Zheng et al. reported that these substitutions were recognized by anti-HBs antibodies30. By 
in vitro experiments and in silico analysis, we demonstrated that these mutations did not alter the synthesis of 
HBsAg but resulted in changes in antigenicity, affecting its interaction with antibody and contributing to weak 
reactivity or negative results by diagnostic tests. The BeneSphera HBsAg Microwell ELISA, which employs spe-
cific anti-HBs monoclonal antibodies coating the solid phase to capture HBsAg, with polyclonal antibodies as 
the detection conjugate as well as the mouse monoclonal anti-HBs primary antibody used for Western blotting 
in this study were not efficient in detecting the S-mutants T125M and P127T. Thus our findings reinforced the 
need for extending the antibody repertoire of the current assays in order to detect these emerging HBsAg variants 
that are identified in occult HBV derived from HCV patients. It had been suggested that immunoassay that uses 
polyclonal antibodies for both capture and detection was associated with higher detection of mutants31 although 
this may also reduce assay sensitivity30 and specificity32, 33. Manufacturers could thus investigate the possibilities 
of using polyclonal capture antibody based assays, or mixtures of monoclonal antibodies that recognize both 

Figure 6. Effects of mutations in PreS2 and X-ORFs as well as in Enh-II on generation of ER stress by analyzing 
GRP78-promoter activity. The full-length, wild-type HBV (HBV/D-wt) along with the mutant variants 
harbouring mutations in (i) PreS2 and X-ORF [HBV/D-mt(PreS2 + HBX)] and (ii) Enh-II element [HBV/D-
mt(Enh-II)] were co-transfected with pGL3-GRP78-promoter construct separately in Huh7 cells and the 
relative luciferase activities were determined after 48 hrs. Paired t-test p values; *p < 0.05.
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wild type and mutant HBsAg or tracer and capture antibodies against the pre-S region in order to circumvent the 
diagnostic failure related to S gene mutants of the “a” determinant. Further, these mutations in “a” determinant 
could accentuate the ability of the variant virus to evade the host immunity and persist in both unvaccinated and 
vaccinated hosts.

It is known that the replication of HBV-DNA proceeds through reverse transcription of 3.5-kb pgRNA, a 
reaction catalyzed by the viral polymerase1. Analysis of ORF-P revealed that 7 substitutions in rt and 2 in rh 
domains occurred at a significantly high frequency in OHBV than in virus from HBsAg-positive carriers. Our in 
vitro replication assay depicted a significant reduction in the replication efficiency of HBV in presence of these rt 
and rh mutations, which could partly explain the low copy numbers of HBV in OBI-positive patients. Further, the 
slow replication rates are often advantageous for viruses as by generating fewer virus-derived peptides, they could 
avoid being eliminated by host immune system and thereby have a greater likelihood of persistence in the host34.

HBV replication cycle is tightly coupled to viral gene expression that in turn is regulated by HBV promoters 
in conjunction with enhancers. The analysis of regulatory elements of OHBV revealed major changes in Enh-II 
that activates transcription from BCP and PreS2/S promoter. We noticed that the Enh-II mutations caused a 
marked reduction in pgRNA synthesis and a parallel decline in intracellular and extracellular HBV-DNA, an 
effect that is likely mediated through repression of core-promoter activity. Concurrently the inhibitory effect of 
these mutations on PreS2/S-promoter was reflected in the decrease in the levels of SHBs, low SHBs:LHBs ratio 
and diminished virion and HBsAg secretion. Thus it appears that these alterations in HBV life cycle evoked by 
Enh-II mutations may act conjointly to predispose the virus in acquiring the occult phenotype.

Further, four occult-associated mutations were discerned in X-promoter of HBV, of which the T1050G/A+ 
A1053G combination in HBV/D had been shown to be significantly associated with the development of HCC35. 
In a cohort of Chinese CHB patients, A1053G mutation was found to be associated with low HBV-DNA level, 
suggesting a negative impact of this mutation on HBV replication36. We observed that the transcription from the 
X-promoter was significantly weakened in presence of these mutations and coincided with a concomitant decline 
in HBV replication. Thus the X-promoter mutation, through possible modulation of X expression, could account 
for the low-level viremia seen in OBI-positive patients.

It is well established that chronic HBV infection is one of the major causes of advanced liver disease. PreS 
mutants as well as alteration in LHBs to SHBs ratio in the infected hepatocytes had been implicated in the induc-
tion of ER stress mainly from over-expressed or ER-retained LHBs in the face of lacking SHBs and thus contribute 
to disease progression37. In addition, the role of HBX in causing ER stress had also been documented38. Since 
OHBV isolates frequently carried mutations in PreS2, X and Enh-II, we envisaged that all these mutations could 
induce greater ER stress signals in the host cell than wt-HBV. Commensurate with this hypothesis, we showed 
that the activation of GRP78-promoter was much stronger for PreS2-X or Enh-II mutant than wild-type, suggest-
ing increased potential of OHBV to trigger ER stress, which could sensitize the hepatocytes to injury and favour 
the advancement of liver disease.

Hence, by analyzing the full-length genome of OHBV from HCV carriers, this study has for the first time iden-
tified multiple mutations in HBV that could potentially lead to the induction and maintenance of HBV infection 
in an occult status. Phenotypic analysis of HBV carrying these specific mutations in Enh-II and S-ORF revealed 
that these mutations were associated with reduced synthesis and secretion of HBsAg as well as its impaired detec-
tion by immunoassays, which in turn can lead to HBsAg negativity in OHBV infected patients. Additionally, 
mutations inside ORF-P, X promoter and Enh-II region were significantly correlated with attenuated virus rep-
lication and could account for the low level of HBV DNA in the serum of OBI positive patients. We have shown 
the functional consequences of the mutations individually but since most of the mutations co-exist in OHBV, it 
is likely that they act “synergistically” and have a significant cumulative impact in escorting the virus towards its 
occult phenotype. Our results also extended the functional ambit of OHBV to include their enhanced propensity 
to generate ER stress and consequently liver damage. Given that the reactivation of HBV after HCV treatment 
with direct-acting antivirals is an emerging issue in coinfected patients, it is becoming increasingly important to 
detect and monitor patients with OBI and to have a clearer understanding of the biology of the occult virus so as 
to reduce the risk of end-stage liver disease in future.

Materials and Methods
Patients. Treatment-naive patients with chronic HCV infection, having serum HCV-antibody positivity (>6 
months) but negative for HBsAg were included in the study from the Hepatology Clinic of School of Digestive 
and Liver Diseases, Institute of Post Graduate Medical Education and Research (I.P.G.M.E.&R.), Kolkata, India. 
Patients with HIV infection or other recognized causes of chronic liver disease or any systemic illness were 
excluded. Five millilitre blood was collected from all patients, the sera were separated and stored at −80 °C until 
use. Written informed consents were obtained from all patients and the access to human samples and all experi-
mental protocols were carried out in accordance with the approved guidelines of the Ethical Review Committee 
of I.P.G.M.E.&R.

Testing of Liver Enzymes and Serological Markers of HBV. The levels of liver enzymes alanine ami-
notransferase (ALT; normal range 2–40 IU/litre) and aspartate aminotransferase (AST; normal range 2–45 IU/
litre) in each serum sample were analyzed using commercially available kits (Bayer Diagnostics). The tests 
for serum HBsAg, anti-HBc and anti-HBs were accomplished using BeneSphera HBsAg Microwell ELISA kit 
(Avantor Performance Materials), DS-EIA-ANTI-HBsAg ELISA kit (DSI S.r.l.) and DS-EIA-ANTI-HBc ELISA 
kit (DSI S.r.l.) respectively, according to the manufacturers’ protocols. The analytical sensitivity of BeneSphera 
HBsAg Microwell ELISA kit was 0.2 IU/ml, whereas the diagnostic sensitivity and specificity of this kit was 100% 
and 99.5% respectively.
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Screening for OBI. Viral DNA was extracted from 1 ml sera samples with QIAamp DNA Blood Midi kit in 
accordance with the manufacturer’s instructions. (Qiagen Inc.) DNA was eluted in 200 μl of sterile distilled water 
that was concentrated to 30 μl using a DNA concentrator (Savant DNA Speedvac, Thermo Scientific). This con-
centrated DNA extract was analyzed for OHBV by performing 3 different nested PCR assays using two sets of for-
ward and reverse primers specific for each of surface, core and Polymerase/X genes respectively (Supplementary 
Table S1). For the first amplification, the 20-μl reaction mixture contained 5 μl of extracted/concentrated DNA, 
0.2 μM concentrations for each forward and reverse primer, 200 μM dNTPs, 2.0 U of ExPrime Taq DNA polymer-
ase (Genet Bio Inc.) and 1X reaction buffer. The mixtures were amplified with an initial denaturation at 94 °C for 
5 min followed by 45 cycles at 94 °C for 30 s, 56 °C for 60 s, and 72 °C for 2 min. There was a final extension at 72 °C 
for 7 min. For the second round PCR, 5 μl of product from the above-described reaction mixture was used with 
second set of forward and reverse primers and amplified under the same conditions. Appropriate no-template 
controls (water), negative controls (serum DNA extracts from HBV/HIV/HCV-seronegative healthy subjects) 
and positive controls (serum DNA extracts from HBsAg-positive subjects and/or cloned plasmid containing 
HBV genome) were included during each amplification step. Only cases that showed positivity in at least 2 viral 
sub-genomic regions were considered to be OHBV-infected.

Quantification of OHBV-DNA. OHBV-DNA was quantified by real time PCR using Robogene HBV 
Real-time Quantification Kit (Germany) following the protocol recommended by the manufacturer and the con-
version between IU/ml and copies/ml is based on the conversion factor of 5.0, indicating that 5 HBV copies/ml 
measured by this assay is equivalent to 1 IU/ml.

Amplification and sequencing of complete OHBV Genome. From OBI-positive cases, OHBV-DNA 
was amplified by a nested PCR approach to obtain overlapping sub-genomic fragments, covering the entire viral 
genome. The first PCR was carried out in 25 μl reaction mixture containing 10 μl of extracted/concentrated viral 
DNA, 0.2 μM of each of the primers HBVP1 and HBVP239 (Supplementary Table S2), 5 U of High Fidelity PCR 
Enzyme mix (Thermo Scientific/Fermentas), 250 μM dNTPs and 1X High Fidelity PCR buffer with 1.5 mM 
MgCl2. The optimized cycling protocol included 5 min of incubation at 94 °C, followed by 45 cycles each of 94 °C 
for 40 sec, 60 °C for 1 min, and 68 °C for 3 min 10 sec with 5 sec increment/cycle and a final extension at 68 °C for 
7 min. For the second-round PCR, 5 μl of the first PCR product was used as template along with primer pairs 
MP1-R5 and F3-MP2 or F3-R10, C1861F-R4, F7-R2 and F1-SP2 (Supplementary Table S2) and all other reagents 
were added in same concentrations as given above. The cycling conditions were usually 45 cycles at 94 °C for 
40 sec, 56 °C for 30 sec, and 68 °C for a time dependent on the expected product size (1 min per kb). The PCR 
products were purified by QIAquick PCR purification kit (Qiagen) and sequenced directly using BigDye termi-
nator v3.1 cycle sequencing kit (Applied Biosystems) on an automated DNA sequencer. Sequence editing and 
analysis were performed using Seqscape V2.5 software.

Sequence Analysis. To determine the genetic affiliation of OHBV strains, the full-length sequences obtained 
in the study were compared with representative sequences of ten HBV genotypes (A–J) retrieved from GenBank. 
Alignments were carried out using CLUSTALX software and a phylogenetic tree was constructed by the neigh-
bour joining (NJ) method using the Jukes–Cantor model in MEGA software version 634. To identify the potential 
mutations in HBV that are associated with occult status, the complete sequences of OHBV belonging to genotype 
D (OHBV/D) were compared with 167 HBV/D sequences derived from HBsAg-positive carriers that comprised 
of 62 sequences from Eastern India (EI) and 105 sequences from other geographical locations (WRLD), all of 
which are available in GenBank. The candidate mutations were identified by conducting multiple sequence align-
ment by CLUSTALX as implemented in MEGA6.

Antigenicity Plot. Antigenicity profile of selected epitope region of HBsAg [aa. 124–147] with or with-
out the occult-associated substitutions was investigated by Kolaskar and Tongaonkar Antigenicity Prediction 
method40 using Immune Epitope Database Analysis Resource (http://tools.immuneepitope.org/bcell/) and apply-
ing a window size: 5 and threshold: 1.

Cloning of full-length HBV and introduction of Occult-associated mutations. Full-length 
HBV genome of genotype D isolated from archival serum sample of a HBsAg- and HBeAg-positive chronic 
Hepatitis B (CHB) patient was amplified using primers HBVP1 and HBVP2, cloned into pJET1.2 vector using 
CloneJET PCR Cloning kit (Fermentas) and used as wild-type (wt) HBV. All OHBV-specific mutations, iden-
tified in this study, except those in ORF-P, were introduced separately in wt-HBV clone (pJET-HBV-wt) by 
Site-Directed Mutagenesis (Agilent Technologies) with specific mutagenic oligonucleotides (Supplementary 
Table S3) and confirmed by sequencing. The substitutions detected in reverse transcriptase (rt) and RNaseH (rh) 
domains of ORF-P of OHBV were introduced in replication competent HBV/D cloned in pTriEX-Mod vector 
(pTriEX-Mod-HBV-D) (a kind gift from Prof. Fabien Zoulim, INSERM, France) by cassette insertion method34. 
Briefly, an 1802 bp region of ORF-P (nt.3164–1783) was amplified using primers F4 and R10 (Supplementary 
Table S2) from pJET-HBV-wt and from previously sequenced OHBV/D DNA included in the study. The 1802 bp 
amplicons were digested using AvrII and NcoI restriction enzymes (Fermentas) and individually used to replace 
the corresponding region of HBV/D in pTriEX-Mod-HBV-D. Thus, two constructs, pTriEXMod/HBV-D-wt 
(having rt and rh regions of wt-HBV) and pTriEX-Mod/HBV-D-mt (with rt and rh region of OHBV) were gen-
erated that were isogenic, except for their rt and rh domains.

Cell Culture and Transfection. To determine the effect of occult-associated mutations inside the ORF-S, 
ORF-X, or regulatory regions of HBV on its own life cycle or on the host cells, as compared to the wt-HBV 
genome, full-length wt or different mutant (mt)-HBV genomes were released from pJET1.2 vector by SapI 

http://S1
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digestion and these linear full-length HBV monomers were transfected in Huh7 cells41. To evaluate the effects of 
mutations inside rt and rh regions of ORF-P, replication competent pTriEXMod/HBVD-WT and pTriEX-Mod/
HBV-D-MT plasmids were used directly for transfection assay. Huh7 cells were seeded into 6 well plates at a 
concentration of 2 × 105 cells/well in DMEM (HIMEDIA) with 10% FBS (Gibco). Sixteen hours post seeding, 
cells were transiently transfected separately with 2 µg of purified SapI digested, full-length linear monomeric 
HBV (wt and appropriate mt genome) or pTriEXMod/HBV-D plasmids (wt/mt) along with pRL-CMV Renilla 
Luciferase Reporter Vector (Promega), which served as transfection normalization control, using Lipofectamine 
2000 transfection reagent (Invitrogen).

Viral DNA, RNA and protein analyses. Forty-eight hours post-transfection, Huh7 cells were harvested 
and HBV-DNA was isolated from both intracellular core particles34 as well as from culture supernatant. To iso-
late the intracellular HBV DNA from the viral core particles, HBV transfected Huh7 cells were lysed with lysis 
buffer (50 mM Tris-HCL, pH = 8; 1 mM EDTA; 1% NP40), centrifuged at a speed of 10,000 rpm for 1 minute at 
room temperature followed by DNase I (Roche) and RNase A (Fermentas) digestion at 37 °C for 3 hours. After 
that the HBV core particles were digested with Proteinase K (Roche) overnight at 42 °C. Finally the intracellular 
viral DNA was extracted with phenol, chloroform, isoamyl alcohol (25:24:1) and precipitated with 3 M NaOAc 
(pH = 5.2) and ethanol. Extracted viral DNA was quantified by Real Time PCR with SYBR Green Master mix 
(Applied Biosystems) as described by Garson et al.42. A 40 cycle real-time PCR was performed in QuantStudio 7 
Flex (Applied Biosystems) using primer-pair F4-R3 (Supplementary Table S2) with the following thermal condi-
tion: 94 °C for 30 sec, 56 °C for 15 sec, 72 °C for 30 sec. A 5 point standard curve was prepared by the serial dilution 
of the WHO International Standard for HBV DNA NAT assays, 97/746 (5 × 105 IU per vial). HBV-DNA was also 
isolated from cell culture supernatant with QIAamp Blood Kit (Qiagen Inc.) and quantified similarly.

Total RNA was extracted from transfected cells and cDNA was generated using High-Capacity cDNA Reverse 
Transcription kit (Applied Biosystems) and the expression of pregenomic RNA (pgRNA), PreS1 and PreS2 tran-
scripts were determined by Real-Time PCR using specific primers (Supplementary Table S2) and SYBR Green 
Master mix. The cycling conditions consisted of an initial step at 95 °C for 10 min followed by 40 cycles of 95 °C 
for 25 sec, 56 °C for 25 sec and 72 °C for 25 sec (with fluorescence acquisition). Amplification was followed by a 
melting curve analysis over a linear temperature increase (0.05 °C per sec) from 60 °C to 95 °C. All assays were 
performed in triplicates and the expression of Renilla luciferase was used to normalize the transfection efficiency. 
Additionally, the levels of intracellular HBV envelope proteins were determined by immunoblotting with mouse 
monoclonal anti-HBs primary antibody (anti-Ad/Ay; MyBioSource) while the extracellular HBsAg in culture 
supernatant was determined by ELISA using BeneSphera HBsAg Microwell ELISA kit.

Dual luciferase reporter gene assay. The full-length, wild-type and mutant HBx-promoter and Enh-II 
regions were separately amplified from pJET-HBV-wt and from previously sequenced OHBV-DNA, using 
specific primers (Supplementary Table S2). The promoter-amplicons were inserted into the KpnI/XhoI sites of 
pGL3-Basic vector (Promega) to generate pGL3-B-HBx-promoter-wt and pGL3-B-HBx-promoter-mt con-
structs. The enhancer-II-amplicons were inserted at similar sites in pGL3-Promoter vector (Promega) to gen-
erate pGL3-P-wt-Enhancer-II and pGL3-P-mt-Enhancer-II. All constructs were verified by sequencing and 
co-transfected with pRL-CMV vector in Huh7 cells. In addition, the full-length promoter of GRP78 cloned in 
pGL3-Basic vector43 was transfected in Huh7 cells along with pRL-CMV vector and linear monomers wild-type 
or mutant-HBV (carrying Enh-II mutations as well as the combined PreS2 and X mutations). In all cases, after 
forty eight hours Firefly and Renilla luciferase activities were measured using Dual-Luciferase Reporter Assay kit 
(Promega) in luminometer.

Statistical analysis. Data were expressed as median (range) or mean ± standard deviation as appropriate. 
Statistical analysis was performed using GraphPad Prism 5.0. Fisher’s exact test was performed to make pairwise 
group comparisons of mutation frequencies. For all tests, p values < 0.05 was considered significant.

Nucleotide sequence accession numbers. The complete nucleotide sequences of 17 OHBV/D isolates 
are available in GenBank under accession numbers KU668433-KU668449.
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